SOLUTION - EXERCISE 7, QUESTIONS 1 AND 5

Here are some solutions.

- 1. Let (X, \mathcal{O}_X) be a space with functions and let Z be a subset of X. We define a structure of space with functions on Z as follows. The topology on Z is induced from that on X, that is open subsets in Z are those V such that there exists U open in X such that $V = Z \cap U$. A function $f: V \to k$ on such V is regular if for any $x \in V$ there exists an open neighborhood U of x in X and a function $g \in \mathcal{O}_X(U)$ such that $f|_{Z \cap U} = g|_{Z \cap U}$. Verification of the axioms of a space with functions, as well as the universal property are very easy.
- 3. Using universality of affine varieties, a commutative diagram

can be equivalently described by the commutative diagram in $\operatorname{Alg}_{k}^{Jr}$

Using universality of tensor products of commutative algebras, we can rewrite the latter as a morphism $X \to \operatorname{spec}_k(D)$ where D is the quotient of $A \otimes_C B$ by the nilradical. Note that the nilradical can be nonzero.

5. To construct a map to a product, one has to construct a pair of maps to each factor. The map $\operatorname{proj}(A \otimes B) \to \operatorname{spec}(A \otimes B)_0 = \operatorname{spec}(B)$ is canonical, whereas the map $\operatorname{proj}(A \otimes B) \to \operatorname{proj}(A)$ is induced by the graded ring homomorphism $A \to A \otimes B$ carrying $a \in A$ to $a \otimes 1$ (one has to verify that the latter homomorphism does induce a map of proj's). Choose homogeneous $f_i \in A_+$ generating A_+ as an ideal of A. Then $D_+(f_i)$ cover $\operatorname{proj}(A)$, $f_i \otimes 1$ generate B_+ as an ideal in B and $D_+(f_i \otimes 1)$ cover $\operatorname{proj}(A \otimes B)$. Finally, $D_+(f_i \otimes 1) = \operatorname{spec}(A \otimes B)_{(f_i \otimes 1)} = \operatorname{spec}(A_{(f_i)} \otimes B) = D_+(f_i) \times \operatorname{spec}(B)$. This proves that the map we constructed is locally an isomorphism of spaces with functions, so it is an isomorphism.

Finally, about the blowing-up. We have $A = k[x_1, \ldots, x_n]$, $B_n = (x_1, \ldots, x_n)^n t^n = (x_1 t, \ldots, x_n t)^n$, so that $B \subset A[t]$, $\deg(t) = 1$. We denote $C = A[Y_1, \ldots, Y_n]$ with $\deg(Y_i) = 1$ so that there is a graded surjective homomorphism $p: C \to B$ carrying Y_i to $x_i t$. It induces a closed embedding $\operatorname{proj}(B) \to \operatorname{proj}(C)$ and we have $\operatorname{proj}(C) = \operatorname{spec}(A) \times \operatorname{proj}(k[Y_1, \ldots, Y_n]) = \operatorname{spec}(A) \times \mathbb{P}^{n-1}$.