TAMARKIN’S PROOF OF KONTSEVICH FORMALITY THEOREM

VLADIMIR HINICH

ABSTRACT. In 1998 D. Tamarkin announced a proof of Kontsevich formality theorem
based on the existence of structure of homotopy Gerstenhaber algebra in the Hochschild
cochains of an associative algebra. In this note we give a detailed explanation of
Tamarkin’s result.

1. INTRODUCTION

1.1. This is an extended version of lectures given at Luminy colloquium “Quantification
par déformation” held at December, 1999.

In this note we explain Tamarkin’s proof [T] of the following affine algebraic version of
Kontsevich’s formality theorem.

1.2. Theorem. Let A be a polynomial algebra over a field k of characteristic zero and
let C = C*(A; A) be the cohomological Hochschild complex of A with coefficients at A.
The dg Lie algebra C[1] is formal, that is C[1] is isomorphic in the homotopy category of
dg Lie algebras to its cohomology.

Our sources are the original Tamarkin’s note [T] and the recent paper of Tamarkin-
Tsygan [TT] where a simplification (following Etingof’s suggestion) of the original proof
is sketched.

The aim of the note is to provide all necessary details of the proof of this important
theorem. Some of these details are only hinted or have to be guessed in [T].

1.3. Tamarkin’s approach to the proof of Theorem 1.2 can be shortly described as follows.
It is known since the pioneering work of Gerstenhaber [G] that the Hochschild cohomology
H(C) = H*(A; A) of any associative algebra A admits a structure of an odd version of
Poisson algebra (now called Gerstenhaber algebra; this is an algebra over the operad G
defined in 5.2.2).

Tamarkin proves, using Etingof-Kazhdan theory of quantization of Lie bialgebras, that the
Gerstenhaber algebra structure on H(C) mentioned above comes from a certain homotopy
Gerstenhaber algebra structure on the Hochschild complex C. This structure is not unique:
it depends (as everything in the Etingof-Kazhdan theory) on the choice of associator. This
can explain the role the Grothendieck-Teichmiiller group plays in the deformation theory

of associative algebras.
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Once the Hochschild complex C = C*(A; A) is endowed with a structure of homotopy
Gerstenhaber algebra, one can use a more or less classical obstruction theory to prove
the formality of C. To make sure that C is formal, one has to calculate the cohomology
of H(C) as a Gerstenhaber algebra and to make sure that the obstructions to formality
vanish.

1.4. The key words for Tamarkin’s proof of Theorem 1.2 are obstructions to formality
and (an analog of) Deligne conjecture.

1.4.1. Obstructions to formality. Let X be a commutative dg algebra. Halperin and
Stasheff [HS] constructed an infinite sequence of obstructions, depending on the graded
commutative algebra H(X), whose vanishing ensures that X is formal. In order to prove
formality of the homotopy Gerstanhaber algebra C = C*(A; A) where A is a polynomial
algebra, Tamarkin uses a version of Halperin-Stasheff theory. Our Theorem 4.1.3 is exactly
what Tamarkin needs for his proof. It seems that in this generality the result is new,
though we assume it might have been known before to some people. In any case, it is
worthwhile to have a written version of it.

1.4.2. Deligne conjecture. The question about the algebraic structure of Hochschild com-
plex is usually attributed to Deligne. His original question was whether the Gerstenhaber
algebra structure on the Hochschild cohomology H*(A; A) comes from an action on the
Hochschild complex of a chain operad corresponding to the operad of small discs. In
order to deduce formality of the Hochschild complex from the intrinsic formality of its
cohomology, Tamarkin proves the following analog of Deligne’s conjecture.

Theorem (cf. 5.3.3). There ezists a natural homotopy Gerstanhaber algebra structure on
the Hochschild cochains C*(A; A) inducing the standard Gerstenhaber algebra structure
on the Hochschild cohomology H*(A; A).

This form of Deligne conjecture was suggested by Getzler-Jones in [GJ]. Unfortunately,
the proof of this theorem presented in [GJ], contains a gap.

The connection between Theorem 5.3.3 and the original Deligne’s question is not obvious.
In [T2] Tamarkin proves that the operad of small discs is formal. This implies that that
Theorem 5.3.3 and Deligne conjecture are essentially equivalent. By now there exist a
number of different proofs of the original Deligne’s conjecture, see [MS, KS].

Tamarkin proves the above theorem as follows. There is a dg operad B, naturally acting
on the Hochschild complex, see [GJ] and 5.5 below. Let G be the operad for Gerstenhaber
algebras and G, be the operad for homotopy Gerstanhaber algebras. In order to endow
a Hochschild complex with a canonical structure of G..-algebra, one has to present the
obvious morphism of operads G,, — G as a composition

(1) G = Bos — G.



It is convenient to present Tamarkin’s construction of (1) as follows. First of all, we define
another operad B and a decomposition

(2) G — B —G.

This is done in Section 6. Now comes the most striking observation: an isomorphism
between the operads B and B, can be easily obtained using Etingof-Kazhdan theory of

quantization (and dequantization) of Lie bialgebras. This isomorphism can be given by
universal formulas depeending on the choice of associator.

1.5.  The note is organized as follows. In the first part (Sections 2— 3) we review some
basic facts on operads and Koszul operads. In Section 4 we study formality of algebras
over a Koszul operad. Following Halperin-Stasheff [HS], we call a graded algebra H over
a graded Koszul operad O intrinsically formal if any dg O-algebra with cohomology
isomorphic to H is formal. We prove Theorem 4.1.3 which gives a sufficient condition of
intrinsic formality of a graded algebra over a Koszul operad in terms of its cohomology.
We present as well a very easy proof of a version of Homotopy Perturbation Lemma which
we need in the proof of Theorem 4.1.3.

In Section 5 we calculate the cohomology of Gerstenhaber algebra H(C), C := C*(A; A)
being the Hochschild complex of a smooth commutative k-algebra A. The calculation
shows that H(C) is intrinsically formal when A is a polynomial algebra. We recall in 5.5
the definition of the operad B, and its action on the Hochschild complex.

The last two sections are devoted to the construction of homotopy Gerstenhaber algebra
structure on the Hochschild complex of an associative algebra A. In Section 6 we define
the operad B and the morphisms Go. — B, B — G appearing in (2); in Section 7 we
recall Etingof-Kazhdan theory and prove that the operads B and B, are isomorphic.

Acknowledgement. 1 am grateful to B. Tsygan for sending early version of his manu-
script [TT] and to D. Tamarkin for an important remark. This note was written during
my stay at MSRI. I am grateful to MSRI for the excellent working conditions.

2. BASIC DEFINITIONS

In this section we recall the basic definitions of operads and operad algebras. Among
different approaches to the theory of operads, the one of [GJ] is the most convenient
for us. Below we recall all necessary definitions and constructions. For a more detailed
exposition of this approach see [GJ], Section 1.

2.1. Operads. Let Vect be the category of vector spaces over a field k of characteristic
Z€ero.

By definition, an S-object in Vect is a collection X = {X(n)}, n > 0, of objects of Vect
endowed with a right action of the symmetric groups S,,. The category of S-objects in
Vect admits a (non-symmetric) monoidal structure defined as follows.



Any S-object X defines a functor S(X) (Schur functor) on Vect by the formula
(3) S(X): V- P X(n)®s, VO

2.1.1. Lemma. There is a uniquely defined monoidal operation o on the category of
S-vector spaces giving rise to a canonical isomorphism

S(X oY) =8(X)oS(Y).

2.1.2. Definition. An operad O = {O(n)} in Vect is a monoid in the category of
S-vector spaces. The category of operads in Vect is denoted Op(Vect).

In more conventional terms, an operad is an S-vector space {O(n)} endowed with equi-
variant operations

(4) O(n) ® O(my) @ ... ® O(my) — O m;)

and with a unit element 1 € O(1) satisfying natural associativity and unit conditions.

2.1.3.  For any vector space V one defines an operad Endop(V') as a S-vector space
n — Hom(V®" V)

with the obvious composition and action of the symmetric groups.

2.1.4. Definition. An algebra A over an operad O is a map of operads
O — Endop(A).

In other terms, an O-algebra structure on A is given by a collection of S,-equivariant
maps

O(n) ® A®" — A
satisfying natural associativity and unit properties.

2.1.5. FExamples. There are operads ASS, COM, LIE such that corresponding algebras are
associative, commutative and Lie algebras respectively.

2.2. Other tensor categories. The definitions of the previous subsection make sense in
any tensor (= monoidal symmetric) category A. The following cases will be of a special
interest for us.

2.2.1. A = Vectgr — the category of Z-graded vector spaces. The canonical isomor-
phism (called commutativity constraint) X ® Y — Y ® X is defined by the standard
formula

(5) @y (1) My @,
where z € X®I y € YV,



2.2.2. A= C(k) — the category of complexes over k. The commutativity constraint in
this case is given by the same formula (5.5.3).

2.2.3. Let O € 0p(A) for a tensor category A and let a : A — B be a tensor functor.
Then «(Q) is an operad over 3. This obvious construction allows one, for example, to
consider graded or dg Lie algebras as algebras over the operad LIE in Vectgr or in C'(k)
respectively.

2.2.4. Let k[n| be a standard one-dimensional vector space concentrated at degree —n.
The n-shift functor X +— X|[n] is defined by the formula

X[n] = kn] ® X.
This formula makes sense both in Vectgr and in C(k).

Let O be an operad in Vectgr or C(k). There is a uniquely defined operad O{m} such
that a O{m}-algebra structure on X is equivalent to a O-algebra structure on X |[m]. One
has

Ofm}(n) = A" ® O(n)

where A,, denotes the graded vector space (or complex) k[n — 1] endowed with the sign
representation of the symmetric group S,,.

2.3. Free algebras and free operads.

2.3.1. Let O be an operad in a tensor category A. Let V' be an S-object in A. The free
O-algebra generated by V is defined to be

(6) Fo(V) = O(n) @s, VE"

with a canonical O-algebra structure.

2.3.2. Let X be an S-object in A. The forgetful functor from the category of operads
to the category of S-objects in A admits a left adjoint free operad functor. Free operad
T(X) generated by X has an explicit description as a direct sum over trees (see [GJ], 1.4).

2.4. Cooperads and coalgebras.

2.4.1. The notions of operad and algebra can be dualized. Thus, a cooperad in A is
the same as an operad in the dual category A°PP. Similarly one defines a coalgebra over
(under?) a cooperad.

Let C be a cooperad in Vect, Vectgr or C(k). A C-coalgebra X is called nilpotent if
(7) X =U,Ker(X — C(n) ® X®).



From now on all coalgebras will be supposed to be nilpotent. We define Coalg(C) to be
the category of nilpotent C-coalgebras. If V' is an S-object in A, the cofree (nilpotent)
cooalgebra cogenerated by V' is defined to be

(8) Fo(V) = €D (C(n) @ VEm)™

n>0

Let X be a C-coalgebra and V' be an S-object. Any map X — V of S-objects defines
canonically a map of C-coalgebras X — Fj(V). V is called an S-object of cogenerators if
the above map is injective.

Cofree cooperad cogenerated by V is denoted T*(V). It is isomorphic to T(V) as an
S-object. However, we prefer to have a different notation to stress that this is a cooperad.

2.4.2. Let O € Op(Vectgr) be an operad such that O(n) are all finite dimensional. Then
the collection {O(n)*} admits an obvious structure of cooperad. This cooperad is denoted
by O*. Coalgebras over O* are sometimes called O-coalgebras. In the same style, we will
sometimes write 5, (V') instead of F§,. (V). Thus, COM-coalgebras are just cocommutative
coalgebras, LIE-coalgebras are Lie coalgebras, etc.

3. KOoszuL DUALITY

3.1. Quadratic operads and quadratic duals.

3.1.1. Definition. An operad O of graded vector spaces is called quadratic if it is
generated (as operad) by O(2) and has only relations of valence 3.

The latter condition means the following. Let V' be the S-object in Vectgr defined by
the properties V(2) = O(2), V(n) = 0 for n # 2. Since O is generated by its binary
operations, the natural map T(V) — O is surjective.

The operad O is quadratic if the kernel of this map is generated (as an ideal in an operad)
by an Ss-invariant subspace R C T(V')(3).

Note that T(V)(3) = Ind3(V ® V) where S, acts on the tensor product through the
trivial action on the first factor.

A quadratic operad O with generators V' and relations R can be described as the pushout
in the category of operads
T(R) —— T(V)

|
*x — O

where * denotes the trivial operad

*(1) =k, *(n)=0forn# L1



Dually, let V' be a graded vector space endowed with an action of Sy and let R be an
Ss-invariant subspace of T*(V')(3). Denote Q = T*(V)(3)/R. Then a quadratic cooperad
C cogenerated by V with co-relations R is defined as the pullback

C —— T*(V)

I

* — T(Q)

3.1.2. Definition. 1. Let O be a quadratic operad with V' = O(2) and the space of
relations R. The dual cooperad O+ is cogenerated by the space V1] with co-relations
O+(3) = R[2].

2. Dually, for a cooperad C cogenerated by V with co-relations @), the quadratic dual
operad C* is generated by V[—1] with relations given by the kernel

Ker(Q[=2] — (V[=1] o V[-1])(3).

3.1.3.  Ezamples

The operads COM, ASS, LIE are quadratic (note that COM and ASS are operads for non-unital
algebras). Their quadratic dual cooperads are given by the formulas

e COM' = (LIE{—1})*,
e ASSt = (ASS{—1})*,
e LIEL = (COM{—1})*.

3.1.4. Definition. Let O be a (graded) quadratic operad. A structure of O -algebra
on X € Vectgr is given by a differential on the cofree O-+-coalgebra cogenerated by X.

3.1.5.  The above definition gives rise to an operad O, in the category of complezes C'(k).
Let X have a structure of Oy -algebra. The differential
(9) Q: Fo. (X) — Fou (X)[1]

is defined uniquely by its composition with the projection onto the degree one component
F}' (X) = X. Thus, the differential is given by the collection of maps

(10) Qi Fy (X) = (OL(Z‘) ®X®i)5i — X[1].
in particular, d := ), defines a differential on X € Vectgr.

Define O, = T(O1) to be the free graded operad generated by O+. The collection of
maps ; from (10) defines an action of O on X.



3.1.6. Lemma. There exists a unique differential on the graded operad O such that
the condition Q* = 0 for a degree one differential Q as in (9) is equivalent to the statement
that the action of O on (X,d = Q1) respects the differentials.

From now on O, will be considered as an operad in C'(k), with the differential described
in Lemma 3.1.6.

3.1.7. Example. Let X be a complex endowed with a O-algebra structure (dg O-
algebra). Define the differential ) on Fy,, (X) as follows.

Q1 : X — X[1] is the differential of X. Q, : O+(2) ® X®? — X][1] is defined by the
O-algebra structure on X since O+(2) = O(2)[1]. Q; are defined to be zero for i > 2.

The condition Q? = 0 can be easily verified. This means that any O-algebra admits a
canonical O.-algebra structure.

Example 3.1.7 shows there is a canonical map of operads in C'(k)
(11) O — O
(Here O is supposed to have zero differential).
3.1.8. Definition. A quadratic operad O is called Koszul if the natural map (11) is
a quasi-isomorphism.
Let O be a quadratic operad and let X be an O -algebra (for instance, an O-algebra).
The homology of X, H?(X), is defined as the homology of the complex (F},, (X), Q).
3.1.9. Examples. 1. O = ASS. The complex
(Fou(X), Q) = (Fass(X[1]), Q)[-1]
is the (homology) Hochschild complex of the associative algebra X.
2. O = COM. The complex
(Fo. (X), Q) = (Firp(X[1]), Q)[—1]
is the Harrison complex of the commutative algebra X.
3. O = LIE. The complex
(Fou(X), Q) = (Feu(X[1]), @)[-1]
is the Chevalley-Eilenberg complex of the Lie algebra X.

Thus, for the operads O = LIE, ASS, COM we obtain the homology of the corresponding
type of algebras (with trivial coefficients).

If X =Fo(V) for a graded vector space V', one has a canonical map of complexes
(12) (Fou(X),Q) — V.

The following result can be used to prove koszulity of a quadratic operad.



3.1.10. Theorem. (cf. [GK]|, Thm. 4.2.5) A quadratic operad O is Koszul iff for any
graded vector space V' the canonical map (12) is quasi-isomorphism.

Theorem 3.1.10 implies that the operads COM, ASS, LIE are Koszul.

4. DEFORMATIONS AND FORMALITY

4.1. Intrinsic formality. In this section O is a fixed graded Koszul operad.

Let X be an Oy-algebra. The cohomology H(X) has a natural structure of algebra over
H(Ou) = O. This gives, via (11), an O.-algebra structure in H(X).

4.1.1. Definition. A Oy -algebra X is called to be formal if there exists a pair of
quasi-isomorphisms of Oy-algebras X «— F — H(X).

4.1.2. Definition. A graded O-algebra H is intrinsically formal if any Oy.-algebra X
with H(X) = H is formal.

Note.  The results of [H] inmply that the above notion of intrinsic formality is equivalent
to the one mentioned in 1.5: H is intrinsically formal iff any O-algebra X with H(X) = H
is formal. This follows from the fact that the homotopy categories of algebras over quasi-
isomorphic operads, are equivalent.

The aim of this section is to prove a criterion of intrinsic formality.

Let H be a graded O-algebra and let g be the dg Lie algebra of coderivations of the
corresponding dg O+-coalgebra (F5L(H), Q). Since Fy,, (H) is cofree, any coderivation is
uniquely defined by its composition with the projection onto H. Therefore, g considered
as a graded vector space, is isomorphic to Hom(FF,. (H), H). We denote

g>1 = Hom(®:>0F 5. (H), H).
This is a dg Lie subalgebra of g.

4.1.3. Theorem. Suppose that the map H'(g>1) — H'(g) is zero. Then H is
intrinsically formal.

4.2. Proof of Theorem 4.1.3. The following standard lemma results from the fact that
O is cofibrant (see [H], Sect. 6). This result is traditionally called Homology Perturbation
Theory; it has been widely used in different special cases since 70-ies by Gugenheim,
Stasheff and others.

4.2.1. Lemma. Let X be a Ou-algebra. There exists a Oy-algebra structure on
H(X) so that X and H(X) are quasi-isomorphic Ou-algebras (i.e., there exists a pair of
quasi-isomorphisms of Oy -algebras X «— F — H(X) ).

For an easy proof of this (and a more general) fact see 4.3.



4.2.2. Let H be a graded O-algebra. Let X be a Oy -algebra so that H = H(X) as
O-algebras. Choose a Oy -algebra structure on H guaranteed by Lemma 4.2.1. One has
Ox(2) = O(2) and the O-algebra structure on H is the restriction of the O.-algebra
structure. To fix a notation, let the collection of maps

(13) Qn - Fo' (H) — H[],

n > 2, define the said O.-algebra structure on H. The O-algebra structure on H is given
by the collection {Q%} with QY = Qy; QY =0 for i > 2.

4.2.3. Lemma. Let X\ € k. Put Q) = \"2Q,.. The collection {Q)},>1 defines a

collection of Oy -algebra structures on H parametrized by X\ € k. This gives the structure

{Q.} for =1 and {Q°} for A =0.

Proof. The only property we have to check to make sure that the collection {Q2} defines
a Oy -algebra structure, is the identity looking like

d(QQ) - Pn(Qg\v oy 2—1)

where P, is a quadratic (non-commutative) polynomial. Since H has zero differential (this
means ; = 0 in our notation) the left-hand side vanishes. The right hand side vanishes
for A = 1 since the collection of (); does define a O, -action. Since the polynomials P,
are homogeneous, one has

Pn(Q%? R Qg—l) = An_an(Q% ceey Qn—l)'
This proves the claim. U

4.24. Put C = (F;.(H),Q"). This is a differential graded O-+-coalgebra. The collection
{Q)} defines a k[\]-linear differential Q* on the O*-coalgebra C[)\]. We wish to construct
an isomorphism

0:(CN,Q") — (CN. QY
which is identity modulo .
The isomorphism 6 is uniquely defined by a collection of maps
O, FR(H) — H[A
with 6; = idy. We will be looking for 6 satisfying the following property.
(14) 0,, = ¢ - A" for some ¢, : oL(H) — H.

An automorphism 6 satisfying (14) is constructed in 4.2.6 below. Then, tensoring 6 by
k[A]/(A = 1), we get an isomorphism of dg O+-coalgebras

0:(C.Q" — (C,Q).
This will prove Theorem 4.1.3.



4.2.5. Define an action of the multiplicative group k* on C[\A] by the formulas
prxx=p"-wforx e FgL(H); pxA=p-A\
The differentials @ and Q* have both degree —1 with respect to this action:
porQutwr) = p - Qr); px QN k) = pmt - QN x).

The condition (14) means that 6 has degree zero with respect to the defined action of k*.

4.2.6. The map 6 will be constructed by induction.
Suppose we have constructed an isomorphism
0: (CN/(A"), Q%) — (CIN/(A"), Q%)

satisfying the property 6 = ¢, - \*~! for some ¢y, : iy, (H) — H for all k. This means in
particular that 6, = 0 for & > n.

Our aim is to lift # to a map

61 (CI/(™),Q) = (CIN/(A™), @)
such that its components gk satisfy the same property.
First of all, we lift # to the isomorphism

0 (CIN/(N™), Q") — (CIN/(A"), @Y
taking 0, = 6, for all k, where @’ is some differential uniquely defined by the above
formula. The differential ' has also degree —1. Since Q' coincides with )y modulo
A", one has actually an equality @ = Q) for k¥ < n+1 and Q) ,, = A" - z for some
z O >(H) — H. One easily observes that the element z considered as a derivation,
is a cycle. Therefore, there is a derivation u € g°, such that z = du. This gives an
isomorphism

n=exp(X" - u) : (CA)/(A"),Q) — (C/(A"), Q")

which is identity modulo A\". The inductive step will be acomplished if we are able to find
an isomorphism between (C[\]/(A"*1), Q) and (C[\]/(A"™!), Q') having degree zero.

The components 7, of n are divisible by A" for k > 1. An easy calculation shows that the
collection ry, : iy, (H) — H given by the formulas

k1 =1idyg, Kpi1 = Mpa1, ki =0 for i #1,n+ 1,
defines an isomorphism
ke (C/(NM), Q) — (CIN/ (W), Q).
The composition of xk with 8’ is the isomorphism 0 we were looking for.

The construction of isomorphism 6 satisfying (14), and, therefore, the proof of Theo-
rem 4.1.3, is acomplished.



4.3. Proof of Lemma 4.2.1. We will prove a more general statement.

4.3.1. Proposition. Let k be a commutative ring and let O be a cofibrant operad [H]
in C(k). Let A be endowed with an O-algebra structure. Suppose, finally, B € C(k),
m:A— B ando: B — A be quasi-inverse homotopy equivalences with mo = idp.

Then there exists a O-algebra structure on B such that A and B become weakly equivalent
O-algebras.

4.3.2. Corollary. Structure of algebra over a cofibrant operad can be transferred along
homotopy equivalences.

4.3.3. Proof of 4.3.1. The maps 7,0 define a morphism of endomorphism operads 7 :
Endop(B) — Endop(A) as the composition

T®n o

(15)  7(n) : Endop(B)(n) = Hom(B®", B) = Hom(A®", B) = Hom(A®", A).
The collection of maps 7(n) forms an operad morphism since o splits 7. Morphism 7 is a
quasi-isomorphism of operads since 7 and o are homotopy equivalences. Since the category
of operads in C'(k) admits a model category structure (see [H]), 7 can be presented as a
composition

Endop(B) = E % Endop(A),
where p is an acyclic fibration (=surjective quasi-isomorphism) and ¢ is an acyclic cofi-
bration. Moreover, acyclic cofibrations split, so there exists ¢ : E — Endop(B) such that
qi = id.
Now, an O-algebra structure on A is given by a morphism a : O — Endop(A). This
morphism lifts to a morphism e : O — E since O is cofibrant. This defines a composition
ge: 0 - E % Endop(B) which gives an O-algebra structure on B satisfying the required
property.

5. HOCHSCHILD COMPLEX

5.1. Hochschild complex. Let A be an associative k-algebra. Its Hochschild complex
C := C*(A; A) has components defined by the formula
C" = C"(A; A) = Hom(A%®", A), n=0,1,...

The graded vector space C admits a LIE{1}-algebra structure which comes from the
identification of C[1] with the collection of coderivations of the cofree coalgebra (with
counit) cogenerated by A[1].

An explicit formula for the Lie bracket is given in 5.5.4 below.

The multiplication p : A%? — A belongs to C?; therefore the operator ad u has degree 1.
An easy calculation shows that (ad u)? = 0; C endowed with the differential ad u becomes
a dg LIE{1}-algebra.



5.2. H(C) is a G-algebra. In order to prove Theorem 1.2 it would be enough to check
that H = H(C*(A; A)) is intrinsically formal as a Lie algebra. This, however, is not true.
Tamarkin’s idea is to prove that H becomes intrinsically formal when it is considered as
an algebra over an operad G described below. Since G contains LIE{1} as a suboperad,
this implies Theorem 1.2.

Define m : C ® C — C by the formula

(16) m(z@y)=po (zXy)

where x Xy : A9t — A®2 5 defined to be the tensor product of the maps z : A¥™ — A
and y : A" — A,

The following lemma is due to M. Gerstenhaber [G].

5.2.1. Lemma. The map m induces a commutative associative multiplication on H(C).
The bracket on H(C) is a derivation with respect to m.

5.2.2. Definition. Operad G is the operad generated by the operations m € G(2)°, ¢ €
G(2)~! satisfying the following identities:

e m is commutative associative
e [ is Lie
e [ is a derivation with respect to m.

Lemma 5.2.1 above means that the cohomology H(C*(A; A)) admits a natural G-algebra
structure.

5.2.3. The following construction assigns a G-algebra to any Lie algebra g. Put X =
Feon(g[—1]) = ®i=05"(g[—1]). There is a unique LIE{1}-algebra structure on X extending
that on g[—1] such that X becomes a G-algebra. This is the G-algebra generated by a Lie
algebra g.

5.2.4. There is a twisted (=sheaf) version of the above construction. Let g be a Lie
algebroid over a commutative algebra A. This mean that g is a Lie algebra, an A-module,
and a map of Lie algebras and A-modules 7 : g — Der(A, A) is given so that

[f,ag] = alf, g] +7(f)(a)g
forae A, f,g€g.

Then a G-algebra structure on the A-symmetric algebra without unit S7'(g[—1]) is nat-
urally defined. If one defines A = S9(g[—1]) to commute with S5'(g[—1]), one obtains a
G-algebra structure on the A-symmetric algebra Sa(g[—1]).

5.3. Koszulity. The operad G is obviously quadratic. The quadratic dual cooperad
G' has as cogenerators elements m, ¢ of degrees —1 and —2 respectively. A simple
calculation gives



5.3.1. Lemma.

One has the following important

5.3.2. Proposition. ([GJ]) G is Koszul.
For an easy proof of this fact see 5.4.6.
Recall that koszulity of G means that the natural map (11)

Goo — G

is a quasi-isomorphism of operads. The operad G, is the operad for homotopy Gersten-
haber algebras.

Deformation theory approach to the Formality Theorem is based on the following

5.3.3. Theorem. There is a structure of Goo-algebra on C*(A; A) inducing the described
above G-algebra structure on H(C*(A; A)).

Theorem 5.3.3 will be proven in Sections 6 and 7. In this section we will deduce Formality
Theorem 1.2 from Theorem 5.3.3.

5.4. Calculation. From now on A is a smooth commutative k-algebra. Our aim is to
calculate the cohomology of H := H(C*(A; A)) and to make sure it vanishes when A is a
polynomial algebra. This, together with Theorem 5.3.3, gives Formality Theorem.

The following classical result of Hochschild-Kostant-Rosenberg describes the cohomology
of C*(A4; A).

5.4.1. Lemma. H = Sy(Ta[—1]) where Ty = Der(A, A). The G-algebra structure on
H is defined as in 5.2.4.

Following 4.1.3, we have to calculate the dg Lie algebra of coderivations of the dg G+-
coalgebra (F3, (H), Q) corresponding to H.

5.4.2. Note the following formula

(17) g+ (X) = Fooy (FLe(X[1)(A]) [-2]

which can be obtained using 5.3.1 from the formula dual to the following

(18) Fg(X) = Feon(Frreqry (X)).



5.4.3.  According to 4.1.3, we have to calculate the map H'(g>1) — H'(g) where

g = Coder(Fg. (H)) = Hom(F5. (H), H) = Hom(Feoy (Frre(H[1])[1]) . H[2])
with the differential induced by the differential @ of Fy, (H).
The differential @ of Fy, (H) comes from the map G(2) ® H®? — H describing the G-
algebra structure on H. Therefore, ) = @Q,,+Q, where @), is induced by the commutative
multiplication m : H ® H — H, and @, is induced by the bracket ¢ : H @ H — H|[—1].

Since the defining relations on operations m and ¢ in G are homogeneous, one necessarily
has

Q2 = Qf = QuQr + QuQ, = 0.

The total diferential () on g is also a sum of two differentials which will be denoted by
@ and Q.

Any cofree coalgebra is naturally graded — see (8). Formula (17) gives rise to a bigrading
on the cofree G+-coalgebra Fg. (H) in which the (p, ¢)-component consists of the elements
of COM-degree —p and total LIE-degree —q.

This defines a bigrading on g so that
g”* = Hom(Feoy " (Fite(H[1])[1]), H[2)).

Note that

(19) o= P o

(p,9)#(0,0)

The differentials @,, and @, have degrees (0,1) and (1,0) with respect to this bigrading
and g lives in the first quadrant. Therefore, one can use the spectral sequence argument
to calculate the cohomology of g.

Let us calculate the first term EY? = HPY(g, Q,,). To keep track of the differential Q,, in
g it is convenient to present

g% = Hom(FLL(H[1])[1], H[2)) = Hom (Fyi* (H[1]) ® H[1], H[2)
and to identify F; ;- (H[1]) ® H with the homological Harrison complex Z := Harr,(H, H).

Then one can see that (g%, Q,,) coincides with Homy (Z[1], H[2]) as a complex; moreover,
for each p one has
(6", Qm) = Hompy (Sy™(Z[1]), H[2]).

5.4.4. The considerations above hold for every graded G-algebra H with unit. Now we
will use the fact that H = H(C*(A; A)) where A is a smooth k-algebra.

Namely, according to Lemma 5.4.1, H is smooth as a graded commutative algebra. There-
fore, there is a natural isomorphism

Z Q[



where (2 = Qg is the module of Kahler differentials. This implies that

Homp (S(Q[2]), H[2]), ¢ =0

(20) B = {07 o

Let us calculate Q5. The sequence of smooth morphisms of graded commutative algebras
k— A— H = Sa(Ta[-1])
gives rise to an isomorphism
(21) Q- HRa0 DQua=Ha(Tal-1]0T;)=HQaw
where w = T4[—1] @ T%. Note that w is a finitely generated graded projective A-module.
The only non-vanishing cohomology in (20) can be rewritten as
(22) EY = 83" (w[-1]) ©@4 H[2] = S (Q[-1))[2]
since w[2]* = w[-1].
Note that £ embeds into
g"" = Hom(Fegy” (H[2]), H[2])

and the differential @, on the latter is defined by the Lie algebra structure on H[1]. This
allows one to identify the the differential Q3 on (22) with the differential on the (shifted
and truncated) de Rham complex of H.

5.4.5. Suppose now that A is a polynomial algebra over k. In this case de Rham complex
of H is acyclic. Then the calculation in the previous subsection gives a quasi-isomorphism
g — H/k[1]. This implies that g has no cohomology coming from the cohomology of

g>1-

5.4.6. Remark. A calculation similar to the above proves that G is Koszul.

In fact, according to 3.1.10, one has to check that for each graded vector space V the
natural map

V — (Fg.(Fg(V), Q)
is a quasi-isomorphism.

Taking into account the formulas (17) and (18) and using, as in 5.4.3, the presentation of
F. (H) by a bicomplex, one easily obtains the result.

5.4.7. Now Theorem 1.2 have been proven modulo Theorem 5.3.3. In the end of this
section we describe the operad B, naturally acting on the Hochschild complex C(A; A)
of any associative algebra A. This is the first step in the proof of Theorem 5.3.3 which is
presented in Sections 6 and 7.



5.5. Hochschild complex is a B.-algebra. We shall now describe an operad which
acts naturally on the Hochschild complex of any associative algebra. This operad is
denoted B,,. It has been invented by H.-I. Baues; its action on the Hochschild complex
was defined in [GJ].

5.5.1. Notation. In this subsection A is any associative k-algebra and C = C*(A; A). It
is convenient to denote elements f € C™ as boxes having n hands and one leg like this:

L]
f
|

5.5.2. Basic operation. Let f,g1,...,9, € C. Denote the brace f{gi,...,gn} by the fol-
lowing formula

|| L] ||
g1 g2 gn

(23)  flow-gnf = Z ]|C

all possible insertions

Here the sum is taken over all possible order preserving insertions of legs of g; into hands

of f.

5.5.3.  Remark. We have chosen to use pictures in (23) in order to avoid unpleasant
signs in formulas. The signs reappear if one decides to write down the expression for
o, 9n} (a1 ® ... ® ay), compare to [GJ], Formula (1) on p. 49.

5.5.4. The Lie bracket on C[1] is given explicitly, in terms of braces, by the formula
[f.9] = Hg} — (=) lelg{f}.

5.5.5. Definition. A B -algebra structure on a graded vector space X is given by
a structure of dg bialgebra on Fjss(X[1]) so that the coalgebra structure is the standard
(cofree) one.

Let us check that B..-algebra structure is given by an operad (as usual, it will be denoted
by Bso)-

The dg bialgebra structure on Fjss(X[1]) is given by the following data.



e a differential X[1]%" — X[1]®™ of degree 1. The differential is uniquely defined
by its m = 1 part. We denote its (n, 1)-components by m,, : X[1]*" — X[2] (or,
what is the same, m,, : X®" — X[2 —n]).

e a multiplication X[1]®?®@X[1]%7 — X[1]®" of degree 0 — it is also uniquely defined
by its r = 1 part. We denote the collection of » = 1 multiplications by

mp, » X[1%7 ® X[1]%7 — X[1]
or, what is the same,
My, X @ X® — X1 —p—q|.

Therefore, the B,.-algebra structure is given by a collection of operations m,,, m,, subject
to some relations. This defines an operad By, as the one generated by m,, € By (n)*™"
and my, € Boo(p + q)* P79 subject to some relations.

5.5.6.  WARNING. The operad B, is not obtained in any sense from a(ny) Koszul
operad B. Getzler and Jones are responsible for this notation.

5.5.7. Action of By, on C*(A; A). We have to define the action of the operations m,,, m,,
on C = C*(A; A) and to check the compatibilities. Here it is.

my is the differential in C

my is the multiplication p defined by (16)

m; =0 for ¢ > 2

mik(f® 1 ® ... gx) = f{g1,-..,9x} where the brace operations are defined by
formula (23)

omkl:(]fork:>1.

One can directly check that the collection of operations m,,, m,, defined above gives rise
to a By-algebra structure on C.

6. BETWEEN G AND G,

In this section we present an operad B lying between G and G..: it admits a pair of maps
G — B, B—g
so that the composition is the canonical map G, — G.

In the next section we will prove, using Etingof-Kazhdan theorem on quantization of
Lie bialgebras [EK], that the operad B is isomorphic to the operad B, acting on the
Hochschild complex of any associative algebra by 5.5.7. This will yield Theorem 5.3.3
and, therefore, Theorem 1.2.



6.1. g—algebras. A g—algebra structure on a graded vector space X is a dg Lie bialgebra
structure on F};:(X[1]) extending the standard free Lie coalgebra structure.

The Lie bracket on a Lie bialgebra F;;-(X[1]) is defined by its corestriction to the cogen-
erators X[1]. Therefore, it is given by a collection of maps

b Frpe(X 1)) @ Fipg(X[1]) — X[1]

satisfying a collection of quadratic identities. The differential on F};z(X[1]) is also defined
by its corestriction to the cogenerators. This amounts to a collection

dy  Frpg(X[1]) — X[2]

satisfying some more quadratic identities — the one saying that d> = 0 and the other
that d is the derivation of the Lie algebra structure given by ¢,,,,.

In particular, one has d? = 0 and this endows X with a structure of complex. The obvious
maps X [1] — Fj(X[1]) — X[1] are maps of complexes.

Since a B-structure on X is given by a collection of operations subject to some relations,
there is an operad in the category of complexes which will be called in the sequel B such
that B-algebras are just algebras over B.

6.2. A map O — O of operads endows a (O’-algebra with a canonical O-algebra struc-
ture. The converse is also obviously true — in order to define a map of operads it is
enough to endow any (O’-algebra with a canonical O-algebra structure.

Let us construct a map B — G. For this we have to define canonically a B-algebra
structure on each G-algebra X. Recall that a G-algebra X is endowed with a commutative
multiplication m : X®2 — X and a Lie bracket [ : X[1]®2 — X[1]. The Harrison complex
of the commutative algebra (X, m) is given by a differential on F;z(X[1]). The Lie
algebra structure on X[1] can be uniquely extended to Fj(X[1]) to get a Lie bialgebra.
The Harrison differential will be a derivation with respect to the Lie algebra structure, so

this construction defines a dg Lie bialgebra structure on Fj(X[1]).

The construction is obviously canonical and yields a morphism of operads B—gG.

6.3. Let us now construct a map G,, — B.

Let X be a B-algebra. This means that a dg Lie bialgebra structure on g = F; - (X[1]) is
given. In particular, g is a dg Lie algebra and this defines a differential on Fgy,(g[1]). The
latter complex is by formula (17) just F, (X)[2]. Differential on it gives a Goo-structure
on X.

Thus the map G, — B is constructed.



7. EQUIVALENCE OF B wiTH Boo

In this section we prove that the operads B and B, are isomorphic. The isomorphism
is obtained using Etingof-Kazhdan theorems [EK] on quantization of Lie bialgebras. In
particular, it will depend on the choice of associator, as in [EK].

7.1. For some technical reasons, it is more convenient to use coalgebras over B and B
instead of algebras. Our aim is to prove that any B-coalgebra admits a natural B..-
coalgebra structure and vice versa.

Note

7.1.1. Lemma. g-coagebm structure on a graded vector space X is given by a structure
of dg Lie bialgebra on

ﬁLIE(XU]) = H Fioe (X[1]).

7.1.2. Lemma. Boo-coagebra structure on a graded vector space X is given by a
structure of dg bialgebra on

Fuss(X[1)) = [ X[1)*".

Now we wish to use [EK]| in order to pass from one structure above to the other. The
idea is the following. One can interpret completions of free algebras Fre(V) and Fysg(V)
as equivariant k[[h]]-algebras Frig(V)[[]] and Fre(V)[[h]]. This is the situation Etingof-
Kazhdan theory applies.

7.2. Etingof-Kazhdan theory. Let Locc(k) be the category of local complete k-algebras
with residue field k.

Let A be an abelian k-linear tensor category. For each R € Locc(k) we denote by A(R)
the category with the same objects as A and with the morphisms defined by the formula

Hom (g (X,Y) = Homu(X,Y) ® R.

The object of A(R) corresponding to an object X € A is denoted Xg. In the other
direction, for Y € .A_(R) we write Y for the corresponding object of A. The assignments
X — Xg and Y — Y define a pair of functors between A and A(R).

Let LBAg(R) be the category of Lie bialgebras (g,[ ],0) in A(R) whose cobracket &
vanishes modulo the maximal ideal m of R. Let HAy denote the category of Hopf algebras
in A(R) whose reduction modulo m is isomorphic to the enveloping algebra of a Lie
algebra in A.



The following theorem can be found in [EK].

7.2.1. Theorem. There is an equivalence of categories
(24) Q : LBAg(R) — HAy(R)

satisfying the following properties (see also explanations below)

Q( ) U(@)
E

— g ® g measures the deviation of the coproduct in Q(g) from being cocom-
mutatwe
3. @ is given by universal formulas.

7.2.2.  The second property of the functor () mentioned in Theorem 7.2.1 means the
following. Denote by i : g — (Q(g) the image under the functor ® R of the obvious
embedding g — U(g). The property 2 claims that the map from g to Q(g) ® Q(g) given
by the difference

(A—AYoi—(i®i)od
vanishes modulo m2.

Here A is the coproduct in @(g) and A’ is the coproduct composed with the commutativity
constraint.

7.2.3. The third property means the following. As an object of A(R), Q(g) is just
the symmetric algebra S(g) = ®S™(g). Therefore, the Hopf algebra structure on Q(g)
is given by a collection of maps my, : SP(g) ® S9(g) — S"(g) and A,, : SP(g) —
S%(g) ® S™(g). Universality condition means that the maps m,,,, A, are described as
universal polynomials on the bracket and cobracket in g.

7.2.4. It is convenient to define LBA, to be the category of pairs (R, g) where R € Locc(k)
and g € LBAy(R). In the same fashion one defines the category HAy. Since the functors
Q) : LBAo(R) — HA¢(R) are given by the universal formulas, they form a functor @ :
LBAy — HAy which is also an equivalence of categories. Reduction modulo the maximal
ideal defines a commutative diagram of functors

LBAO T HAO

J |

Lie(k) — HA (k)

where Lie(k) is the category of Lie algebras over k and U is the enveloping algebra functor.



7.2.5. The equivalence of categories () : LBAy — HA, gives rise to an equivalence Q¢ :
LBA§ — HAS between the categories of objects endowed with a G-action, G being a group.

Let now A be the category of complexes of k-modules. Let G = k* be the multiplicative
group, R = k[[h]]. Let k* act on R by the formula A(h) = A\"'h. Let V € A. Let k*
act on V by the formula A(v) = X -v. This action extends to a k*-action on Frg(V) and
Fuss(V), as well as to an action on Frig(V)[[A]] and Fass(V)[[A]].

Theorem 7.2.1 implies the following

7.2.6. Corollary. The functor @) establishes an equivalence between the following
categories:

1. Lie bialgebras (R, g) € LBAy endowed with a k*-action compatible with the specified
above k*-action on R = k[[h]] and on g = Fre(V).

2. Associative bialgebras (R, H) € HAy endowed with a k*-action compatible with the
specified above action on R = k[[h]] and on H = Fyss(V).

7.3. Theorem. There exists an isomorphism between the operads B and Bo .

Theorem 7.3 is proven in 7.3.1-7.3.3 below.

7.3.1. Put g =F(V). A k[[h]]-Lie bialgebra structure on g[[h]] is given by a collection
of maps

5;(] V= Fle(V) @ Fig(V)
such that the cobracket § : g[[h]] — g[[h] ® g[[h]] restricted to g is given by the formula

9225&"“'

p7q7/r'

Define an action of k* on g[[h]] as in 7.2.5. The cobracket o of g[[h]] is equivariant if and
only if it satisfies the property

(25) 0py =0forr#p+q—1

One can easily identify dg Lie bialgebra structures on g[[h]] satisfying (25) with dg Lie
bialgebra structures on g.

7.3.2. Similarly, dg bialgebra structures on FASS(V) can be identified with equivariant
bialgebra structures on Fyss(V')[[R]].



7.3.3.  We use Corollary 7.2.6 of the equivalence () from Etingof-Kazhdan Theorem 7.2.1.

Let X be a complex, V = X[1]. B-coalgebra structure on X is given by a structure of
dg Lie bialgebra on g = Frg(V) which is the same as an equivariant dg Lie bialgebra
structure on g[[h]].

According to Corollary 7.2.6, this defines canonically an equivariant dg Hopf algebra
(H, m, A) € HAp.

The canonical map ¢ : V|[[h]] — H given by the composition
i:V—g—H
induces an algebra homomorphism F'(i) : Fpss(V)[[h]] — H. It is isomorphism since its

reduction modulo h F(i) is the identity map. This defines canonically an equivariant
bialgebra structure on Fygs(V')[[R]] which is the same as a dg bialgebra structure on

ﬁASS(V). Theorem is proven.
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