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Abstract

We prove that the category of algebras over a co0brant operad admits a closed model category
structure. This leads to the notion of “virtual operad algebra” – the algebra over a co0brant res-
olution of the given operad. In particular, virtual commutative algebras can serve to an algebraic
description of homotopy p-types as in the recent preprint of Mandell (M. Mandell, E∞-algebras
and p-adic homotopy theory, Hopf preprint server, October, 1998). Our main result allows one
to simplify the proof of Mandell’s theorem. c© 2001 Elsevier Science B.V. All rights reserved.

MSC: 18G55; 55P99

1. Introduction

1.1. Let k be a base commutative ring, C(k) be the category of complexes of
k-modules. The category of operads Op(k) in C(k) admits a closed model category
(CMC) structure with quasi-isomorphisms as weak equivalences and surjective maps
as 0brations (see [1], Section 6 and also Section 2 below).

Let now O be a co0brant operad. The main result of this note (see Theorem 3.1)
claims that the category of O-algebras admits as well a CMC structure with quasi-
isomorphisms as weak equivalences and surjective maps as 0brations. This allows
one, following the pattern of [1], 5.4, to construct the homotopy category of virtual
O-algebras for any operad O over C(k) as the homotopy category of P-algebras for a
co0brant resolution P→ O of the operad O.
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The main motivation of the note was to understand the following main result of
Mandell’s recent paper [3].

1.2. Theorem. The singular cochain functor with coe3cients in KFp induces a con-
travariant equivalence from the homotopy category of connected p-complete nilpo-
tent spaces of 5nite p-type to a full subcategory of the homotopy category of
E∞ KFp-algebras.

In his approach, Mandell realizes the homotopy category of E∞-algebras as a local-
ization of the category of algebras over a “particular but unspeci0ed” operad E. One
of major technical problems was that the category of E-algebras did not seem to admit
a CMC structure.

We suggest to choose E to be a co0brant resolution of the Eilenberg–Zilber operad.
Then according to Theorem 3.1, the category of E-algebras admits a CMC structure.
This simpli0es the proof of Theorem 1:2.

1.3. Content of Sections. The main body of the note (Sections 2–4) can be considered
as a complement to [1] where some general homology theory of operad algebras is
presented.

In Section 2 we recall some results of [1] we need in the sequel. In Section 3
we prove the Main Theorem 3.1. In Section 4 we present, using Theorem 3.1, a
construction of the homotopy category Viral(O) of virtual O-algebras.

In Section 5 we review the proof of Mandell’s theorem [3], stressing the simpli0-
cations due to our Theorem 3:1.

2. Homotopical algebra of operads: a digest of [1]

In this Section we recall some results from [1] and give some de0nitions we will
be using in the sequel.

2.1. Category of operads. Let k be a commutative ring and let C(k) denote the cate-
gory of complexes of k-modules.

Recall ([1], 6:1:1) that the category Op(k) of operads in C(k) admits a closed
model category (CMC) structure in which weak equivalences are componentwise quasi-
isomorphisms and 0brations are componentwise surjective maps.

Co0brations in Op(k) are retractions of standard co5brations; a map O → O′ is a
standard co0bration if O′ = lim→ s∈N Os with O0 =O and each Os+1 is obtained from Os

by adding a set of free generators gi with prescribed values of d(gi)∈Os.

2.2. Algebras over an operad. Let O∈ Op(k).
The category of O-algebras is denoted by Alg(O). For X ∈C(k) we denote by

F(O; X ) the free O-algebra generated by X .
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For any d∈Z denote by Wd ∈C(k) the contractible complex

0→ k = k → 0

concentrated in degrees d; d+ 1.

2.2.1. De#nition. An operad O∈ Op(k) is called homotopically amenable if for any
A∈ Alg(O) the natural map

A→ A � F(O; Wd)
is a quasi-isomorphism.

2.2.2. Proposition. (see [1], Theorem. 2.2.1) Let O be homotopically amenable. Then
the category of O-algebras admits a CMC structure with quasi-isomorphisms as weak
equivalences and surjective maps as 5brations.

2.3. Examples.

2.3.1. First of all, not all operads are homotopically amenable. In fact, let k=Fp; O=
COM (the operad of commutative algebras). Then the symmetric algebra of Wd fails to
be contractible in degree p.

2.3.2. Proposition. (see [1], Theorem. 4.1.1) Any �-split operad (see [1], 4.2) is
homotopically amenable.

In particular, all operads over k ⊇Q are homotopically amenable. Also, all operads
of form T� where T is an asymmetric operad, in particular, ASS (see [1], 4.2.5), are
homotopically amenable.

2.3.3. The main result of this note claims that any co0brant operad is homotopically
amenable.

2.4. Base change and equivalence. Let f :O → O′ be a map of operads. Then a pair
of adjoint functors

f∗ : Alg(O)→ Alg(O′) :f∗ (1)

is de0ned in a standard way.

2.4.1. Proposition. (see [1], 4.6.4.) Let f :O → O′ be a map of homotopically
amenable operads. The inverse and direct image functors (1) induce the adjoint
functors

Lf∗ : Hoalg(O)→ Hoalg(O′) :Rf∗ = f∗ (2)

between the corresponding homotopy categories.
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2.4.2. De#nition. A map f :O → O′ of operads is called strong equivalence if for
each d= (d1; : : : ; dn)∈Nn, the induced map

O(|d|)⊗�d k → O′(|d|)⊗�d k
is a quasi-isomorphism.

Here |d|=∑
di and �d = �d1 × · · · × �dn ⊆�|d|.

2.4.3. Proposition. Let f :O→ O′ be a strong equivalence of homotopically amenable
operads. Then the functors Lf∗; f∗ are equivalences.

In Section 5 we will be using the following version of Proposition 2:4:3:

2.4.4. Proposition. Let f :O → O′ be a strong equivalence of operads. Suppose O

is homotopically amenable operad. Then for each co5brant O-algebra A the natural
map

A→ f∗(f∗(A))

is an equivalence.

2.4.5. Remark. A quasi-isomorphism of �-split operads compatible with the �-splittings
is necessarily a strong equivalence.

Theorem 4:7:4 of [1] actually proves Propositions 2:4:4 and 2:4:3 together with the
last Remark.

3. Main theorem

3.1. Theorem. Any co5brant operad O∈ Op(k) is homotopically amenable.
In particular; the category of algebras Alg(O) over a co5brant operad O admits a

CMC structure with quasi-isomorphisms as weak equivalences and epimorphisms as
5brations.

3.2. Proof of the theorem.

3.2.1. First of all, we can easily reduce the claim to the case O is standard co0brant.
In fact, since O is co0brant, it is a retraction of a standard co0brant operad O′. Let

O
�→O′ �→O

be a retraction. Let A be a O-algebra. We can consider A as a O′-algebra via �. Then
the map A→ A � F(O; M) is a retraction of the map A→ A � F(O′; M). This reduces
the theorem to the case O is standard co0brant.

3.2.2. Let O= lim→ s∈N Os (see notation of 2.1, O0 = 0) be a standard co0brant operad.

Let {gi}; i∈ I be a set of free (homogeneous) generators of O.
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Let a function s : I → N be given so that Os is freely generated as a graded operad
by gi with s(i) ≤ s and, of course, dgi ∈Os(i)−1.

Let, 0nally, val : I → N and d : I → Z be the valence and the degree functions
de0ned by the condition gi ∈O(val(i))d(i).

The collection I = (I; s; val; d) will be called a type of O.
Since we deal with free operads and free algebras, it is worthwhile to have an

appropriate notion of tree. Fix a type I = (I; s; val; d).
Put I+ = I ∪ {a; m} (a and m will be special marks on some terminal vertices

of our trees) and extend the functions val : I → N and d : I → Z to I+ by setting
val(a) = val(m) = d(a) = d(m) = 0.

3.2.3. De#nition. A I-tree is a 0nite connected directed graph such that any vertex
has ≤ 1 ingoing arrows; each vertex is marked by an element i∈ I+ so that val(i)
equals the number of outgoing arrows which are numbered by 1; : : : ; val(i).

The set of vertices of a tree T will be denoted by V (T ). Terminal vertices of a
I-tree are the ones having no outgoing arrows. In particular, all vertices marked by a
or by m are terminal.

3.2.4. De#nition. A I-tree T is called proper if the following property (P) is satis0ed:
(P) For any vertex v of T one of the possibilities (a)–(c) below occurs:
(a) v is terminal;
(b) v admits an outgoing arrow to a non-terminal vertex;
(c) v admits an outgoing arrow to a vertex marked by m.

We denote by P(I) the set of isomorphism classes of proper I-trees. The following
easy result justi0es the notion of proper tree:

3.2.5. Proposition. Let O be a standard co5brant operad of type I= (I; s; val; d); A
be a O-algebra and M ∈C(k). Then the coproduct B:=A�F(M) is given; as a graded
k-module; by the formula

B=
⊕

T ∈P(I)

A⊗a(T ) ⊗M⊗m(T )[d(T )] (3)

where a(T ) (respectively; m(T )) is the number of vertices of type a (respectively; of
type m) in T and d(T ) =

∑
v∈ V (T ) d(v):

Proof. Since the operad O is freely generated by {gi} as an operad of graded k-modules,
its action on a graded k-module B is given by a collection of operations �i; i∈ I;

�i :B⊗val(i) → B[d(i)];

de0ned by gi.
Denote for T ∈P(I)

BT = A⊗a(T ) ⊗M⊗m(T )[d(T )]; (4)

so that the graded k-module B de0ned in (3) is the direct sum of BT . Let T0 ∈P(I)
be the single vertex marked by a. Then BT0 = A.
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The map �i :B⊗val(i) → B[d(i)] is de0ned as follows. Its restriction on B⊗val(i)
T0 coin-

cides with the action of gi on O-algebra A. The restriction of �i on BT1⊗· · ·⊗BTval(i) in
the case when at least one of Tj is diPerent from T0, is given by glueing the trees Tj
to the corollary (tree having no internal vertices) marked by i∈ I . The resulting tree
will be necessarily proper.

The tree T0 de0nes a map A → B; the trees T ∈P(I) satisfying the condition
a(T ) = 0 de0ne a map F(M)→ B. Any O-algebra C endowed with maps A→ C and
F(M)→ C gives rise to a unique map B→ C. This proves the assertion.

3.2.6. Let W be the set of maps N → N having 0nite support. Endow W with the
following lexicographic order. For f; g∈W we will say that f¿g if there exists a
s∈N such that f(s)¿g(s) and f(t) = g(t) for all t ¿ s.

The set W well-ordered.
Our next step is to de0ne a 0ltration of B= A � F(M) indexed by W.

3.2.7. De#nition. Let T ∈P(I). The weight of T; w(T )∈W is the function N→ N
which assigns to any s∈N the number of vertices v of T whose mark i∈ I satis0es
s(i) = s.

Now we are able to de0ne a 0ltration on B.

3.2.8. Let A;M; B= A � F(M) be as above. For each f∈W de0ne

Ff(B) =
⊕

T :w(T )≤f
BT ;

the graded k-modules BT being de0ned by formula (4).
The homogeneous components of the associated graded complex are de0ned as

grFf (B) =Ff(B)

/∑
g¡f

Fg(B) :

The following properties of the 0ltration F are obvious:

3.2.9. Proposition. (1) For each f∈W the graded submodule Ff is a subcomplex
of B.
(2) One has F0 = A⊕M .
(3) Suppose M is a contractible complex. Then for each f¿ 0 the homogeneous
components grFf are contractible.

3.2.10. Proposition. 3.2.9 immediately implies that a standard co5brant operad is
homotopically amenable. This, together with 3.2.1, gives Theorem 3.1.
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4. Virtual algebras

4.1. Theorem. 3.1 suggests the following de0nition:
Let O∈ Op(k). The homotopy category of virtual O-algebras Viral(O) is de0ned as

Hoalg(P) where P→ O is a co0brant resolution of O in the category of operads.
One should, however, do some work, to ensure the de0nition above make sense.

4.2. Base change. Any morphism f :P → Q of operads induces a pair of adjoint
functors

f∗ : Alg(P)� Alg(Q) :f∗: (5)

Theorem 3.1 together with Proposition 2.4.1 give immediately the following:

4.2.1. Proposition. For any morphism f :P → Q of co5brant operads the adjoint
functors (5) induce a pair of adjoint functors

Lf∗ : Hoalg(P)� Hoalg(Q) :Rf∗ = f∗ (6)

between the homotopy categories.

4.2.2. Proposition. (1) Let f :P → Q be a weak equivalence of co5brant operads.
Then f is a strong equivalence. In paticular, the derived functors of inverse and direct
image (6) establish an equivalence of the homotopy categories.

(2) Let f; g :P→ Q be homotopic maps between co5brant operads. Then there is
an isomorphism of functors

f∗; g∗ : Hoalg(Q)→ Hoalg(P):

This isomorphism depends only on the homotopy class of the homotopy connecting
f with g.

Proof. (1) Let d= (d1; : : : ; dn); |d|=
∑
di and let �d =

∏
�di ⊆�|d|.

We have to check that the map

P(|d|)⊗�d k → Q(|d|)⊗�d k;
induced by f, is a quasi-isomorphism.

Since P and Q are co0brant operads, P(|d|) and Q(|d|) are co0brant as complexes
of k(�|d|)-modules. Therefore, their quasi-isomorphism is a homotopy equivalence of
k(�|d|)-modules and therefore is preserved after tensoring by k.

(2) We present here a proof which is identical to the proof of Lemma 5:4:3(2) of
[1].

Let Q
�→QI

p0 ;p1−−−−−→−−−−−→ Q be a path diagram for Q (see [4, Chapter 1]) so that �

is an acyclic co0bration. Since the functors p0∗ and p1∗ are both quasi-inverse to an
equivalence �∗ : Hoalg(QI )→ Hoalg(Q), there is a natural isomorphism " :p0∗ → p1∗.
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Therefore, any homotopy F :P → QI between f and g de0nes an isomorphism
"F = F∗ ◦ " between f∗ and g∗. Let now F0; F1 :P→ QI be homotopic. The homotopy
can be realized by a map h :P→ R where R is taken from a path diagram

QI
$→R

q0×q1−→ QI ×Q×Q QI (7)

where $ is an acyclic co0bration, q0 × q1 is a 0bration, qi ◦ h = Fi; i = 0; 1: Passing
to the corresponding homotopy categories we get the functors qi∗ ◦ pj∗ : Hoalg(Q) →
Hoalg(R) which are quasi-inverse to �∗◦$∗ : Hoalg(R)→ Hoalg(Q). One has "q0="q1
since the equivalence $∗ applied to both sides gives the same result. This implies that
"F0 = "F1 .

4.3. Virtual operad algebras. Our construction of the category of virtual O-algebras
follows the construction of virtual modules in [1], 5.4.

Let Opc(k) denote the category of co0brant operads in C(k). For each P∈ Opc(k)
let Hoalg(P) be the homotopy category of P-algebras. These categories form a 0bred
category Hoalg over Opc(k), with the functors Rf∗ = f∗ playing the role of “inverse
image functors”.

Let O∈ Op(k). Let Opc(k)=O be the category of maps P → O of operads with
co0brant P. The obvious functor

cO : Opc(k)=O→ Opc(k)

assigns the co0brant operad P to an arrow P→ O.

4.3.1. De#nition. The (homotopy) category Viral(O) of virtual O-algebras is the
0bre of Hoalg at cO. In other words, an object of Viral(O) consists of a collec-
tion Aa ∈ Hoalg(Pa) for each a :Pa → O in Opc(k)=P and of compatible collection of
isomorphisms (f :Aa → f∗(Ab) given for every f :Pa → Pb in Opc(k)=O.

4.3.2. Corollary. Let � :P→ O be a weak equivalence of operads with co5brant P.
Then the obvious functor

q� : Viral(O)→ Hoalg(P)

is an equivalence of categories.

Proof. We will construct a quasi-inverse functor q� : Hoalg(P)→ Viral(O). For this
choose for any map $ :Q → O a map f$ :Q → P making the corresponding triangle
homotopy commutative. Then, for any A∈ Hoalg(P) we de0ne q�(A) to be the col-
lection of f$∗(A)∈ Hoalg(Q). According to Proposition 4.2.2, the de0nition does not
depend on the choice of f′

$ s.

The corollary means that the homotopy category of virtual O-algebras is really the
category of algebras over a co0brant resolution of O.
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4.3.3. Any map f :O → O′ de0nes an obvious functor Opc(k)=O → Opc(k)=O′. This
induces a direct image functor

f∗ : Viral(O′)→ Viral(O):

According to Corollary 4.3.2, this functor admits a left adjoint inverse image functor
f∗ which can be calculated using co0brant resolutions for O and O′.

4.4. The � -split case.
Proposition 4.4.1 below was communicated to the author by the referee. Let O be a

�-split operad. This means that a collection of �n-equivariant maps

t(n) :O(n)→ O(n)⊗ k�n
splitting the �n-action on O(n) and satisfying some compatibility properties is given
— see [1], 4.2.4.

Choose a co0brant resolution f :P→ O. For each n the map

P(n)⊗ k�n → O(n)⊗ k�n
is a co0brant resolution of complexes of k�n-modules. Therefore, there exists a �n-
equivariant map

s(n) :P(n)→ P(n)⊗ k�n
commuting with t(n). The composition of s(n) with the obvious map P(n) ⊗ k�n →
P(n) is homotopic to identity since it commutes with id :O(n)→ O(n).

Now for any d= (d1; : : : ; dn)∈Nn the map

f̃ :P(|d|)⊗ k�|d| ⊗�d k → O(|d|)⊗ k�|d| ⊗�d k (8)

induced by f is obviously a quasi-isomorphism. The maps s(|d|) and t(|d|) give a
presentation of

H (P(|d|)⊗�d k)→ H (O(|d|)⊗�d k)
as a retract of H (f̃) in (8). Thus, the map f :P→ O is a strong equivalence.

This proves the following:

4.4.1. Proposition. For a �-split operad O there is an equivalence of categories

Viral(O)→ Hoalg(O):

4.4.2. Remark. We do not know whether the above equivalence takes place for any
homotopically amenable operad O.

5. Application : realization of homotopy p-types

Theorem 3.1 allows one to simplify Mandell’s proof of Theorem 1.2.
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In his approach, Mandell realizes the homotopy category of E∞-algebras as a local-
ization of the category of algebras over a “particular but unspeci0ed” operad E. Then
the category of E-algebras does not seem to admit a CMC structure. Nevertheless,
Mandell proves that the category of E-algebras admits a structure which “looks like”
a CMC structure and allows one to use the standard model category arguments in
constructing derived functors.

Theorem 3.1 suggests to choose E to be a co0brant resolution of the Eilenberg–Zilber
operad. Then the category of E-algebras admits a CMC structure.

In this section we give a summary of the proof Mandell’s Theorem 1:2. We also
present Proposition 5.2.3 which, together with the usage of a co0brant operad E, makes
Mandell’s agrument much shorter.

5.1. Adjoint functors C∗ and U

5.1.1. Recall [2] that the cochain complex C∗(X ) of an arbitrary simplicial set X ∈
,opEns admits a canonical structure of algebra over the Eilenberg–Zilber operad Z

which is weakly equivalent to the operad COM of commutative algebras. Choose any
co0brant resolution E of Z. The category of virtual commutative algebras Viral(COM)
is canonically equivalent to Hoalg(E).

5.1.2. For each commutative ring k de0ne

C∗( ; k) : (,opEns)op → Alg(k ⊗ E) (9)

(here and below ⊗ means tensoring over Z) to be the functor of normalized k-valued
cochains. This functor admits an obvious left adjoint functor

Uk : Alg(k ⊗ E)→ (,opEns)op (10)

given by the formula

Uk(A)n = Hom(A; C∗(,n; k)) (11)

The pair of functors C∗( ; k) and Uk satis0es the requirements of Quillen’s theorem
[4, Section 4, Theorem 3].

Since the functor C∗( ; k) preserves weak equivalences, one therefore obtains a pair
of derived adjoint functors

Uk : Viral(COM) = Hoalg(k ⊗ E)�Ho :C∗( ; k); (12)

Ho being the homotopy category of simplicial sets.

5.2. A simplicial set X is called k-resolvable if the natural map

uX :X → UkC∗(X; k)

is a weak equivalence.
The following two lemmas allow one to construct resolvable spaces:
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5.2.1. Lemma. (Mandell [3], Theorem 1.1) Let X be the limit of a tower of Kan
5brations

· · · → Xn → · · · → X0:

Assume that the canonical map from H∗X to colim H∗Xn is an isomorphism. If each
Xn is k-resolvable; then X is k-resolvable.

5.2.2. Lemma. (Mandell [3], Theorem 1.2) Let X; Y and Z be connected simplicial
sets of 5nite type; and assume that Z is simply connected. Let X → Z and Y → Z
be given; so that Y → Z is a Kan 5bration. Then, if X; Y and Z are k-resolvable then
so is the 5bre product X ×Z Y .

Lemma 5.2.1 follows from the fact that the functor U carries homotopy colimits
in Alg(E) into homotopy limits in ,opEns. The proof of Lemma 5.2.2 is similar, but
needs an extra argument which can be deduced from Proposition 5.2.3 below.

Using the CMC structure on Op(k), one can embed the obvious map of operads
ASS→ COM into the following commutative diagram

ASS∞
�−−−−−→ E� 1

�
ASS

K�−−−−−→ KE
�−−−−−→ COM

;

where ASS∞ is the operad of A∞-algebras, � is a co0bration, � is a weak equivalence
and the square is cocartesian.

5.2.3. Proposition. (compare to [3], Lemma 5:2). Let A→ B and A→ C be co5bra-
tions of co5brant E-algebras. Let KA= 1∗(A); and similarly for KB; KC. Then the natural
maps

B �A C t−→ KB � KA KC r←− KB⊗ KA
KC

are quasi-isomorphisms in C(k). Here t is induced by 1 and r is induced by the
composition

KB⊗ KC → ( KB � KA KC)⊗ ( KB � KA KC) mult:−→ KB � KA KC:

Proof. (1) t is a quasi-isomorphism. The functor 1∗ commutes with colimits. Therefore,
it is enough to prove that the natural map A → 1∗1∗(A) is a weak equivalence for a
co0brant algebra A. According to 2.4.4, it is enough to check that 1 :E→ KE is a strong
equivalence of operads.

Since � is a co0bration, K� is a co0bration as well. Therefore, both E(n) and KE(n)
are co0brant over k�n. Then the strong equivalence of E and KE follows from their
weak equivalence.

(2) r is a quasi-isomorphism.
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Suppose A is standard co0brant and the maps A→ B; A→ C are standard co0bra-
tions. Let {ei; i∈ I}; {ej; j∈ I ∪ J}; {ek ; k ∈ I ∪ K}, be graded free bases of A; B and
C respectively (the index sets I; J; K are disjoint).

The sets I; J and K are well-ordered and the diPerential of ei is expressed through
ei′ with i′¡i.

Put S = I ∪ J ∪ K with the order given by i¡ j¡k for i∈ I; j∈ J; k ∈K . Let S̃
be the set of maps S → N with 0nite support and with the lexicographic order as in
3.2.6.

For f∈ S̃ denote |f|=∑
s∈ S f(s).

The algebra KB� KA KC has an obvious increasing 0ltration by subcomplexes {Ff} indexed
by f∈ S̃.

The homogeneous component of the associated graded complex for f∈ S̃ takes form

grf(F) = KE(|f|)⊗�f ef

where ef =
∏

s∈ S e
f(s)
s and �f =

∏
s∈ S �f(s).

De0ne a 0ltration {F ′
f} of KB ⊗ KA

KC indexed by the same set S̃. It is given by the
formula

F ′
f =

⊕
g¡f

KE(|g|1)⊗ KE(|g|2)⊗�g eg

where |g|1 =
∑

s∈ I∪J g(s) and |g|2 =
∑

s∈K g(s). The homogeneous component for
f∈ S̃ is given by

grf(F
′) = KE(|f|1)⊗ KE(|f|2)⊗�f ef:

The map r : KB ⊗ KA
KC → KB � KA KC is compatible with the 0ltrations. The corresponding

map of the homogeneous components

grf(r) : KE(|f|)⊗�f ef → KE(|f|1)⊗ KE(|f|2)⊗�f ef

is induced by the map

KE(|f|1)⊗ KE(|f|2)→ KE(|f|); (13)

which is obviously quasi-isomorphism. The assertion then follows from the observation
that both the left and the right hand side of (13) are co0brant over k(�f).

5.3. The following theorem implies that the Eilenberg–MacLane space K(Z=p; n) is
KFp-resolvable:

5.3.1. Theorem. (cf. [3], Proposition A.7). The space K(Z=p; n) is k-resolvable i=
k ⊇ Fp and the frobenius F : k → k gives rise to a short exact sequence of abelian
groups

0→ Fp → k 1−F−→ k → 0: (14)

This, together with 5.2.1 and 5.2.2, yields Theorem 1.2.
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