
ERRATA ET ADDENDUM TO “TAMARKIN’S

PROOF...”

I am very grateful to all people who sent their remarks on my manu-
script. My special thanks are to M. Markl, V. Ginzburg, R. Bezrukavnikov
and J. Huebschmann.

1. Proof of 4.3.1, p. 12

The morphism τ(1) defined by formulas (15) does not preserve the
units. Therefore, strictly speaking, the collection {τ(n)} is not a mor-
phism of operads. This can be, however, easily fixed.

Add formally units to the operads Endop(B) and Endop(A), so that
τ will induce a quasi-isomorphism of the new extended operads. Then
the rest of the proof works well for the extended operads.

2. Etingof-Kazhdan theory, 7.2

The general formulation of Etingof-Kazhdan quantization-dequantization
is not so easy to grasp. Trying to simplify the exposition, I presented
in Theorem 7.2.1 a special case of Etingof-Kazhdan theorem which I
believed was sufficient for our needs. This was not completely correct.
The problem is with the definition of the category A(R): if A is the
category of complexes of k-vector spaces then according to the defini-
tion of 7.2 A(R) is NOT equivalent to the category of complexes of free
R-modules but to the full subcategory consisting of complexes of the
form R ⊗ X, X being a complex of k-vector spaces.

Let me be more accurate now.
Let A be an abelian k-linear tensor category with Hom-vector spaces

complete with respect to a decreasing filtration

Hom(x, y) = F 0 ⊇ F 1 ⊇ F 2 ⊇ . . . ,

and with compositions compatible with these filtrations.
In the application we have in mind A is the category of complexes

of free k[[h]]-modules, endowed with a k∗-action compatible with the
action on k[[h]] given by the formula

λ(h) = λ−1h.

Let LBA0 be the category of Lie bialgebras in A whose cobracket
belongs to the F 1 of the corresponding Hom.
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Let HA0 denotes the category of Hopf algebras in A with comultipli-
cation ∆ and antipode S such that ∆−∆op and S −S−1 belong to the
F 1 of the corresponding Hom.

Then the quantization functor of Etingof-Kazhdan

Q : LBA0 → HA0

is defined. The Hopf algebra Q(g) is isomorphic to the symmetric
algebra S(g) as an object of A, but has different operations expressible
by universal formulas through the bracket and cobracket of g.

One has to be slightly more careful with the dequantization functor.
The existence of dequantization is formulated in [EK] only for the spe-
cial cases which do not include complexes. However, the most dificult
step of dequantization procedure, that of construction of a co-Poisson
Hopf algebra, is given by universal formulas, and, therefore, is valid in
any category A. The only “A-sensitive” step is the passage from co-
Poisson Hopf algebra to Lie bialgebra. This passage is given by taking
the primitive part of the Hopf algebra.

We know that this passage is an equivalence of categories if one for-
gets about the differentials. Since the collection of primitive elements
form a subcomplex and since this subcomplex generates the enveloping
algebra as an associative algebra, we are done.

3. Addendum

Theorem 5.3.3 proven in the text claims that the Hochschild complex
C∗(A, A) admits a structure of G∞-algebra structure inducing the usual
Gerstenhaber algebra on the cohomology. I have forgotten, however,
to check that the induced LIE∞ algebra structure on C∗(A, A) comes
from the standard Lie bracket.

The action of G∞ on C∗(A, A) comes from an action of the operad

B̃ on C∗(A, A). The operad morphism from G∞ to B̃ is constructed in
6.3.

Let us calculate the composition

LIE{1}
∞

→ G∞ → B̃.

B̃-algebra structure on X induces, via `11, a Lie algebra on X[1]. The
functor F

∗
COM

( [1]) applied to the map of Lie algebras X[1] → F
∗
LIE

(X[1])
gives a map

F
∗
COM

(X[2]) → F
∗
G(X)[2].

This shows that LIE∞-algebra structure on C∗(A, A)[1] comes from

`11 ∈ B̃(2). Since B̃(2) = B∞(2), we are done.


