
DEFORMATIONS OF HOMOTOPY ALGEBRAS

VLADIMIR HINICH

Abstract. Let k be a field of characteristic zero, O be a dg operad over k and let A be an
O-algebra. In this note we suggest a definition of a formal deformation functor of A

DefA : dgart≤0(k) → ∆0
Ens

from the category of artinian local dg algebras to the category of simplicial sets. This functor
generalizes the classical deformation functor for an algebra over a linear operad. In the case O

and A are non-positively graded, we prove that DefA is governed by the tangent Lie algebra TA

which can be calculated as the Lie algebra of derivations of a cofibrant resolution of A.
An example shows that the result does not necessarily hold without the non-positivity con-

dition.

1. Introduction

1.1. It is well-known that formal deformations of an associative algebra A over a field k of
characteristic zero are governed by a differential graded Lie algebra g which coincides, up to a
shift, with the cohomological Hochschild complex of A. Another way to calculate the dg Lie
algebra g can be described as follows.

Let P be an associative free dg algebra-resolution of A. The collection Der(P, P ) of graded
algebra derivations of P form a dg Lie algebra. It is known that for a very specific choice of
P this construction gives the cohomological Hochschild complex. On the other hand, according
to [H2], the dg Lie algebra Der(P, P ) does not depend, up to quasi-isomorphism, on the choice
of the resolution P . Therefore, for any choice of P the dg Lie algebra Der(P, P ) governs the
deformations of A.

The above considerations suggest that there should exist a homotopy invariant formal deforma-
tion theory for dg algebras. In fact, suppose that each dg algebra defines a deformation functor
so that quasi-isomorphic algebras define equivalent functors. Let P → A be a free algebra-
resolution of A. Deformations of A and of P are the same since A and P are quasi-isomorphic ;
P is free as a graded associative algebra, so one has nothing to deform in P , except for the differ-
ential. Since the deformations of the differential are described by the Maurer-Cartan elements
in Der(P, P ), this dg Lie algebra governs the deformations of A.

The aim of this paper is to construct such deformation theory in a more general context of dg
operad algebras.

1.2. Classical deformations. “Classical” formal deformation theory over a field of character-
istic zero deals with deformation functors which can be described as follows.
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Let k be a field of characteristic zero, art(k) be the category of artinian local k-algebras with
residue field k.

Let C be a category cofibred over art(k). Equivalently, this means that a 2-functor

C : art(k)→ Cat

is given, that is a collection of categories C(R), R ∈ art(k), of functors f ∗ : C(R) → C(S) for

each morphism f : R→ S in art(k) and of isomorphisms f ∗g∗
∼
−→ (fg)∗ satisfying the cocycle

condition. For instance, for the deformations of associative algebras, C(R) is the category of
associative R-algebras flat over R.

Finally, let an object A ∈ C(k) be given. Then the deformation functor

DefclA : art(k)→ Grp (1)

assigns to each R ∈ art(k) the groupoid whose objects are isomorphisms α : π∗(B)→ A where
π : R→ k is the natural map, and morphisms are isomorphisms B → B ′ compatible with α and
α′.

1.3. “Higher” deformations. Let O be a dg operad. It is clear that in order to define a homo-
topy invariant deformation theory of O-algebras, one has to take into account that the category
of O-algebras is endowed with extra structures. These are weak equivalences, homotopies be-
tween maps, higher homotopies between the homotopies etc. Therefore, it seems inevitable that
one has to assign to an O-algebra A and to an artinian local ring R some “higher” version of a
groupoid.

1.3.1. Metaphorically speaking, the picture should be the following.

For each artinian local algebra R an ∞-category of R ⊗ O-algebras should be defined; denote
it Alg∞(O, R). The collection of Alg∞(O, R) should form an ∞-category cofibred over the
category of artinian local algebras.

Let now A ∈ Alg∞(O, k). Then the deformation functor

Def∞A : art(k)→ Grp∞

should be a (∞-) functor to ∞-groupoids; its objects are ∞-isomorphisms α : π∗(B) → A and
morphisms — ∞-isomorphisms B → B ′ commuting with α and α′.

1.3.2. We do not know well what an ∞-category is and how to assign an ∞-category to the
category of operad algebras. Therefore, we are looking for an appropriate substitute of this
notion.

According to [H2], the category Alg(O, R) of R ⊗ O-algebras admits a simplicial closed model
category structure.

As a substitute to the ∞-category Alg∞(O, R), we suggest considering the simplicial category
of cofibrant R⊗O-algebras.

As a substitute for ∞-groupoids we use the category Kan of Kan simpicial sets. And for some
reason (explained in 1.5) we use a more general class of non-positively graded dg artinian local
algebras as bases for formal deformations.
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In this way we define in 2.3.2 a deformation functor

DefA : dgart≤0(k)→ Kan (2)

(defined uniquely up to homotopy).

1.4. Dg Lie algebras.

1.4.1. A functor

D : art(k)→ Grp

is said to be governed by a differential graded Lie algebra g (in this definition one has to admit
gi = 0 for i < 0) if there is a functorial equivalence

D
∼
−→ Delg : art(k)→ Grp

where Deligne groupoid Delg(R) is defined as follows.

Let m be the maximal ideal of R. The tensor product m⊗ g is a nilpotent dg Lie algebra. Let
MC(m⊗g) denote the collection of elements z ∈ (m⊗g)1 satisfying the Maurer-Cartan equation

dz +
1

2
[z, z] = 0.

The nilpotent Lie algebra (m⊗ g)0 acts on MC(m⊗ g) by vector fields:

ρ(y)(z) = dy + [z, y], where y ∈ (m⊗ g)0, z ∈ MC(m⊗ g).

This defines an action of the nilpotent group G = exp((m ⊗ g)0) on MC(m ⊗ g). Then the
groupoid Delg(R) is defined by the formulas

ObDelg(R) = MC(m⊗ g); (3)

Hom(z, z′) = {g ∈ G|z′ = g(z)} (4)

1.4.2. One could expect that in order to govern more general deformations as (2), one needs a
new device. Fortunately, this is not so. In [H1] (see also [H3], Sect. 8) a nerve functor

Σg : dgart≤0(k)→ Kan

is defined for any dg Lie algebra g. Quasi-isomorphic dg Lie algebras give rise to equivalent
nerve functors.

If a nilpotent dg Lie algebra m⊗ g is non-negatively graded, the nerve Σg(R) is homotopically
equivalent to the groupoid Delg(R) — see [H1].

In what follows we will say that a functor

D : dgart≤0(k)→ ∆0Ens

is governed by a dg Lie algebra g if there is a natural weak equivalence

D(R)
∼
−→ Σg(R).
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1.4.3. In [H2], Sect. 7, we constructed for each algebra A over a dg operad O a tangent dg Lie

algebra TA ∈ dglie(k). It is defined as the dg Lie algebra Der(Ã, Ã) of derivations of a cofibrant

resolution Ã of A.

The main result of this paper says that TA governs the formal deformations of A defined by the
functor (2), provided O and A belong to C≤0(k).

It turns out that the condition on the grading is important — see 4.3.

1.5. Dg bases for formal deformations. There are several (interrelated) reasons to consider
differential graded artinian algebras as bases of formal deformations.

The nerve of a dg Lie algebra g is represented by the coalgebra C(g) which is the standard
complex for g with trivial coefficients. This means that the formal moduli space is a sort of dg
stack and so it should naturally have R-points where R is a local dg artinian algebra. This is
connected to another reason: Deligne groupoid

Delg : art(k)→ Grp

depends on a very small part of g — only the segment

g0 → g1 → g2

appears in formulas (3), (4). However, we want the whole of g (for instance, the whole of the
Hochschild complex) to be relevant to the deformation theory. Once we extend the functor Delg
to the nerve functor defined on dgart≤0(k), the dg Lie algebra g is defined uniquely up to a
quasi-isomorphism.

1.6. Content of the sections. Throughout the paper we work a lot with simplicial categories
and simplicial groupoids. We collect in the appendix the necessary information about this. In
the beginning of Section 2 we recall the definition of a simplicial closed model category structure
on the category of dg algebras over an operad taken from [H2].

In Section 2 we define the functor (2) describing deformations of an algebra A over a dg operad
O.

To describe the deformation functor as the nerve of the tangent dg Lie algebra, we provide in
Section 3 a version of the nerve construction of [H3], Sect. 8, which assigns to a dg Lie algebra
g and to a dg artinian algebra R a simplicial groupoid.

In Section 4 we prove the main result. It follows easily from the model category structure on
the category of simplicial categories.

Finally, in Section 5 we check that for algebras over linear operads our deformation functor (2)
extends the classical one.

1.7. Notation. In what follows we use the following notation for different categories.

Ens, Grp, Cat are the categories of sets, small groupoids and small categories respectively.

∆ is the category of ordered sets [n] = {0, . . . , n}, n ≥ 0 and order-preserving maps. For a
category C we denote by ∆0C the category of simplicial objects in C.
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Let A be a tensor (=symmetric monoidal) category (for instance, the category of modules
mod (R) or of complexes C(R)). We denote by Op(A) the category of operads in A. If O ∈
Op(A), the category of O-algebras is denoted by Alg(O).

A simplicial category (and, in particular, a simplicial groupoid) will be supposed to have a
discrete set of objects, if it is not explicitly specified otherwise. The category of small simplicial
categories is defined sCat and that of simplicial groupoids sGrp.

For a simplicial category C and its objects x, y ∈ C we denote by Hom C(x, y) the simplicial set
of morphisms from x to y. The category π0(C) is defined as the one having the same objects as
C, with morphisms defined by the formula

Homπ0(C)(x, y) = π0(HomC(x, y)).

The nerve N (C) of a simplicial category C is defined as the diagonal of the bisimplicial set cor-
responding to C. The category sCat admits a closed model category structure. The description
of this structure, as well as a detailed description of the nerve functor and its properties, are
given in the appendix.

For a fixed field k of characteristic zero dglie(k) is the category of dg Lie algebras and
dgart≤0(k) is the category of non-positively graded commutative artinian dg algebras with
residue field k.

1.8. Acknowledgement. This work was made during my stay at the Max-Planck Institut für
Mathematik at Bonn. I express my gratitude to the Institute for the hospitality and excellent
working conditions.

2. Homotopy algebras

In this section we define a deformation functor for algebras over a dg operad. In 2.1 we recall the
structure of simplicial closed model category on the the category Alg(O) of algebras over a dg
operad O over a field of characteristic zero. We use this structure to assign to any A ∈ Alg(O)
and R ∈ dgart≤0(k) a simplicial category Def A(R) of “higher” formal deformations of A with
base R. Its nerve DefA(R) = N (Def A(R)) gives us the value of the deformation functor at R.
It is always a Kan simplicial set.

2.1. Simplicial CMC structure on Alg(O) (see [H2]).

Let k be a field of characteristic zero. The category Alg(O) of algebras over a dg operad
O ∈ Op(C(k)) admits a closed model category structure. Weak equivalences in Alg(O) are
quasi-isomorphisms and fibrations are surjective maps. Recall the notion of a cofibration in
Alg(O).

In the definition below we denote by X# the graded module (algebra, operad) corresponding to
a complex (dg algebra, dg operad) X. If O is an operad in A and X ∈ A, FO(X) denotes the
free O-algebra generated by X.
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2.1.1. Definition. 1. A map A → B is called a standard cofibration if it can be presented
as a direct limit of a sequence of maps

A = B0 → B1 → . . .→ Bn → . . .

where for each n the algebra B#
n is isomorphic to B#

n−1 t FO#(X) and the differential in Bn is
given by a map d : X → Bn−1.
2. A map f : A → B is called a cofibration if it can be presented as a retract of a standard
cofibration.

2.1.2. The category Alg(O) admits a simplicial structure so that Quillen’s axiom (SM7) is
satisfied — see [H2], 4.8. The simplicial structure is defined by the simplicial path functor
which assigns to an algebra A ∈ Alg(O) and to a finite simplicial set S ∈ ∆0Ens the algebra
AS = Ω(S)⊗A where Ω(S) denotes the dg commutative algebra of polynomial differential forms
on S.

More explicitly, n-simplices of Hom(A,B) are maps

φ : A→ Ωn ⊗B

where

Ωn = k[x0, . . . , xn, dx0, . . . , dxn]/(
∑

xi − 1,
∑

dxi) (5)

is the algebra of polynomial k-valued differential forms on the standard n-simplex.

2.1.3. Notation. Wc
∗(O) denotes the following simplicial category. Its objects are cofibrant O-

algebras. If A and B are two such algebras, n-simplex of Hom(A,B) is given by a quasi-
isomorphism

φ : A→ Ωn ⊗B.

This simplicial category play the role of higher groupoid of O-algebras.

2.2. Let k, O be as above.

Let R be a commutative dg k-algebra. We define an operad R⊗O by the formula

(R⊗O)(n) = R⊗O(n). (6)

The operad R⊗O can be equally considered as an object in Op(C(k)) or in Op(mod(R))).

Note that the notion of R ⊗ O-algebra is the same for both base tensor categories C(k) and
mod(R).

In what follows we will write Wc
∗(R,O) instead of Wc

∗(R⊗O), to stress the dependence of this
simplicial category on R.

2.3. Two versions of the deformation functor.

Let k, O be as above and let A ∈ Alg(O). In this subsection we define two versions of the
deformation functor of A — the first one with values in sCat and the second one with values in
∆0Ens.
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2.3.1. sCat-version.

Definition. Deformation functor

Def A : dgart≤0(k)→ sCat

is defined as the homotopy fibre of the canonical map

π∗ :Wc
∗(R,O)→Wc

∗(O) (7)

at a point Ã ∈ Wc
∗(O) where Ã→ A is a cofibrant resolution of A.

2.3.2. Simplicial version. Any simplicial category C is a simplicial object in Cat. Applying
componentwise the nerve functor N : Cat → ∆0Ens, we obtain a bisimplicial set. Its diagonal
is called simplicial nerve of C, denoted by N (C) — see the appendix.

Definition. Deformation functor

DefA : dgart≤0(k)→ ∆0Ens (8)

is defined as the homotopy fibre of the canonical map

N (π∗) : N (Wc
∗(R,O))→ N (Wc

∗(O)) . (9)

Here as above, the homotopy fibre is taken at a point Ã ∈ Wc
∗(O, k) where Ã→ A is a cofibrant

resolution of A.

2.3.3. Recall (see [H2], Sect. 8) that for a O-algebra A its tangent Lie algebra TA is defined as

TA = Der(Ã, Ã).

This is a dg Lie algebra over k which does not depend, up to quasi-somorphism, on the choice

of a cofibrant resolution Ã→ A.

Now we are ready to formulate the main result of this paper.

2.3.4. Theorem. Let O be a dg operad over a field k of characteristic zero and let A be
an O-algebra. Suppose that both O and A are non-positively graded. Then the deformation
functor DefA : dgart≤0(k)→ ∆0Ens is equivalent to the nerve Σg of the tangent dg Lie algebra
g := TA.

Theorem 2.3.4 will be proven in Section 4.

3. Simplicial Deligne groupoid

3.1. Definition. Let k be a field of characteristic zero and g ∈ dglie(k) be a nilpotent dg Lie
k-algebra. In this section we construct a simplicial groupoid Del(g) = {Del n(g)} whose simplicial
nerve (see 6.2) is naturally homotopically equivalent to the nerve Σ(g) defined in [H1].

The construction is a generalization (and a simplification) of the one we used in [H3], 9.7.6.

Recall (see [H1], [H3], 8.1.1) that the nerve Σ(g) of the nilpotent dg Lie algebra g is defined as

Σn(g) = MC(Ωn ⊗ g), (10)

Ωn being defined as in 5.
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Following [H3], Sect. 8, define a simplicial group G = G(g) by the formula

Gn = exp(Ωn ⊗ g)0. (11)

Here Ωn ⊗ g is a nilpotent dg Lie algebra, so its zero component is an ordinary nilpotent Lie
algebra, and therefore its exponent makes sense.

Define a simplicial groupoid Γ := Del(g) (we will call it simplicial Deligne groupoid since its zero
component is the conventional Deligne groupoid [GM]) as follows.

ObΓ = MC(g);

HomΓ(x, y)n = {g ∈ Gn|g(x) = y}.

It is useful to have in mind the following easy

3.1.1. Lemma. The simplicial group G(g) is always contractible.

Proof. As a simplicial set, G is isomorphic to the simplicial vector space

n 7→ (Ωn ⊗ g)0.

The latter is a direct sum of simplicial vector spaces of form Ωp
• (each one dim g−p times) which

are all contractible — see [L], p. 44. �

3.2. Equivalence. Recall that any simplicial category (and more generally, any C ∈ ∆0Cat)
defines a bisimplicial set whose diagonal is called the nerve of C, denoted by N (C) — see 6.2.

3.2.1. Proposition. The nerve Σ(g) of a nilpotent dg Lie algebra is naturally homotopically
equivalent to N (Del(g)).

Proof. Define Γ′ ∈ ∆0Grp (a simplicial groupoid in the broad sense) by the following formulas.

ObΓ′
n = MC(Ωn ⊗ g);

HomΓ′(x, y)n = {g ∈ Gn(g)|g(x) = y}.

One has a natural fully faithful embedding Del(g) → Γ′. According to [H3], 8.2.5, the map
Deln(g) → Γ′

n is an equivalence of groupoids for each n. This implies that the induced map of
the nerves

N (Del(g))→ N (Γ′)

is a homotopy equivalence.

Let us compare N (Γ′) to Σ(g). Look at Γ′ as a bisimplicial set. One has

Γ′
pq = Σp(g)×Gp(g)q.

This means that the simplicial set Γ′
•q is equal to Σ(g)×G(g)q.

The simplicial set G(g) is contractible by Lemma 3.1.1. Therefore, Γ′
•q is canonically homotopy

equivalent to Σ(g). This implies that the nerve N (Γ′) is homotopy equivalent to Σ(g). �

3.2.2. Remark. Proposition 3.2.1 generalizes the claim used in the proof of 9.7.6 of [H3].
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3.2.3. Let now g ∈ dglie(k). Following the well-known pattern, we define the functor

Delg : dgart≤0(k)→ sGrp

by the formula

Delg(R) = Del(m⊗ g)

for (R,m) ∈ dgart≤0(k).

The functor Del g is also called the simplicial Deligne groupoid.

3.3. Properties. We wish to deduce now some properties of the simplicial Deligne groupoid
functor which are similar to the properties of the nerve Σ(g) — see [H3], Sect. 8.

In what follows we use the closed model category structure on the category sCat — see the
appendix.

3.3.1. Proposition. Let f : g → h be surjective (resp., a surjective quasi-isomorphism).
Then for each (R,m) ∈ dgart≤0(k) the map

f : Delg(R)→ Delh(R)

is a fibration (resp., an acyclic fibration) in sCat.

Proof. Note first of all that the similar claim holds for the nerve functor: according to [H3],
Prop. 7.2.1, the map f : Σg(R)→ Σh(R) is a fibration (resp., acyclic fibration) provided f is a
surjection (resp., a surjective quasi-isomorphism). This implies that the map

f : Delg(R)→ Delh(R)

satisfies the property (1) of fibrations (resp., of acyclic fibrations) — see 6.1.3, 6.1.5.

Let us check the property (2). It claims that for any x, y ∈ ObDel g(R) the map of simplicial
sets

f : Homg(x, y)→ Homh(fx, fy)

is a Kan fibration (resp., acyclic Kan fibration) — here we write for simplicity Hom g instead of
HomDelg(R).

Let G = G(g), H = G(h) be the simplicial groups corresponding to g, h as in the formula (11).

A map from a simplicial set K to Hom g(x, y) is given by an element g ∈ G(K) = Hom(K,G)
satisfying the condition g(x) = y.

Let a commutative diagram in ∆0Ens

K −−−→ Homg(x, y)

α

y f

y

L −−−→ Homh(fx, fy)
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be given with α : K → L being a cofibration of finite simplicial sets. We suppose also that either
α or f is a weak equivalence. Our aim is to find a map L → Hom g(x, y) commuting with the
above diagram. Thus, we are given with a compatible pair of elements g ∈ G(K), h ∈ H(L)
satisfying the property

g(x) = y; h(fx) = fy.

Our aim is to lift this pair to an element g̃ ∈ G(L) satisfying the property g̃(x) = y.

We will do this in two steps. First of all, since f is surjective, the induced map of simplicial
groups f : G → H is surjective, and, therefore, fibrant. Furthermore, since both G and H are
contractible by Lemma 3.1.1, the map f : G→ H is actually an acyclic fibration, and therefore
the pair of compatible elements g ∈ G(K), h ∈ H(L) lifts to an element g ′ ∈ G(L). We can not,
unfortunately, be sure that g′(x) = y. This is why we need the second step in which we correct
g′ to satisfy this property.

Suppose g′(x) = y′ ∈ MC(Ω(L) ⊗ m ⊗ g). The elements y and y ′ of MC(Ω(L) ⊗ m ⊗ g) have
the same images in both MC(Ω(K) ⊗ m ⊗ g) and MC(Ω(L) ⊗ m ⊗ h). Now, the commutative
diagram

Ω(L)⊗ g −−−→ Ω(K)⊗ g
y

y

Ω(L)⊗ h −−−→ Ω(K)⊗ h

induces an acyclic fibration

p : g1 := Ω(L)⊗ g→ Ω(K)⊗ g×Ω(K)⊗h Ω(L)⊗ h =: g2

of dg Lie algebras. Then the map Σp : Σg1
(R)→ Σg2

(R) is an acyclic fibration.

Now, we have two elements y, y′ ∈ MC(m⊗g1) satisfying p(y) = p(y′) ∈ MC(m⊗g2). Therefore,
there exists an element z ∈ Σg1

(R)1 such that d0z = y, d1z = y′ and p(z) = s0(p(y)). Using the
explicit description of Σg(R)1 in [H3], 8.2.3, one obtains and element γ ∈ exp(m⊗ g1) satisfying
p(γ) = 1 ∈ exp(m⊗ g2); γ(y′) = y.

Then one immediately sees that the element g̃ = γg ′ is the one we need. �

3.3.2. Corollary. 1. For any g ∈ dglie(k), R ∈ dgart≤0(k), x, y ∈ ObDel g(R) the
simplicial set Hom(x, y) is fibrant.

2. Any quasi-isomorphism f : g→ h induces a weak equivalence

f : Delg(R)→ Delh(R)

for each R ∈ dgart≤0(k).

Proof. 1. Take h = 0 in Proposition 3.3.1.

2. The category dglie(k) admits a CMC structure with surjections as fibrations and quasi-
isomorphisms as weak equivalences — see [H2], Sect. 4. Using this, present f = p ◦ i as a
composition of an acyclic fibration p and an acyclic cofibration i. Any acyclic cofibration in
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dglie(k) is left invertible: q ◦ i = id. The map q is obviously an acyclic fibration. Then
by Proposition 3.3.1 the map f : Del g(R)→ Delh(R) is a weak equivalence. �

4. Proof of Theorem 2.3.4

In 4.1–4.2 we prove Theorem 2.3.4. In 4.3 we explain why the theorem needs not to be correct
without the non-positivity conditions.

4.1. We start with an observation explaining the connection between TA and the formal defor-
mations of A. Let B be a cofibrant R⊗O-algebra with (R,m) ∈ dgart≤0(k). Denote A = k⊗RB.
The algebra B is isomorphic, as a graded O-algebra, to R⊗A. Choose a graded isomorphism

θ : B → R⊗A

and put
z = θ ◦ dB ◦ θ−1 − 1⊗ dA

where dB (resp., dA) is the differential in B (resp., in A).

The element z is a degree one derivation belonging to m ⊗ TA satisfying the Maurer-Cartan
equation. A different choice of isomorphism θ gives rise to a Maurer-Cartan element z ′ ∈ m⊗TA

equivalent to z: there exists g ∈ exp(m⊗ TA)0 such that z′ = g(z).

In what follows we will use a (non-unique) presentation of a R ⊗ O-algebra B by an element
z ∈MC(m⊗ Tk⊗RB).

4.2. To simplify the notation, denote W =W c
∗(O, R), W =Wc

∗(O, k).

4.2.1. Lemma. The natural map π :W →W is a fibration in sCat.

Proof. 1. Let us check the condition (1) of Definition 6.1.3.

It means the following. Let f : A → B be a quasi-isomorphism of cofibrant O-algebras over k.
Let one of two elements a ∈ MC(m⊗ TA) or b ∈ MC(m⊗ TB) be given. We have to check that
there exists a choice of the second element and a map

g : (R ⊗A, d + a)→ (R⊗B, d + b)

of R⊗O-algebras which lifts f : A→ B.

We can consider separately the cases when f is an acyclic fibration or an acyclic cofibration.

In both cases we will be looking for the map g in the form

g = γ−1
B ◦ (idR⊗f) ◦ γA

where γA ∈ exp(m ⊗ TA)0 and similarly for γB. A map g as above should commute with the
differentials d + a and d + b. This amounts to the condition

f∗(γA(a)) = f ∗(γB(b)),

where the natural maps

TA
f∗
−→ Derf (A,B)

f∗

←− TB

are defined as in [H2], 8.1.
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Recall that we are assuming that f is either acyclic cofibration or an acyclic fibration.

In both cases there exists a commutative square

Tf
α

−−−→ TA

β

y f∗

y

TB
f∗

−−−→ Derf (A,B)

where Tf is a dg Lie algebra and α, β are Lie algebra quasi-isomorphisms — see [H2], 8.2, 8.3.
The maps α, β induce bijections

π0(ΣTA
(R))←− π0(ΣTf

(R)) −→ π0(ΣTA
(R))

which prove the assertion.

2. Let us check the condition (2) of 6.1.3. Let Ã, B̃ ∈ W and let A = k ⊗R Ã, B = k ⊗R B̃. We
have to check that the map

Hom(Ã, B̃)→Hom(A,B) (12)

is a Kan fibration. We claim that this results from the simplicial CMC structure on Alg(R⊗O).

In fact, Ã is cofibrant, and the reduction map B̃ → B can be considered as a fibration in
Alg(R⊗O). Therefore, the map

Hom(Ã, B̃)→Hom(Ã, B) (13)

is a Kan fibration. But the maps (13) and (12) coincide, so the condition (2) of 6.1.3 is verified.

The lemma is proven. �

4.2.2. Fix now a cofibrant O-algebra A and denote g = TA. Fix (R,m) ∈ dgart≤0(k).

Define a map of simplicial categories

α : Delg(R)→W

as follows. Let z ∈ MC(m⊗ g) = ObDel g(R). Put

α(z) = (R⊗A, 1⊗ d + z).

Now, any element g ∈ Gn = exp(Ωn ⊗ m⊗ g)0 defines a graded automorphism of Ωn ⊗ R ⊗ A.
This obviously defines an isomorphism of R⊗O-algebras

(R⊗A, 1⊗ d + z) −→ (R⊗A, 1⊗ d + g(z)).

The observation 4.1 shows that the map α : Del g(R) → W identifies Del g(R) with the fibre of

π : W → W at A. Since π is a fibration by Lemma 4.2.1, Del g(R) is weakly equivalent to the
homotopy fibre of π which is by definition Def A(R).

Now the theorem follows from Proposition 3.2.1 since the nerve functor N preserves fibrations
and weak equivalences by 6.2.2.

Theorem is proven.
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4.3. Example. Let g be an arbitrary dg Lie algebra. The nerve functor

Σg : dgart≤0 → ∆0Ens

commutes with inverse limits. In particular, for

Rε = k[ε]/(ε2), Rδ = k[δ]/(δ2), Rεδ = k[ε, δ]/(ε2, εδ, δ2)

one has
Σg(Rεδ)

∼
−→ Σg(Rε)× Σg(Rδ).

This means that for a deformation problem governed by a dg Lie algebra, a two-parameter infin-
itesimal deformation is uniquely defined by a pair of one-parameter infinitesimal deformations.

Now we will show that this property is not fulfilled for our deformation problem if one does not
impose a condition on the grading of A.

This means that the deformation functor DefA in the example below can not be governed by a
dg Lie algebra.

Let O be the trivial operad O(1) = k · 1, O(i) = 0 for i 6= 0. O-algebras are just complexes.

Let A be the complex with zero differential with Ai = k for all i ∈ Z.

Let Aε = Rε ⊗A as a graded Rε-module. Endow Aε with the differential which vanishes in odd
degrees and is a multiplication by ε in even degrees. Define the Rδ-module Aδ in a similar way,
just interchanging even and odd degrees.

We claim there is no deformation of A over Rεδ which induces Aε and Aδ over Rε and Rδ

respectively.

We need the following

4.3.1. Lemma. Let (R,m) be an artinian local ring. Any complex of R-modules admits a
minimal cofibrant resolution, i.e. a cofibrant resolution P satisfying the condition dP ⊆ mP .

Proof. Since (R,m) is local artinian, any R-module M admits a projection φ :F → M with F
free and ker φ ⊆ mF . This easily implies the lemma. �

Lemma 4.3.1 implies that any deformation of A over Rεδ can be presented by a cofibrant minimal
complex Aεδ having a free module with one generator in each degree. The conditions

Aεδ ⊗Rεδ
Rε = Aε; Aεδ ⊗Rεδ

Rδ = Aδ

imply that all components of the differential in Aεδ are non-zero. This, however, is impossible
since Aεδ is cofibrant.

4.4. Remark. Theorem 2.3.4 follows from the existence of a weak equivalence

α : Delg(R)→ Def A(R)

in sCat. One might ask, therefore, is not it better to work with deformation functors taking
values in sCat instead of pushing them to simplicial sets using the nerve functor. We do not have
a good answer to this question. We chose simplicial sets because fibrant simplicial categories
seem to be too general to describe an intuitive notion of higher groupoid.
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One can probably use simplicial groupoids instead of simplicial sets — but the nerve functor N
is conservative on sGrp (see Proposition 6.2.3), so the difference does not seem to be very big.

5. Compatibility with the classical definition

Suppose that O is an operad of vector spaces and A is an O-algebra in Vect. Then the classical
deformation functor

DefclA : art→ Grp (14)

assigns to each artinian local k-algebra (R,m) the groupoid of flat R ⊗O-algebras Ã endowed

with an isomorphism Ã⊗R k
∼
−→ A.

We claim that in this case the deformation functor DefA defined in 2.3.2 is equivalent to the
classical DefclA .

5.1. Let P → A be a cofibrant resolution and let P̃ ∈ Wc
∗(R⊗O) be such that π∗(P̃ ) is quasi-

isomorphic to P . We claim that the homology of P̃ is a deformation of A in the classical sense.
This claim results from the following elementary lemmas.

5.1.1. Lemma. Let R ∈ art(k) and let X be a complex of R-modules. The following condi-
tions are equivalent

1. H i(X) = 0 for i 6= 0 and H0(X) is flat.
2. X ⊗L

R k is concentrated at degree zero.

Proof. By Lemma 4.3.1 it is enough to check the assertion of the lemma when X is cofibrant
minimal. Then X ⊗R k has zero differential which implies that X i = 0 for i 6= 0. This proves
the lemma. �

5.1.2. Lemma. Any cofibrant R⊗O-algebra is cofibrant as a complex of R-modules.

Proof. The proof presented below is very close to that of Theorem 4.7 from [H2].

One can easily reduce the assertion to the case of finitely generated standard cofibrant algebras.
Let A be such algebra. Choose a set of graded free generators {xi, i ∈ I} for A where I is a
totally ordered finite set, such that dxi belongs to the subalgebra of A generated by xj with j < i.
The set of multi-indices m : I → N is well-ordered with respect to the following lexicographic
order:

m > m′ if there exists i ∈ I such that mj = m′
j for j > i and mi > m′

i.

Then an increasing filtration on A by subcomplexes indexed by the set of multi-indices m : I → N

is defined by the formula

Fd(A) =
∑

m<d

R⊗O(|m|)⊗Σm

⊗

i∈I

x⊗mi

i .

Here |m| =
∑

mi and Σm =
∏

Σmi
⊆ Σ|m| is the product of symmetric groups. The associated

graded complexes are (shifted) free R-modules. This proves the lemma. �
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Lemmas 5.1.1 and 5.1.2 above imply that if P̃ ∈ Wc(O, R) is a deformation of P ∈ Wc(O, k)

with H(P ) = A then H(P̃ ) is a classical deformation of A with the base R.

This defines a map

hsCat : Def A(R)→ DefclA(R) (15)

of simplicial categories, where the right-hand side is considered as a discrete simplicial category
and the left-hand side is realized as the fiber of π :W c

∗(O, R)→Wc
∗(O, k). Applying the nerve

functor N we get a map of simplicial sets

h : DefA(R)→ DefclA(R). (16)

5.2. Proposition. Let O, A be as above. The map

h : DefA(R)→ DefclA(R)

is a weak equivalence for each R ∈ art(k).

Proof. Let Ã be a classical deformation of A over R. Consider a cofibrant resolution P̃ of Ã as of
an R⊗O-algebra. Let π : R→ k be the standard projection. There exists a quasi-isomorphism

π∗(P̃ ) → P which induces identity on the homology. Lemma 4.2.1 implies that the map hsCat

is essentially surjective.

Let now g = Der(P, P ). One has

Hi(g) = H i(HomP (ΩP , P )) = H i(HomP (ΩP , A)) = 0 for i < 0 (17)

since A is concentrated in degree zero and the free generators of the graded algebra P can be
chosen to have non-positive degrees. Therefore, DefA(R) ∼= Σg(R) is equivalent to a groupoid
by [H1] or 1.4.2.

In order to prove that (16) is an equivalence, we have to check it induces an isomorphism of the
fundamental groups.

Fix z ∈ m⊗g1 satisfying Maurer-Cartan equation. Let P̃z be the object of Def P (R) correspond-

ing to z and let Ãz be its cohomology. The fundamental group of the right-hand side of (16) at

the point z is the group AutA(Ãz) of automorphisms of Ãz which are identical on A.

The fundamental group of the left-hand side of (16) at z can be calculated in Def A(R) as the

group of homotopy classes of automorphisms of P̃z inducing the identity on P .

The map from the left-hand side to the right-hand side in (16) assigns to each automorphism

θ of P̃z its homology H(θ) : Ãz → Ã. To prove that (16) is an isomorphism, we have to check

that any automorphism of Ãz inducing the identity on A can be lifted, in a unique way up to

homotopy, to an automorphism of P̃z inducing identity on P . This follows from the standard
properties of cofibrant resolutions in closed model categories. �
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6. Appendix: simplicial categories

In this section we recall some standard facts about simplicial categories. This includes the
description of a model category structure on sCat and some properties of the nerve functor
N : sCat→ ∆0Ens.

The proofs of all claims, except for Proposition 6.2.3, can be found in [H3], Sect. 11.

6.1. Closed model category structure on sCat.

6.1.1. Define the functor
π0 : sCat→ Cat

as follows. For C ∈ sCat the category π0(C) has the same objects as C. For x, y ∈ Obπ0(C)

Homπ0(C)(x, y) = π0(HomC(x, y)).

6.1.2. Definition. A map f : C → D in sCat is called a weak equivalence if the following
properties are satisfied.

(1) The map N (π0(f)) is a weak equivalence of simplicial sets.

(2) For all x, x′ ∈ ObC the map f : Hom(x, x′)→Hom(fx, fx′) is a weak equivalence.

6.1.3. Definition. A map f : C → D in sCat is called a fibration if it satisfies the following
properties

(1) the right lifting property (RLP) with respect to the maps

∂0,1 : ∆0 → ∆1

from the terminal category ∆0 = ∗ to the one-arrow category ∆1.

(2) For all x, x′ ∈ ObC the map f : Hom(x, x′)→Hom(fx, fx′) is a Kan fibration.

6.1.4. Theorem. The category sCat admits a CMC structure with weak equivalences described
in 6.1.2 and fibrations as in 6.1.3.

Note the following

6.1.5. Lemma. A map f : C → D is an acyclic fibration iff the following conditions are
satisfied.

(1) the map Ob f : ObC → ObD is surjective.

(2) For all x, x′ ∈ ObC the map f : Hom(x, x′)→Hom(fx, fx′) is an acyclic Kan fibration.

6.2. Simplicial nerve.

6.2.1. In what follows we identify Cat with the full subcategory of ∆0Ens. Then every simplicial
category (and even every C ∈ ∆0Cat) can be seen as a bisimplicial set; its diagonal will be called
the nerve of C and will be denoted N (C). If C is a “usual” category, N (C) is its “usual” nerve.
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6.2.2. Proposition. The nerve functor N : sCat → ∆0Ens preserves weak equivalences,
fibrations and cofibrations.

Let f : C → D be a map in sCat. It is not true in general that if N (f) is a weak equivalence
then f is also a weak equivalence — take, for instance, any functor f : C → D between categories
which is not fully faithful and add to C and to D a final object. This defines a functor which
is not a weak equivalence between two categories whose nerves are contractible. This, however,
cannot happen if C and D are simplicial groupoids.

6.2.3. Proposition. Let f : C → D be a map of simplicial groupoids. If N (f) is a weak
equivalence, f is also a weak equivalence.

Proof. Let us check Property (1) of 6.1.2. In the case of simplicial groupoids it means that
π0(f) : π0(C)→ π0(D) is an equivalence of groupoids. It is clear that π0(f) induces a bijection on
the set of connected components. The next thing is to check that π0(f) induces an isomorphism
of authomorphism groups of objects of π0(C) and of π0(D). But this is a part of Property (2)
proven below.

Let us check Property (2). We have to prove that for each object x ∈ C the map of the simplicial
groups

Hom(x, x)→Hom(y, y), y = f(x),

is a homotopy equivalence. We will denote x ∈ N (C) and y ∈ N (D) the 0-simplices in the nerves
corresponding to the objects x ∈ C, y ∈ D. We know that the maps πn(N (C), x)→ πn(N (D), y)
are isomorphisms. To prove the assertion, it is enough to check that

πn(Hom(x, x))
∼
−→ πn+1(N (C), x) for n ≥ 0.

It is enough to check this claim for simplicial groups (= simplicial groupoids having one object).
Now it follows from the equivalence between N (C) and W (C) — see [H3], 11.5.1. �
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