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Abstract. We prove that the algebra A of chord diagrams, the dual to the associated graded
algebra of Vassiliev knot invariants, is isomorphic to the universal enveloping algebra of a Casimir
Lie algebra in a certain tensor category (the PROP for Casimir Lie algebras). This puts on a
firm ground a known statement that the algebra A “looks and behaves like a universal enveloping
algebra”. An immediate corollary of our result is the conjecture of [BGRT] on the Kirillov-Duflo
isomorphism for algebras of chord diagrams.

Our main tool is a general construction of a functor from the category CycOp of cyclic op-
erads to the category ModOp of modular operads which is left adjoint to the “tree part” functor
ModOp - CycOp. The algebra of chord diagrams arises when this construction is applied to the op-
erad LIE. Another example of this construction is Kontsevich’s graph complex which corresponds
to the operad LIE∞ for homotopy Lie algebras.
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1. Introduction

It is well known that the theory of knot invariants of finite type (or Vassiliev
invariants) is closely connected to Lie algebras. The aim of this paper is to clarify
this relationship and give it a precise formulation.

Knot invariants of finite type are related to various areas of mathematics and
theoretical physics and have been in the focus of very intensive research since
V. Vassiliev introduced them in 1989. One of the remarkable features of these
invariants is that they can be completely characterized in terms of combinatorial
objects called weight systems. A weight system is a function on chord diagrams
(configurations of pairs of points on a circle) satisfying certain relations. The dual
space A of the space of weight systems is generated by chord diagrams and has
a natural structure of a graded commutative and co-commutative Hopf algebra.
This algebra A is called the algebra of chord diagrams.
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Bar-Natan [BN] and Kontsevich [K1] discovered a construction that gives a
family of Vassiliev invariants for every finite-dimensional Lie algebra with a metric
(an invariant inner product). According to calculations of J. Kneissler [Kn], all
invariants up to order 12 come from Lie algebras. However for large orders this is
not true, and there exists a more general construction that gives Vassiliev invariants
which cannot be obtained from Lie algebras. This construction was found by the
second author in [V] as a byproduct of an attempt to understand the relationship
between Lie algebras and invariants of knots. It turned out that the theory of
Vassiliev invariants naturally leads to the concept of a Yang-Baxter Lie algebra,
an algebraic structure generalizing Lie algebras and Lie superalgebras, and they in
turn can be used to produce knot invariants. Namely, every metric Yang-Baxter
Lie algebra g gives an algebra homomorphism

Wg : A - U(g) (1)

with values in the center of the universal enveloping algebra of g. Every linear
functional on Z(U(g)) produces a sequence of Vassiliev invariants.

The existence of the homomorphism Wg is not the only indication of the Lie-type
behavior of the algebra A of chord diagrams. In particular, A can be described as
the space generated by certain (ribbon) graphs (also known as Chinese characters)
modulo some relations and the proof of this fact (see [BN]) is strikingly parallel
to the proof of the Poincaré-Birkhoff-Witt theorem for Lie algebras. This raises a
natural question as to whether the algebra A can be described as the center of the
universal enveloping algebra of a Lie-type object which is universal with respect to
morphisms (1).

In this paper we show that this is indeed the case and prove, in particular, that
every Vassiliev invariant factors through the homomorphism Wg for some g.

This universal object, however, cannot be found among Yang-Baxter Lie alge-
bras, and to define it we need to move to a slightly higher level of abstraction.

Metric Lie algebras can be defined not only in the category of vector spaces,
but in arbitrary linear tensor category. One can construct a metric Lie algebra LM

in a certain category LIEM universal in the sense that every metric Lie algebra in
a tensor category C is the image of LM under a unique tensor functor LIEM - C.

A Lie algebra g in a tensor category has a universal enveloping algebra U(g)
which is an ordinary associative algebra in the category of vector spaces. The collec-
tion of maps (1) can now be described as an algebra homomorphism A - U(LM ).
This homomorphism however is not an isomorphism, and the starting point of our
work was to understand to what extent it determines the algebra A.

An appropriate setup is provided by the more general notion of a Casimir Lie
algebra (i.e., Lie algebra with an invariant symmetric two-tensor). Similar to the
case of metric Lie algebras, we construct the universal Casimir Lie algebra LC in a
certain tensor category LIEC and a homomorphism U(LC) - A. One of the main
results of the paper is that this map is an isomorphism.
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This result can be derived from the injectivity of the natural map U(LC) -
- U(LM ) which, in turn, follows from a detailed analysis of the categories LIEC

and LIEM .
To present the main constructions and results of the paper we need to use the

language of operads and PROPs.
The notion of operad appeared in algebraic topology in late 1960s as a tool

for describing algebraic operations on iterated loop spaces. In algebra, operads
are used to encode classes of algebraic structures (algebras over operads) with
collections of polylinear operations of type L⊗n - L satisfying specific properties.
In particular, there exists an operad called LIE, such that LIE-algebras in different
tensor categories include “usual” Lie algebras, Lie superalgebras, as well as dg-Lie
algebras and Yang-Baxter Lie algebras. For every operad O there exists a free
O-algebra with a given set of generators.

An invariant inner product on an algebra L over a field k can be considered
as an operation b : L⊗2 - k = L⊗0. The notions of PROP and algebras over
PROPs have been designed to handle this and more general operations of type
L⊗n - L⊗m.

As in the case of operads, the formalism of PROPs allows us to define algebras
in arbitrary tensor categories. PROP itself is a very small tensor category: its
objects are natural numbers n ∈ N = {0,1,2, . . . } with the tensor structure given
by addition. Mentioned above categories LIEM and LIEC are, in fact, PROPs, such
that the corresponding algebras are exactly metric and Casimir Lie algebras. In
particular, the objects

LM = 1 ∈ LIEM and LC = 1 ∈ LIEC

are Lie algebras in the corresponding categories and they can be viewed as the
universal metric Lie algebra and the universal Casimir Lie algebra, respectively.

Similar to the definition of an enveloping algebra of an algebra over an operad
(see [HS], Section 3), one can consider two different versions of a universal envelop-
ing algebra of the Lie algebra LM ∈ LIEM (resp. LC ∈ LIEC). The first, an internal
universal enveloping algebra, is an associative algebra in a certain extension of the
category LIEC (resp. LIEM ). The second, an external universal enveloping algebra,
is a genuine associative algebra. This algebra can be described as a collection of
compatible endomorphisms of all representations of LM (resp. LC).

The homomorphisms (1) giving Vassiliev invariants for arbitrary metric Yang-
Baxter Lie algebras now can be interpreted as a single algebra homomorphism

WLM : A - UM

from the algebra of chord diagrams to the external enveloping algebra of the uni-
versal metric Lie algebra LM ∈ LIEM .

A precise Lie-theoretical description of the algebra of chord diagrams is obtained
when we replace metric Lie algebras by Casimir Lie algebras. The following theorem
is the central result of the paper.
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Theorem. There exists an algebra isomorphism

UC ∼- A

from the external enveloping algebra of the universal Casimir Lie algebra LC ∈
LIEC to the algebra A of chord diagrams.

As an immediate consequence, we see that each Casimir Lie algebra g gives rise
to a homomorphism from A to the center of the enveloping algebra of g and that
every Vassiliev invariant can be obtained from a Casimir Lie algebra in some tensor
category.

This explains the similarities between the algebra of chord diagrams and Lie
algebras. In particular, the above-mentioned description of the algebra A in terms
of Chinese characters follows from the Poincaré-Birkhoff-Witt theorem for UC .
Another immediate corollary of this theorem is the conjecture of Bar-Natan, Garo-
ufalidis, Rozansky, and Thurston [BGRT] on the existence of a Kirillov-Duflo-type
isomorphism for algebras of chord diagrams.

A large part of our results and constructions for metric and Casimir Lie alge-
bras remains true if the operad LIE is replaced by an arbitrary cyclic operad O. In
particular, we construct a PROP OC describing O-algebras endowed with an in-
variant symmetric two-tensor. It turns out that the operadic part M(O) of OC has
an extra structure — that of a modular operad . Moreover, the functor O 7→ M(O)
is a left adjoint to the natural “tree part” functor from modular operads to cyclic
operads. We give an explicit construction of M(O) in terms of O. The PROP OC

can be expressed through M(O) in a simple way. Similarly, the PROP OM also
can be described in terms of M(O). The explicit description of PROPs OC and
OM allows one to deduce the following result which is the key ingredient in our
characterization of the algebra A.

Theorem. The natural morphism of PROPs OC - OM induces an isomorphism

HomOM (0,0)⊗HomOC (0,n) ∼- HomOM (0,n).

When O = LIE this theorem implies in particular that all Vassiliev invariants
can be obtained from a metric Lie algebra.

Another interesting example is the case when O = LIE∞, the operad for ho-
motopy Lie algebras. In this case the space of morphisms in LIEC

∞ coincides with
Kontsevich’s graph complex.

The paper is organized as follows. The constructions and results of the first
part (Sections 2–4) are valid for arbitrary cyclic operads. We believe that they
may find other applications besides the ones we discuss in the second part of the
paper (Sections 5–7).
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Section 2 describes our conventions about tensor categories, operads, and
PROPs. In Section 3 we study cyclic and modular operads and algebras over
them. We construct various functors between the categories of cyclic and modular
operads and PROPs. In Section 4 we prove some results on adjointness and iso-
morphisms for these functors. In Section 5 we discuss various versions of the notion
of a universal enveloping algebra for algebras over operads and PROPs. We prove
that when O = LIE, internal enveloping algebras exist in a certain extension of the
tensor category P and then we study them in detail in the cases when P = LIEM

and P = LIEC . In Section 6 we review basic facts about Vassiliev knot invariants
and their relations to Lie algebras. Finally, in Section 7, we present several appli-
cations of the results of the previous sections. In particular, we show how results
of Section 5 allow one to describe the algebra A of chord diagrams as the external
universal enveloping algebra of the universal Casimir Lie algebra LC .
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2. Preliminaries

2.1. Tensor categories

By a tensor category we understand a k-linear symmetric monoidal category
(see [DM], [D]) over a field k of characteristic zero. The unit object in a ten-
sor category will be usually denoted by 11. For any object A in a tensor category,
the associativity constraint allows one to define uniquely (up to a unique isomor-
phism) the tensor powers A⊗n and the commutativity constraint gives a left action
of the symmetric group Σn on A⊗n.

Recall the following definition.

2.1.1. Definition. An object A of a tensor category C is called rigid if there exists
an object A∨ ∈ C and a pair of morphisms

φ : 11 - A∨ ⊗A, ψ : A⊗A∨ - 11,

such that the compositions

A∨ φ⊗id- A∨ ⊗A⊗A∨ id⊗ψ- A∨
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and
A id⊗φ- A⊗A∨ ⊗A ψ⊗id- A

are the identities.
The object A∨ is called the dual of A. The dual object, if it exists, is unique

up to a unique isomorphism. The pair (φ, ψ) is called an adjoint pair. Given one
of the morphisms φ or ψ, its adjoint, if it exists, is unique.

2.1.2. Example. Let C be the category Vect of k-vector spaces. Then V ∈ C is
rigid if and only if dimV < ∞.

2.2. PROPs and algebras over them

Here we recall some basic facts about PROPs, operads, and algebras over them.
Standard references for this material are [BV], [M], [May], [A]. See also [EK], 1.1
and 1.2.

2.2.1. Denote by S the tensor category whose objects are non-negative integers
0,1,2, . . . , and morphisms are given by

HomS(m,n) =
{ ∅, m 6= n

Σn, m = n,
(2)

where Σn is the symmetric group on n objects. The tensor product in S is given
by the addition of numbers; the commutativity constraint

smn : m⊗ n - n⊗m

is defined by the shuffle

smn ∈ Σm+n, smn(i) =
{

i + n, i ≤ m

i−m, i > m.

The category S is the simplest example of a PROP (see [M]).

2.2.2. Definition. A PROP is a tensor category P with ObP = {0,1,2, . . . }
and a tensor functor S - P identical on objects and injective on morphisms.

For a PROP P, we will write P(m,n) instead of HomP(m,n).
A morphism of PROPs f : P - P ′ is a functor from P to P ′ which is identical

on S. The category of PROPs will be denoted by Props.

2.2.3. Definition. Let P be a PROP and let C be a tensor category. A P-algebra
in C is a tensor functor A : P - C.
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2.2.4. Example. Let Vect be the category of k-vector spaces. A P-algebra in
Vect is a vector space V = A(1) together with a compatible collection of operations
A(p) : V ⊗m - V ⊗n, for each p ∈ P(m,n).

2.2.5. Operads. By an operad in this paper we mean a collection of vector spaces
O = {O(n)}, n ∈ N, endowed with a right action of the symmetric group Σn on
O(n) and a collection of composition maps

γ : O(n)⊗O(m1)⊗ . . .⊗O(mn) - O
(∑

mi

)
(3)

satisfying some natural equivariance, associativity, and unity conditions (see [May],
[HS]).

An algebra over an operad O is a vector space A with a collection of operations

O(n)⊗A⊗n - A,

satisfying natural compatibility conditions.
The category of operads will be denoted by Op.

2.2.6. PROPs and operads. There exists a pair of adjoint functors

# : Props - Op and P : Op - Props,

where P#(n) = P(n, 1), and the left adjoint to # functor P is defined by the
formula

P(O)(m,n) =
⊕

f

n⊗
i=1

O(|f−1(i)|), (4)

where O is an operad and the direct sum is taken over all maps

f : {1, . . . ,m} - {1, . . . , n}.

The notions of algebras over PROPs and over operads are compatible: an alge-
bra over an operad O is the same as an algebra over the PROP P(O).

By a map of an operad O to a PROP P we understand a morphism of operads
O - P#.

3. Cyclic and modular operads

3.1. Metric and Casimir algebras

In this section we define two types of algebras over a cyclic operad. One type, that
of metric algebras, is well known. The other one generalizes the concept of a Lie
algebra endowed with a Casimir element.

These two types of algebras are governed by two different PROPs which will be
the main objects of study in the paper.
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3.1.1. Cyclic operads. A cyclic operad (see [GKC]) is an operad O with a
right action of the symmetric group Σn+1 on O(n) extending the Σn-action and
satisfying the compatibility condition (5) below.

Note that the symmetric group Σn+1 is generated by the subgroup Σn (identified
with the stabilizer of 0 ∈ {0, . . . , n}) and by the cyclic permutation τ given by
τ(i) = i− 1 for i > 0 and τ(0) = n.

The operad structure on O can be described in terms of composition operations

◦i : O(m)⊗O(n) - O(m + n− 1), i = 1, . . . ,m,

corresponding to the insertion of an element of O(n) as the i-th argument of an
element of O(m).

Definition. An operad O with a collection of right Σn+1-actions on O(n) is called
cyclic if

(a ◦1 b)τ = (bτ) ◦n (aτ) for a ∈ O(m), b ∈ O(n). (5)

The category of cyclic operads will be denoted by CycOp.

3.1.2. Definition. Let O be a cyclic operad. A metric O-algebra in a tensor
category C is an O-algebra A ∈ C together with a symmetric form b : A⊗ A - 11
satisfying the following conditions.

(i) The form b is non-degenerate, that is, there exists a two-tensor c : 11 - A⊗
A adjoint to b in the sense of Definition 2.1.1.

(ii) The form b is O-invariant, that is, the composition

O(n)⊗A⊗n+1 - A⊗A b- 11 (6)

is Σn+1-invariant.

In [GKC] metric algebras are called cyclic algebras.

3.1.3. PROP for metric algebras. The notion of a metric algebra gives rise to
the following construction.

Let O be a cyclic operad. Define a PROP OM as the PROP generated by
the PROP P(O) given by (4) and two elements b ∈ OM (2, 0) and c ∈ OM (0, 2)
satisfying the following conditions.

(i) The morphisms b and c are symmetric and mutually adjoint.
(ii) (invariance) For each f ∈ O(n) the composition

n c⊗id-2⊗ n = 1⊗ n⊗ 1 id⊗f⊗id-1⊗ 1⊗ 1 id⊗b-1 (7)

is equal to fτ .
The following simple result explains the meaning of OM .
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3.1.4. Lemma. Metric O-algebras are precisely the algebras over the PROP
OM . ¤

For a cyclic operad O there exists a canonical morphism

iOM : O - OM (8)

to the corresponding PROP. This morphism gives the functor

iOM ∗ : Alg(OM ) - Alg(O)

that forgets the metric of a metric O-algebra.

3.1.5. Definition. Let O be a cyclic operad. A Casimir O-algebra in a tensor
category C is an O-algebra A ∈ C together with a symmetric O-invariant two-tensor
(called casimir) c : 11 - A⊗A.

The condition of O-invariance means that the following composition

O(n) = O(n)⊗ 11⊗n c⊗n-O(n)⊗ (A⊗2)⊗n - A⊗A⊗n = A⊗n+1 (9)

is Σn+1-equivariant with respect to the standard Σn+1-action on A⊗n+1 given by

xσ = σ−1(x) for x ∈ A⊗n+1, and σ ∈ Σn+1.

3.1.6. PROP for Casimir algebras. Similar to 3.1.3 we construct a PROP
responsible for Casimir algebras.

Let O be a cyclic operad. Denote by OC the PROP generated by the PROP
P(O) (see 2.2.6) and a symmetric element c ∈ OC(0, 2) satisfying the following
invariance condition.

For each f ∈ O(n) the diagram
n− 1 c⊗id - 2⊗ n− 1 = 1⊗ n

id⊗c

?
id⊗f

?
n− 1⊗ 2 = n⊗ 1 fτ⊗id - 2

(10)

is commutative.
The following fact is an analog of Lemma 3.1.4 for Casimir algebras.

3.1.7. Lemma. Casimir O-algebras are precisely the algebras over the PROP
OC . ¤

For a cyclic operad O there is a canonical morphism

iOC : O - OC (11)

to the corresponding PROP for Casimir O-algebras. This morphism gives the
functor

iOC ∗ : Alg(OC) - Alg(O)

that forgets the casimir of a Casimir O-algebra.

It is easy to see that algebras with invertible casimirs are metric algebras.



246 V. Hinich and A. Vaintrob Sel. math., New ser.

3.1.8. Lemma. Let A be an algebra over a cyclic operad O and let

b : A⊗A - 11 and c : 11 - A⊗A

be a pair of symmetric mutually adjoint maps. Then b satisfies the conditions
(i), (ii) of Definition 3.1.2 if and only if c is O-invariant in the sense of Defini-
tion 3.1.5. ¤

This lemma gives a functor

Alg(OM ) - Alg(OC)

that commutes with iOM∗ and iOC∗ and is induced by a morphism of PROPs

OC - OM (12)

commuting with iOM and iOC .
The goal of this section is to give a detailed description of the relationship

between the PROPs OM and OC .

3.2. Coordinate-free language

In this paper, when dealing with tensor categories and operads we will use a
“coordinate-free” language of [DM]. It allows one to hide some “ugly” part of
the structure (the associativity and commutativity constraints, action of symmet-
ric group, etc.) inside the category of finite sets. In this subsection we recall the
basic definitions and reformulate the notion of a cyclic operad in the new language.
In the following subsection we will use this language to describe modular operads.

The following is a coordinate-free definition of tensor category (see [DM],
Prop. 1.5).

3.2.1. Definition. A tensor category C is a category with functors⊗
I

: CI - C : (Xi, i ∈ I) 7→
⊗
i∈I

Xi

and functorial isomorphisms

χ(α) :
⊗
i∈I

Xi
∼-

⊗
j∈J


 ⊗

i∈α−1(j)

Xi




defined for each finite set I and each map α : I - J of finite sets. The functors⊗
I

and isomorphisms χ(α) have to satisfy the following conditions:

(i) If I consists of a single element, then ⊗i∈I is the identity functor, and for
any map α between one-element sets χ(α) is the identity automorphism of
the identity functor.

(ii) The functors χ(α) satisfy a natural associativity condition relating χ(β ◦α)
with χ(β) and χ(α) for any pair of maps I α-J β-K of finite sets.
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3.2.2. PROPs in the coordinate-free language. In the new language the
initial PROP S (see 2.2.1) is replaced by the groupoid of finite sets with the tensor
product given by the operaton of disjoint union. As a tensor category it is equivalent
to the category of S and we will denote it by the same symbol.

A PROP in this setting is defined as a tensor category P with a tensor functor
from S to P bijective on objects and injective on morphisms.

3.2.3. Cyclic operads in the coordinate-free language. Denote by S∗ the
groupoid of non-empty finite sets. A cyclic operad is a functor

O : S∗ - Vect

with a collection of functorial composition operations

◦xy : O(X)⊗O(Y ) - O(X t Y \ {x, y}) (13)

defined for each pair of pointed sets (X,x) and (Y, y) satisfying the following con-
ditions.

(i) (commutativity) Operations ◦xy and ◦yx coincide after canonical identifica-
tion of X t Y with Y tX.

(ii) (associativity) For x ∈ X, y, y′ ∈ Y, y 6= y′, z ∈ Z, the following
diagram is commutative:

O(X)⊗O(Y )⊗O(Z)
◦xy⊗idO(Z)- O(X t Y \ {x, y})⊗O(Z)

?

idO(X)⊗◦y′z

?

◦y′z

O(X)⊗O(Y t Z \ {y′, z}) ◦xy -O(X t Y t Z \ {x, y, y′, z}).

(iii) (unity) For every two-element set {p, q}, there is a distinguished element
Ipq ∈ O({p, q}), such that for any x ∈ X and a ∈ O(X), the elements a
and a ◦xy Iyz coincide after identifying X with X ∪ {z} \ {x}.

The space O(X) should be viewed as a set of “relations” with arguments labeled
by X. The composition ◦xy corresponds to the operation of gluing the sets X and Y
along the points x and y.

3.3. Modular operads

Roughly speaking, modular operads are cyclic operads where gluing operations
similar to (13) are allowed for arbitrary non-empty subsets U ⊂ X and V ⊂ Y
of the same cardinality. We will use two different kinds of modular operads (see
definitions 3.3.1 and 3.5.3).

Modular operads were introduced by Getzler and Kapranov in [GKM]. Our
definitions differ slightly from the one given in [GKM] — see 3.5.6 for a comparison.
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3.3.1. Definition. A modular operad is a collection of functors

Mn : S∗ - Vect, n = 0, 1, . . . ,

with composition operations

◦f : Mm(X)⊗Mn(Y ) - Mm+n+d−1(X t Y \ (U t V )). (14)

defined for each bijection U f-V between non-empty d-element subsets U ⊂ X
and V ⊂ Y with

X t Y \ (U t V ) 6= ∅ (15)

satisfying the following conditions.
(i) (commutativity) Operations ◦f and ◦f−1 coincide after the canonical iden-

tification of X t Y with Y tX.
(ii) (associativity) For i = 1, 2, 3, let Xi be a non-empty finite set with two

disjoint subsets Uij ⊆ Xi, j ∈ {1, 2, 3} \ {i}. Let, in addition, fij :
Uij

- Uji be bijections satisfying fij = f−1
ji .

If U13 = U31 = ∅ and U12 and U23 are non-empty, then

◦f23(◦f12 ⊗ idX3) = ◦f21(◦f23 ⊗ idX1). (16)

If all the subsets Uij are non-empty, then the following three maps from
3⊗

i=1

M(Xi) to M
(⊔

i

(Xi \
⋃
j

Uij)
)

coincide:

◦f13tf23(◦f12 ⊗ idX3) = ◦f12tf32(◦f13 ⊗ idX2) = ◦f21tf31(◦f23 ⊗ idX1). (17)

(iii) (unity) See 3.2.3(iii).

The category of modular operads will be denoted by ModOp.

The following proposition gives an equivalent definition of a modular operad
(see [GKM], 3.4–3.7).

3.3.2. Proposition. A modular operad is a graded cyclic operad

M =
⊕
n≥0

Mn : S∗ - Vect

endowed with contraction operations

cxy : Mn(X) - Mn+1(X \ {x, y}), x, y ∈ X,x 6= y,X 6= {x, y}
satisfying the following properties.

(i) cxy = cyx.
(ii) If x, y, z, t ∈ X are four distinct elements, then the contractions cxy and czt

commute.
(iii) Let x1 6= x2 ∈ X, y1 6= y2 ∈ Y and X t Y 6= {x1, x2, y1, y2}. Then the

operations cx1,y1◦x2,y2 and cx2,y2◦x1,y1 from M(X)⊗M(Y ) to M(X tY \
{x1, x2, y1, y2}) coincide.
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Proof. Suppose M = {Mn : S∗ - Vect} is a modular operad in the sense of 3.3.1.
Then one can define the contraction operation

cxy : Mn(X) - Mn+1(X \ {x, y})

as the composition with the identity Ix′y′ ∈M0({x′, y′}) under the map f sending
x′ to x and y′ to y. Property (i) follows from 3.3.1(i), property (ii) follows from
3.3.1(ii) with X2 = X, X1 = {x, y}, and X3 = {z, t}. Property (iii) follows from
the fact that both compositions coincide with ◦f , where f : {x1, x2} - {y1, y2} :
f(xi) = yi.

Consider now a graded cyclic operad M endowed with a collection of contrac-
tions satisfying properties (i)–(iii) above. Define compositions

◦f : Mm(X)⊗Mn(Y ) - Mm+n+d−1(X t Y \ (U t V ))

as follows. Choose u ∈ U and define ◦f to be the composition of ◦u,f(u) with the
contractions cv,f(v) for all v ∈ U \ {u}. The result does not depend on the choice
of u ∈ U and on the order of the contractions by the properties (ii) and (iii) of
contractions. ¤

The following is a non-graded version of the notion of a modular operad.

3.3.3. Definition. A non-graded modular operad is a cyclic operad M together
with contraction operations

cxy : M(X) - M(X \ {x, y}), x, y ∈ X, x 6= y, X 6= {x, y}

satisfying properties (i)–(iii) of Proposition 3.3.2

The category of non-graded modular operads will be denoted by ModOpngr.

3.4. Standard functors

Here we will construct several functors connecting various categories of operads
and PROPs.

3.4.1. From modular operads to PROPs. We start with a natural construc-
tion that associates a PROP to a modular operad.

Proposition. There exists a functor

P : ModOp - Props

with P(M)(X,Y ) given for X,Y ∈ S by the formula

P(M)(X,Y ) =
⊕

X=
∐

i∈I Xi

Y =
∐

i∈I Yi

Yi 6=∅

⊗
i∈I

M(Xi t Yi). (18)
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Proof. It is sufficient to define a composition in P(M) for elements f ∈ P(M)(X,Y )
of the special type f = αtI, where X = X ′tX ′′, Y = Y ′tY ′′, I = tx∈X′′Ix,φ(x),
φ : X ′′ - Y ′′ is a bijection, and α ∈M(X ′ t Y ′).

Composition of elements of this type is defined using the composition in the
modular operad M. ¤

3.4.2. From modular to cyclic operads. If M is a modular operad, its zero-th
component M0 is a cyclic operad. This gives a functor

Gr0 : ModOp - CycOp. (19)

For non-graded modular operads there is a natural forgetful functor

#ngr : ModOpngr - CycOp : A 7→ A#. (20)

3.4.3. From non-graded modular operads to graded and back. There
exists a pair of adjoint functors

Tot : ModOp - ModOpngr

and
Const : ModOpngr - ModOp

defined by the following formulas

Tot({Mn}) =
⊕

n

Mn and Const(M)n = M. (21)

The composition Gr0 ◦Const is isomorphic to the forgetful functor #ngr (20).

3.5. Augmented cyclic and modular operads

We will need the following variation of the notions of cyclic and modular operads.

3.5.1. Definition. An augmented cyclic operad is a functor on the groupoid of
finite sets

O : S - Vect,

endowed with a collection of compositions

◦xy : O(X)⊗O(Y ) - O(X t Y \ {x, y}) (22)

defined for each pair x ∈ X, y ∈ Y satisfying the commutativity, associativity, and
unity conditions (i), (ii), and (iii) of 3.2.3.

3.5.2. Remark. To define a structure of augmented cyclic operad on a cyclic
operad O, one has to choose a graded vector space O(∅) and to define an operation

◦xy : O({x})⊗O({y}) - O(∅).
In particular, every cyclic operad can be considered as an augmented cyclic

operad with O(∅) = 0.
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3.5.3. Definition. An augmented modular operad is a collection of functors Mn :
S - Vect, n = 0, 1, . . . , with a collection of compositions

◦f : Mm(X)⊗Mn(Y ) - Mm+n+d−1(X t Y \ (U t V ))

defined for each bijection U f-V between non-empty d-element subsets U ⊂ X
and V ⊂ Y satisfying the conditions (i)–(iii) of 3.3.1.

The category of augmented operads will be denoted ModOp+.

The following is a version of Proposition 3.3.2 for augmented modular operads.

3.5.4. Proposition. An augmented modular operad can be defined as an aug-
mented graded cyclic operad

Mn : S - Vect, n = 0, 1, . . . ,

endowed with contraction operations

cxy : Mn(X) - Mn+1(X \ {x, y}), x, y ∈ X, x 6= y,

satisfying properties (i)–(iii) of Proposition 3.3.2, where in property (iii) we do not
require that X t Y 6= {x1, x2, y1, y2}. ¤

3.5.5. PROP from an augmented modular operad. Similarly to 3.4.1, we
consider a functor P+ that associates a PROP to an augmented modular operad.

Let M be an augmented modular operad. Define a collection of vector spaces
P+(M)(X,Y ) for X,Y ∈ S by the formula

P+(M)(X,Y ) = S(M(∅))⊗
( ⊕

X=
∐

i∈IXi

Y =
∐

i∈I Yi

XitYi 6=∅

⊗
i∈I

M(Xi t Yi)
)
, (23)

where S(V ) is the symmetric algebra of the vector space V .

An argument similar to the proof of Proposition 3.4.1 shows that the assignment
M 7→ P+(M) gives a functor

P+ : ModOp+
- Props.

We will also need the forgetful functor

# : ModOp+
- ModOp : M 7→M# (24)

given by the formula
M#(X) = M(X), for X 6= ∅.
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3.5.6. Comparison with the definition of [GKM]. The modular operads of
Getzler-Kapranov [GKM] are in our terminology augmented modular operads M
satisfying the following additional stability requirements:

• M0(∅) = M1(∅) = 0;
• M0({x}) = 0;
• M0({x, y}) = k · Ixy.

3.6. Results

In this section we formulate the main results of the first part of the paper. We
claim the existence of some adjoint functors to the standard functors defined in 3.4
and 3.5 together with various relations between these functors. Proofs of these
results will be given in the next section.

The following diagram shows relevant categories and functors. The triangles
formed by solid arrows are commutative.

CycOp

ª¡
¡

¡
¡

¡
O7→OC

HHHHHHHHHHH

O7→OM

j
Props ¾P

ModOp

Gr0

6
................

M

? A- ModOp+

P+- Props

ModOpngr

Const

6
................

Tot

?

(25)

3.6.1. Theorem. The zero-component functor (19)

Gr0 : ModOp - CycOp

admits a left adjoint functor

M : CycOp - ModOp. (26)

3.6.2. Corollary. The functor

Tot ◦M : CycOp - ModOpngr

is a left adjoint to the forgetful functor (20)

#ngr : ModOpngr - CycOp.
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3.6.3. Remark. Let V : S∗ - Vect be a functor and F (V ) be the free cyclic
operad generated by V (see [GKC]). Since by Theorem 3.6.1 the functor M is
left adjoint to the zero-component functor Gr0 and the functor F : V 7→ F (V )
is left adjoint to the forgetful functor #ngr, the functor M ◦ F is left adjoint to
the composition of the functor #ngr with Gr0. This shows that M(F (V )) can be
considered as the free modular operad generated by V (see [GKM]).

3.6.4. Theorem. The functors P ◦ M and O 7→ OC from CycOp to Props are
isomorphic, i.e. the left solid triangle of the diagram (25) is commutative.

3.6.5. Theorem. The forgetful functor

# : ModOp+
- ModOp

admits a left adjoint
A : ModOp - ModOp+ . (27)

3.6.6. Theorem. Let M+ denote the composition of functors A ◦M.
The functors P+ ◦M+ and O 7→ OM from CycOp to Props are isomorphic. In

other words, the right solid triangle of the diagram (25) is commutative.

3.6.7. Corollary. Let O be a cyclic operad. For each X ∈ S∗ there exists a
natural isomorphism of vector spaces

OM (∅, ∅)⊗OC(∅, X) ∼- OM (∅, X). (28)

3.6.8. Corollary. Let O be a cyclic operad. The natural map

OC(0, n) - OM (0, n)

is injective for all n ≥ 0.

4. Proofs

In this section we prove the results formulated in Sections 3.6.1–3.6.8. The technical
heart of the proof is the fact that the operadic part of the PROP OC admits a
natural structure of a modular operad. This is established in 4.1.

Then in 4.2 we show how to deduce the statements of 3.6.1–3.6.8 from this fact.

4.1. A modular operad from a cyclic operad

Let O be a cyclic operad. Consider a family of vector spaces labeled by pairs (X,x),
X ∈ S∗, x ∈ X given by

Mx(X) = OC(X \ {x}, {x}), (29)
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where the right-hand side is understood in the PROP sense.
This is just the operadic part of the PROP OC .

Our goal is to introduce a structure of a modular operad on this collection of
spaces M. In particular we will canonically identify Mx(X) for different x ∈ X.
The resulting modular operad will be denoted M(O).

4.1.1. Grading. Recall that OC is defined in 3.1.6 as the PROP generated over
P(O) by the casimir c ∈ OC , subject to relations (10). These relations are homo-
geneous with respect to the number of casimirs, and therefore, the space Mx(X)
obtains a natural grading

Mx(X) =
⊕
n≥0

Mn
x(X),

where Mn
x(X) is the space generated by the compositions

f ◦ c⊗n, (30)

where c⊗n : ∅ - Y t Y ′, with |Y | = |Y ′| = n and f ∈ O(X t Y t Y ′).
Note that since the presentation (30) is not unique, we cannot use it to identify

Mx(X) for different x. The degree zero part of Mx(X) coincides with O(X).
We will introduce the structure of a modular operad on the collection of spaces

Mn
x(X) by induction on degree.

For a pointed set (X,x) denote by X̂ the set X t{y, y′} and define a morphism

c = cyy′ : Mn
x(X̂) - Mn+1

x (X) (31)

as the composition with the casimir cyy′ ∈ OC(∅, {y, y′}) in the PROP OC .

4.1.2. Lemma.
1. The map cyy′ is a surjection for n ≥ 0.

2. Suppose that n ≥ 1 and put ̂̂
X = X t {y, y′, z, z′}. In the sequence

Mn−1
x ( ̂̂

X)
c2 --
c1

Mn
x(X̂) c - Mn+1

x (X) (32)

the compositions cc1 and cc2 coincide.
Here

c1 = czz′ and c2 = θcyy′ , (33)

where θ is induced by the involution of ̂̂
X identical on X and sending y to

z and y′ to z′.

Proof. Straightforward from the definition of the spaces Mn
x(X).

The following is the key technical result of this section.
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4.1.3. Proposition. The collection of vector spaces Mx(X) admits a natural
structure of a modular operad.

We will construct all necessary structures by induction on degree. Simultane-
ously with checking the necessary properties we will establish the following char-
acterization of the kernel of the morphism (31).

4.1.4. Lemma. Let k ≥ 0 and x ∈ X. The kernel of the map

c : Mk
x(X̂) - Mk+1

x (X)

is generated by the following three types of elements:
(i) α + σyy′(α),

where α ∈ Mk(X̂) and σyy′ is the automorphism of X̂ interchanging y
and y′;

(ii) α ◦zz′ β − f∗(α ◦yy′ β),
where X = A◦ t B◦; A = A◦ t {y, z}; B = B◦ t {y′, z′}; α ∈ Mk1(A);
β ∈Mk2(B); k = k1 +k2; and f : X t{z, z′} - X t{y, y′} is the bijection
identical on X and sending z to y and z′ to y′;

(iii) c1(α)− c2(α),
where α ∈Mk

x(X t {y, y′, z, z′}), k ≥ 1, and the maps c1 and c2 are given
in (33).

It is easy to see that any element of one of types (i)–(iii) belongs to Ker(c). For
type (i) this is so because c is symmetric; for type (ii) it follows from the invariance
property (10) of c, and for (iii) this is the statement 2 of Lemma 4.1.2.

Therefore, to prove Lemma 4.1.4 it remains to show that any element of Ker(c)
is a combination of elements of these three types. We will prove this by induction on
k. Before making the k-th step we will identify all the spaces Mk

x(X) for different
x ∈ X.

4.1.5. Induction hypothesis. Let us assume that we have the necessary struc-
ture on Mk for all k ≤ n. This includes the following components.

1. A canonical identification of Mk
x(X) for different x ∈ X (which makes

Mk(X) well defined) for every k ≤ n. This means that a compatible collection of
isomorphisms

φ∗ : Mk
x(X) - Mk

φ(x)(X)

is given for each automorphism φ : X - X.
We assume that the maps (31) c : Mk(X̂) - Mk+1(X) are equivariant with

respect to automorphisms of X for k + 1 ≤ n.

2. A collection of functorial operations

◦f : Mp(X)⊗Mq(Y ) - Mp+q+d−1(X t Y \ (U t V )), (34)
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defined for bijections f : U ∼- V , where d = |U | = |V | ≥ 1 and p + q + d − 1 ≤
n. These operations satisfy conditions (i)–(iii) of definition 3.3.1 when all the
compositions make sense.

3. The statement of Lemma 4.1.4 is valid for all 0 ≤ k < n.

After completing the induction step we will have constructed this data for k =
n + 1.

Let us verify the base of induction.

4.1.6. Tree level case: n = 0. We have M0
x(X) = O(X); therefore there

is a well-defined cyclic structure on M0. In particular, this gives a canonical
identification of spacesM0

x(X) for different x ∈ X. The structure of a cyclic operad
on M0 also gives all composition operations with values in M0. The statement of
Lemma 4.1.4 is empty for k < 0.

4.1.7. Induction step. Suppose that we have the structure elements (1)–(3)
of 4.1.5 on Mk for k ≤ n. Now we are going to extend this data to Mn+1.

First in 4.1.8–4.1.10 we will prove the key Lemma 4.1.4 for k = n. After that
we will finish the induction step in 4.1.11.

4.1.8. Beginning of the induction step for Lemma 4.1.4. In order to prove
Lemma 4.1.4 for k = n we first define a collection of functors

T k : S∗ - Vect

by the formula

T k(X) =




0 if k > n + 1,

Mk(X) if k ≤ n,

Mn(X̂)/R if k = n + 1,

where R is the subspace of M(X̂) generated by the elements (i)–(iii) of 4.1.4.

4.1.9. Lemma. The set of functors T = {T k} admits a natural structure of a
modular operad.

Proof. We will use here the definition of modular operad given by Proposition 3.3.2.
Functoriality of T (X) with respect to X follows from its definition. It only remains
to construct the composition and contraction operations.

By the induction hypothesis, it only remains to define operation and contrac-
tions with values in T n+1. Therefore, we need to define operations of the following
three kinds.

(A) α ◦ β for α ∈ T n+1, β ∈ T 0;
(B) α ◦ β for α ∈ T k, β ∈ T n+1−k, 1 ≤ k ≤ n;
(C) cxy(α) for α ∈ T n(X), x, y ∈ X, X 6= {x, y}.
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Definition of operations of type (A). Take any α̃ ∈ Mn(X̂) representing α
and define α ◦ β as the image of α̃ ◦ β in T n+1.

This is well defined since the subspace R generated by the relations (i)–(iii) is
stable under multiplication by β.

Definition of operations of type (B). Take α̃ ∈ c−1(α) ∈Mk−1(X̂) and define
α ◦ β to be the image of the composition α̃ ◦ β which is defined by the induction
hypothesis.

Definition of operations of type (C). The map cxy : T n(X) - T n+1(X \
{x, y}) is obtained from the definition of T n+1(X \ {x, y}) by identification (any
one) of X with ̂X \ {x, y}. The result does not depend on the identification because
the difference is an element of type (i) in the subspace R.

Let us verify that these operations define a structure of a modular operad on T .
This amounts to checking the following properties.

0. cxy = cyx.
This is one of the defining properties of c.

1. Independent contractions commute.
This is so because their difference in Mn(X̂) is an element of type (iii) in the

subspace R and therefore vanishes in T n+1.

2. Contractions commute with compositions — property (3) of 3.3.2.

This is true because in Mn(X̂) the difference of the corresponding elements is
an element of R of type (ii).

3. Commutativity of the composition.
Here we need to check that for α ∈ T k, β ∈ T n+1−k, 1 ≤ k ≤ n, the difference

α̃ ◦β−α ◦ β̃ belongs to R. Indeed, this difference can be written as (c1− c2)(α̃ ◦ β̃)
in the notation of (33) and therefore is an element of R of type (iii).

Note that for α ∈ T k, β ∈ T l, with 1 ≤ k ≤ n− l, one also has

α ◦ β = c(α̃ ◦ β).

4. Associativity of the composition.
We need to show that when deg α + deg β + deg γ = n + 1 the composition

α ◦ β ◦ γ is well-defined.
Since the sum of the degrees of α, β, and γ is positive, at least one of these

elements has a positive degree. In the case when deg α > 0, the element α◦(β◦γ) ∈
T n+1 is the image of

α̃ ◦ (β ◦ γ) = (α̃ ◦ β) ◦ γ ∈Mn.

There may be two possibilities: deg γ = 0 and deg γ > 0.
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In the case when deg γ = 0, the composition α ◦ β belongs to T n+1 and is
represented in Mn by α̃ ◦ β. Therefore, by definition of the operation of type (A)
the composition (α ◦ β) ◦ γ is represented by (α̃ ◦ β) ◦ γ ∈Mn.

If deg γ > 0, one still has
α ◦ β = c(α̃ ◦ β)

and by definition of the operation of type (B) we get the same result.
The cases when deg β > 0 or deg γ > 0 are considered similarly.

This concludes the construction of the modular operad structure on T . ¤

4.1.10. End of induction step for Lemma 4.1.4. Consider PROP P(T ) gen-
erated by the modular operad T (see 3.4.1).

By definition of T there is a natural morphism

O - T

and therefore, by the universal property of OC , we have a morphism of PROPs

f : OC - P(T ).

Morphism f is a surjection — it is an isomorphism in degree zero and the maps
T k(X̂) - T k+1(X) are surjective for k ≤ n− 1 by Lemma 4.1.2, and for k = n by
definition of T n+1.

On the other hand, we have a natural morphism of vector spaces T n+1(X) -
- Mn+1

x (X) induced by the map c (31). This morphism splits the morphism
OC(X \ {x}, x) - P which proves Lemma 4.1.4 for k = n.

4.1.11. End of the proof of Proposition 4.1.3. Using Lemma 4.1.4 for k = n,
we can easily complete the induction step.

First, since the kernel of c : Mn
x(X̂) - Mn+1

x (X) is invariant under the action
of the group of automorphisms of X, it induces a natural isomorphism between
Mn+1

x (X) for different x ∈ X. We also have to define new operations in M with
values inMn+1, but this has already been done — we defined them for the modular
operad T which coincides with M in degrees ≤ n + 1.

Proposition 4.1.3 is proved.

4.2. Proof of 3.6.1 – 3.6.8

4.2.1. Proof of Theorem 3.6.4. By construction of P(M(O)) we have a natural
morphism O - P(M(O)). The universal property of OC yields a map of PROPs

F : OC - P(M(O))
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that sends the casimir of OC to the element c ∈ P(M(O))(∅, {x, y}) corresponding
to the identity element Ixy.

The inverse map G : P(M(O)) - OC is constructed as follows. For a pair of
sets X and Y 6= ∅ and an element f ∈ OC(X tY \ {y}, y) let Y ′ be a disjoint from
Y copy of Y \ {y} with a fixed bijection j : Y \ {y} ∼- Y ′ and define G(f) as the
composition

X idX tcY- X t (Y \ {y}) t Y ′ ftidY ′- {y} t Y ′ ∼- Y,

This defines a collection of maps M(O)(X t Y ) - OC(X,Y ) which automati-
cally extends to a map of PROPs

G : P(M(O)) - OC

inverting the map F : O - P(M(O)). ¤
4.2.2. Proof of Theorem 3.6.1. The composition O 7→ M(O) 7→ M(O)0 is the
identity.

Let M be a modular operad. We need to construct a map in the opposite
direction η : M(M0) - M functorial in M. We construct ηk : M(M0)k - Mk

by induction on k. In the case k = 0 these spaces are the same and the map η0 is
the identity. For k ≥ 0 consider a diagram

M(M0)k(X̂)
cM-- M(M0)k+1(X)

Mk(X̂)

ηk

?
cM- Mk+1(X)

ηk+1

?

.

The map cM is a surjection and Lemma 4.1.4 implies that ηk(Ker(cM)) lies in
Ker(cM). This allows us to extend uniquely ηk to ηk+1. ¤
4.2.3. Proof of Theorem 3.6.5. Let M be a modular operad. Define A = A(M) ∈
ModOp+ as follows.

Put A(X) = M(X) if X 6= ∅. Furthermore, put

A0(∅) = S2(M0({x}))

so that the only composition with values in A0(∅),

◦xy : A0({x})⊗A0({y}) - A0(∅),

is defined.
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Finally, define An+1(∅) as the quotient Mn({x, y})/R, where, as in 4.1.8, the
subspace R is generated by the elements (i)–(iii) of 4.1.4.

To define a structure of an augmented modular operad on A, we will use the
second definition provided by 3.5.4. The only missing operation is the contraction

cx,y : An({x, y}) - An+1(∅)

and we define it as the natural projection of An({x, y}) to its quotient. The prop-
erties (i)–(iii) of Definition 3.3.2 can be easily verified. ¤
4.2.4. Proof of Theorem 3.6.6. By definition of P+(M+(O)) we have a natural
morphism O - P+(M+(O)). The universal property of OM gives a map of PROPs

F : OM - P+(M+(O))

as follows.
The map F sends the casimir of OM to the element c ∈ P+(M+(O))(∅, {x, y})

corresponding to the identity element Ixy. Similarly, F sends the metric b ∈
OM (2, 0) to the element

b ∈ P+(M+(O))({x, y}, ∅)

corresponding to the identity element Ixy.
The inverse map is constructed as follows. We start with the collection of maps

M(O)(X t Y ) - OC(X,Y ) - OM (X,Y ), Y 6= ∅,

defined in 4.2.1, and extend it to a larger collection

G(X,Y ) : M+(O)(X t Y ) - OM (X,Y ),

where X and Y may be empty. Namely, if Y = ∅, X 6= ∅, we define the map
G(X, ∅) as the composition

M+(O)(X) = M(O)(X) - OM (∅, X) s-OM (X, ∅),

where the map s is the composition with the element

b⊗n ∈ OM (X tX ′, ∅), n = |X| = |X ′|.

Finally, the map
G(∅, ∅) : M+(O)(∅) - OM (∅, ∅)

in positive degrees is defined as the composition of G({x, y}, ∅) with the contraction
operation in M+(O) and c ∈ OM (∅, {x, y}). ¤
4.2.5. Proof of 3.6.7 and 3.6.8. Using the explicit definition 3.5.5 of the PROP
generated by an augmented modular operad, we obtain Corollary 3.6.7.

Corollary 3.6.8 is its immediate consequence. ¤
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5. Enveloping algebras

In this section we discuss different approaches to defining a universal enveloping
algebra of an algebra over an operad in a tensor category. We show that in the
case of Lie algebras both definitions of an external universal algebra are equivalent
under mild assumptions on the tensor category. In this case we also study the Hopf
algebra structure and the notion of the center of an enveloping algebra.

In Section 7 we will show that the algebra A of chord diagrams arising in the
theory of Vassiliev knot invariants is isomorphic to the enveloping algebra of the
universal Casimir Lie algebra LC ∈ LIEC .

5.1. Definitions of enveloping algebras

The following is a standard definition of the enveloping algebra of an algebra over
an operad in a tensor category (see, e.g., [HS], Section 3). Note that it defines an
internal enveloping algebra, i.e., an associative algebra in the tensor category.

5.1.1. Definition. Let O be an operad and let A be an O-algebra in the tensor
category C. An associative algebra U in C, endowed with a collection of maps

un : O(n + 1)⊗A⊗n - U ,

n = 1, 2, . . . , is called an internal enveloping algebra of A if un is Σn-equivariant,
the following diagram

O(n + 1)⊗
n⊗

i=1

O(mi)⊗A⊗m - O(m + 1)⊗A⊗m

O(n + 1)⊗
n⊗

i=1

(
O(mi)⊗A⊗mi

)?

O(n + 1)⊗A⊗n
?

- U
?

is commutative for all n, m1, . . . ,mn and m = m1 + . . . + mn, and U is universal
with respect to these properties.

An internal universal algebra of an O-algebra A, if it exists, is unique up to an
isomorphism and will be denoted by U(O, A) or sometimes simply by U(A).
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Internal enveloping algebras exist, for example, when the tensor category C
admits colimits. In this case we can define internal tensor algebra

T (O, A) =
⊕
n∈N

O(n + 1)⊗Σn
A⊗n (35)

and the enveloping algebra U(O, A) can be described as the quotient of T (O, A)
by an ideal defined in a usual way.

Let O be an operad and C be a tensor category. We give two different definitions
of an external enveloping algebra of an O-algebra A in C. These algebras are
ordinary associative algebras in the category Vect. In general they may not be
isomorphic, but in the important for us case of the operadO = LIE these definitions
are equivalent under some mild conditions.

Denote by Γ the global section functor

Γ : C - Vect , Γ(X) = Hom(11, X) . (36)

5.1.2. Definition. Suppose that the internal enveloping algebra U(O, A) exists.
Then the global enveloping algebra U(O, A) of A is defined as

U(O, A) = Γ(U(O, A)) (37)

with operations induced by the structure of an associative algebra in C on U(O, A).

Another way to construct an external enveloping algebra of A is to start with
the external tensor algebra of A and then consider an appropriate quotient.

The external tensor algebra of anO-algebra A is defined by the following formula

T (O, A) =
⊕
n∈N

O(n + 1)⊗Σn
Γ(A⊗n). (38)

For every m1, . . . ,mn ∈ N the structure of an O-algebra on A gives a map

O(m1)⊗ . . .⊗O(mn)⊗A⊗m - A⊗n,

where m = m1 + . . . + mn. Applying the functor Γ we obtain a collection of maps

µm1,... ,mn
: O(m1)⊗ . . .⊗O(mn)⊗ Γ(A⊗m) - Γ(A⊗n)

and the following (non-commutative!) diagram

O(n + 1)⊗
n⊗

i=1

O(mi)⊗ Γ(A⊗m) - O(m + 1)⊗ Γ(A⊗m)

O(n + 1)⊗ Γ(A⊗n)

id⊗µm1,...,mn

?
⊂ - T (O, A)

?

∩

(39)
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5.1.3. Definition. The external enveloping algebra U(O, A) is the quotient of the
external tensor algebra (38) modulo the weakest equivalence relation making the
above diagrams commutative for all n, m1, . . . ,mn.

Unlike U(O, A) which is defined only when the internal enveloping U(O, A)
exists, the external enveloping algebra U(O, A) is defined for all O, C, and A.

5.1.4. The enveloping algebras U(O, A) and U(O, A) are connected as follows.
Let A be an O-algebra in a tensor category C. For n = 1, 2, . . . consider a map

O(n + 1)⊗Σn
Γ(A⊗n) - U(O, A),

defined as the composition

O(n + 1)⊗Σn
Γ(A⊗n) - Γ

(
O(n + 1)⊗Σn

A⊗n
)

- Γ(T (O, A)) - Γ(U(O, A)) = U(O, A) .

These maps are compatible with the structure maps defining operations in O
and A and therefore we have a canonical homomorphism

εA : U(O, A) - U(O, A) . (40)

5.1.5. Both external enveloping algebras U(O, A) and U(O, A) act functorially on
all (O, A)-modules.

Let M be an (O, A)-module. For an element u ∈ U(O, A) choose a representa-
tive ũ ∈ O(n+1)⊗Γ(A⊗n) and define an endomorphism ρ of M as the composition

M = 11⊗M ũ⊗idM- O(n + 1)⊗A⊗n ⊗M - M,

where the second map is given by the (O, A)-module structure on M . A straight-
forward check shows that ρ does not depend on the choice of the representative ũ
and defines a ring homomorphism

ρ : U(O, A) - End(M). (41)

If the internal enveloping algebra U(O, A) exists, one can similarly construct a
canonical homomorphism

U(O, A) - End(M). (42)

In this case the homomorphism ρ (41) coincides with the composition of homomor-
phisms (42) and εA.
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5.1.6. Let i : O - P be a map from an operad O to a PROP P. The object
1 ∈ P has a natural O-algebra structure. We will denote this O-algebra by L. Its
external enveloping algebra U(O, L) will be denoted by U(O,P) to stress the role
of the PROP P. Let now C be a tensor category and let A be a P-algebra in C.
Then A admits a natural structure of an O-algebra in C and we have a canonical
ring homomorphism

U(O,P) - U(O, A) (43)

induced by the compatible collection of vector space homomorphisms

Γ(n) - Γ(A⊗n).

5.2. Lie algebras

Until the end of this section we assume O = LIE. In this case we will write U(g)
instead of U(LIE, g), and similarly for U(g) and U(g).

We are going to apply the above constructions to the PROPs LIEC and LIEM

responsible for Casimir and metric Lie algebras (see Section 3.1).

5.2.1. Definition. The algebras

LM = 1 ∈ LIEM and LC = 1 ∈ LIEC

are called respectively the universal metric Lie algebra and universal Casimir Lie
algebra. Their external enveloping algebras will be denoted respectively by

UM = U(LIEM ) and UC = U(LIEC). (44)

Corollaries 3.6.7 and 3.6.8 yield the following result.

5.2.2. Proposition. The isomorphism (28) induces an isomorphism

LIEM (0,0)⊗ UC ∼- UM . (45)

¤

In particular, it implies the following

5.2.3. Corollary. The homomorphism

i : UC - UM (46)

induced by the functor LIEC - LIEM (12) is injective. ¤
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5.2.4. In order to study relations of the universal enveloping algebras UM and UC

of the universal metric and Casimir Lie algebras LM and LC with knot invariants
(see Section 7) we would like to have a description of these algebras in terms of
the internal enveloping algebras as in Definition 5.1.2. This seems to be impossible
since the tensor categories LIEC and LIEM do not admit colimits. However, this
difficulty can be resolved following an idea of [EK]. Since the construction in [EK]
misses some important details, we present a detailed construction of the algebra
U(L) here.

Let i : LIE - P be a morphism from LIE to a PROP P. Following [EK], we
construct an internal enveloping algebra U(L) in a certain extension of the tensor
category P.

Using this construction we prove Theorem 5.2.11 showing, that under mild con-
ditions, the internal enveloping algebra of a Lie algebra in a tensor category exists
and the two versions of an external enveloping algebra are canonically isomorphic.

5.2.5. Karoubi extension. We will use the following version of the Karoubi
extension of a linear category (see [Man], Section 5).

Let C be a k-linear category with a collection X of pairs (X, e), where X ∈ Ob C
and e ∈ Hom(X,X) is an idempotent and for each X ∈ Ob C the pair (X, 0) belongs
to X .

Definition. The Karoubi extension of C with respect to the collection X is the
category C̃ whose objects are pairs (X, e) ∈ X and morphisms from (X, eX) to
(Y, eY ) are maps f ∈ HomC(X,Y ), such that

eY ◦ f = 0 and f ◦ eX = 0.

Informally speaking, the object (X, e) in the category C̃ corresponds to the
kernel of e : X - X.

5.2.6. Category P̂. The extension P̂ of the category P is constructed in two
steps.

First, we construct the Karoubi extension P̃ of the category P adding kernels of
the idempotents in kΣn ⊆ P(n, n), n = 1, 2, . . . . The objects of the category P̃ cor-
respond to direct summands of regular representations of the symmetric groups Σn.
Note that if e1, e2 are two different idempotents of kΣn corresponding to isomor-
phic direct summands of the regular representation of Σn, then the corresponding
objects of P̃ are isomorphic.

After that we add to P̃ all direct sums of objects so that the irreducible objects
are “of finite type”. Namely, let

Σ̂ =
∐

Σ̂n
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be the set of irreducible representations of the symmetric groups for n = 1, 2, . . . .
Then the isomorphism classes of irreducible objects [V ] in P̂ are numbered by
V ∈ Σ̂.

Furthermore, for X = ⊕i∈I [Vi] and Y = ⊕j∈J [Vj ], one has

HomP̂(X,Y ) =
∏
i∈I

⊕
j∈J

HomP̃([Vi], [Vj ]).

The tensor category structure on P can be uniquely extended to P̂ so that the
functor ⊗ commutes with coproducts.

5.2.7. To construct the enveloping algebra of L we use the Poincaré-Birkhoff-Witt
theorem which allows one to realize it as a symmetric algebra with a deformed
multiplication.

Let L(V ) be the free Lie algebra generated by V ∈ Vect. The symmetrization
map

s : S(L(V )) - U(L(V )) = T (V )

from the symmetric algebra of L(V ) to the tensor algebra of V which identifies with
the enveloping algebra of L(V ) is bijective by the Poincaré-Birkhoff-Witt theorem.
This fact can be interpreted as an isomorphism of functors

s : S ◦ L - T (47)

which is equivalent to an infinite collection of identities in the representation rings
of symmetric groups.

Any polynomial functor on Vect defines a functor on P̂. Therefore, isomor-
phism (47) can be considered as an isomorphism of polynomial functors on P̂.
This can be viewed as the Poincaré-Birkhoff-Witt theorem for free Lie algebras
in P̂.

Let
t : T (L) - S(L(L))

be the inverse of the isomorphism s.
The Lie algebra structure on L ∈ P̂ defines a map L(L) - L which induces a

map
m : S(L(L)) - S(L)

of symmetric algebras.

5.2.8. Lemma.

1. The projection
π = m ◦ t : T (L) - S(L) (48)
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is the coequalizer of the pair

T (L(L))
π2 --
π1

T (L), (49)

where π1 and π2 are obtained by applying the enveloping algebra functor
to two maps L(L(L)) - L(L) (note that the enveloping algebra functor is
defined on free Lie algebras).

2. The map π is a coalgebra morphism with respect to Hopf algebra structures
on T (L) and S(L) for which the sets of primitive elements coincide with L .

3. The restriction of π to T 1(L) ⊂ T (L) is the identity map.

Proof. 1. This is an old Quillen trick — see [Q], Appendix B. Compare the pair (49)
with the following pair

S(L(L(L)))
π2 --
π1

S(L(L)). (50)

The pair (50) is known to have S(L) as a coequalizer since it is obtained by applying
the symmetric algebra functor to the split sequence

L2(L)
π2 --
π1

L(L) - L . (51)

On the other hand, the pairs (50) and (49) are isomorphic by the Poincaré-Birkhoff-
Witt theorem for free Lie algebras (47).

2. It is enough to check that the map s : S(L(L)) - T (L) is a morphism of
coalgebras. This is equivalent to some identities with polynomial functors which
can be verified on their values on V ∈ Vect. They, in turn, hold because the
symmetrization map

s : S(L(V )) - T (V )

is an isomorphism of coalgebras for V ∈ Vect.

3.This is obvious. ¤
5.2.9. Corollary (Poincaré-Birkhoff-Witt theorem). The internal enveloping al-
gebra of L ∈ P̂ exists in P̂. It is canonically identified with the symmetric algebra
S(L) with multiplication induced from the multiplication in T (L) via the projec-
tion (48). ¤

5.2.10. Corollary. The internal enveloping algebra U(L) is a Hopf algebra in P̂.
The composition

S(L) s- T (L) - U(L)

defines the symmetrization map which is an isomorphism of coalgebras. ¤

The construction of the internal enveloping algebra of L ∈ P̂ can be easily
generalized.
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5.2.11. Theorem. Let g be a Lie algebra in a tensor category C. Suppose that
C admits infinite direct sums and that the symmetric powers Sn(g) exist in C.
Then the internal enveloping algebra U(g) exists in C. Moreover, if the functor Γ
commutes with infinite direct sums, the homomorphism (40)

εg : U(g) - U(g)

is an isomorphism.

Proof. Let P = P(LIE) be the PROP (4) generated by operad LIE and let L ∈ P
be the universal Lie algebra. According to Corollary 5.2.9, its internal enveloping
algebra U(L) exists in category P̂.

Let C̃ be the Karoubi extension of C obtained by adding kernels of all idempo-
tents in C. Since C admits infinite direct sums, C̃ admits infinite direct sums as
well. Therefore, the functor defining the Lie algebra g in C extends to a functor

ĝ : P̂ - C̃.

Since U(L) is defined in P̂ by means of split coequalizers, the image ĝ(U(L))
represents an internal enveloping algebra for g in C̃. Since C is a full subcategory
in C̃ and ĝ(U(L)) is isomorphic to the symmetric algebra of g in C, this proves the
existence of the enveloping algebra U(g).

The algebra U(g) is a split coequalizer of the pair

T (L(g))
π2 --
π1

T (g) (52)

constructed similarly to (49). Let us calculate the algebra U(g).
Applying the functor Γ to the diagram (52) we get

Γ(T (L(g)))
π2 --
π1

Γ(T (g)). (53)

The coequalizer of this pair can be identified with U(g). This proves the second
part of the theorem. ¤

The rest of this section is devoted to the description of Hopf algebra structures
on UC and UM and to proving their commutativity.

5.3. Hopf algebra structure

An internal enveloping algebra U(L) admits a natural Hopf algebra structure. This
does not induce automatically a Hopf algebra structure on U(P) because the map

Hom(0,m)⊗Hom(0,n) - Hom(0,m⊗ n)
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is far from being bijective. However, in the two important cases when P = LIEC

or P = LIEM , one can define a Hopf algebra structure on U(P).
We return to the use of “the coordinate-free language” of Section 3.2 so that

the arguments of our PROPs are finite sets and not natural numbers.
Let P = LIEC or LIEM . For each pair (X,Y ) of sets we will construct a map

δXY : P(∅, X t Y ) - P(∅, X)⊗ P(∅, Y ) (54)

co-associative in a natural sense.

5.3.1. Case P = LIEC . According to Theorem 3.6.4, we have P = P(M), where
M = M(LIE). Thus,

P(∅, X) =
⊕

X=
∐

i∈I Xi

Xi 6=∅

⊗
i∈I

M(Xi).

Therefore, the left-hand side of (54) is the direct sum over all partitions of XtY
whereas the right-hand side is the sum over all decomposable partitions (a union
of a partition of X and a partition of Y ). The map δXY can now be defined as a
natural projection.

5.3.2. Case P = LIEM . According to Theorem 3.6.6, we have P = P+(M),
where M = M+(LIE). Thus,

P(∅, X) = S(M(∅))⊗
⊕

X=
∐

i∈I Xi

Xi 6=∅

⊗
i∈I

M(Xi)

and the map δXY for P = LIEM can be defined as the product of the comultipli-
cation

S(M(∅)) - S(M(∅))⊗ S(M(∅))
in the symmetric algebra and the map constructed in 5.3.1

5.3.3. In the cases when P is either LIEC or LIEM , one finally defines the comul-
tiplication

Hom(0,U(L)) - Hom(0,U(L))⊗Hom(0,U(L)) (55)

on U(P) as the composition of

Hom(0,U(L)) - Hom(0,U(L)⊗ U(L))

and
Hom(0,U(L)⊗ U(L)) - Hom(0,U(L))⊗Hom(0,U(L)),

where the second map is uniquely defined by (54).
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5.3.4. In order to check that the comultiplication (55) defines a Hopf algebra
structure on U(P), we have to verify that it is an algebra homomorphism. This
is guaranteed by the following Cake lemma claiming that two different ways of
cutting a cake X ∪ Y ∪ Z ∪ T into four pieces give the same result.

5.3.5. Lemma. Let P be LIEC or LIEM and let

γX,Y : Γ(X)⊗ Γ(Y ) - Γ(X ⊗ Y )

be the natural morphism. The following diagram

Γ(X ⊗ Y )⊗ Γ(Z ⊗ T )
δXY ⊗δZT- Γ(X)⊗ Γ(Y )⊗ Γ(Z)⊗ Γ(T )

Γ(X ⊗ Y ⊗ Z ⊗ T )

γX⊗Y,Z⊗T

?
Γ(X)⊗ Γ(Z)⊗ Γ(Y )⊗ Γ(T )

id⊗σΓ(Y ),Γ(Z)⊗id

?

Γ(X ⊗ Z ⊗ Y ⊗ T )

Γ(id⊗σY Z⊗id)

?
δX⊗Z,Y⊗T - Γ(X ⊗ Z)⊗ Γ(Y ⊗ T )

γXZ⊗γY T

?

is commutative for each X,Y, Z, T ∈ P. Here σ denotes the commutativity con-
straint. ¤

5.3.6. It is worthwhile to give the following description of the sets of primitive
elements in the algebras UC and UM .

Let P be LIEC or LIEM and let N be M(LIE) if P = LIEC and M+(LIE) if
P = LIEM .

From the definition of the coproduct in U(P) it follows that the image of the
composition∑

n∈N

N (n) -
∑
n∈N

P(0, n) =
∑
n∈N

LIE(n + 1)⊗Σn
P(0, n) - U(P) (56)

consists of primitive elements. The converse is also true.

5.3.7. Proposition. The sets of primitive elements in UC and in UM coincide
with the image of (56).

Proof. Enveloping algebras UC and UM are cocommutative Hopf algebras. They
are connected since the internal enveloping algebras U(L) are (see [Q], Appendix B).
They are generated as algebras by the image of (56) which consists of primitive
elements. This implies that the image of (56) gives all primitive elements. ¤
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5.4. Centers

5.4.1. Definition. Let A be an associative algebra in a tensor category C. An
element z ∈ Γ(A) = Hom(11, A) is called central in A if the following diagram

A - 1I ⊗A
z⊗id- A⊗A

A⊗ 1I
?

id⊗z- A⊗A
mult. - A

mult.

?

is commutative.
The collection of all central elements of A is called the center of A. The center

is a commutative subalgebra of Γ(A) which we denote Z(A).

5.4.2. Remark. Our notion of a center of an associative algebra in a tensor
category is one of several possible.

For example, let C be the category of super vector spaces. If A is an asso-
ciative superalgebra, Γ(A) is its zero component and the center we defined is the
degree zero part of (super) center of A. It coincides neither with the maximal
sub-superalgebra commuting with A nor with the center of Γ(A).

5.4.3. Proposition. Let C be a tensor category admitting infinite direct sums
and let g ∈ C be a Casimir Lie algebra in C, such that the symmetric powers Sn(g)
exist. Then the image of the map

UC - Γ(U(g)) = U(g)

induced by the structure tensor functor g : LIEC - C belongs to the center Z(U(g)).

Proof. The category mod(g) of representations of g is a tensor category with direct
sums and g endowed with the adjoint action is a Casimir Lie algebra in mod(g). The
internal enveloping algebra of g in mod(g) is just U(g) endowed with the adjoint
action of g. Then the external enveloping algebra is precisely

Hommod(g)(11,U(g)) = Z(U(g)).

¤
5.4.4. Corollary. The algebras UC and UM are commutative.

6. Vassiliev invariants and Lie algebras

Here we review some facts about Vassiliev knot invariants, the algebra of chord
diagrams, and their relationship with Lie algebra-type structures. For more details
see [BN], [K1], [V].
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6.1. Singular knots and chord diagrams

A singular knot is an immersion K : S1 → R3 with a finite number of double self-
intersections with distinct tangents. Framed singular knots are defined similarly.
Let Kn denote the set of all singular (framed) knots with n double points; in
particular, K0 is the set of ordinary (non-singular) knots.

A chord diagram of order n is an oriented circle with n disjoint pairs of points
(chords) on it up to an orientation preserving diffeomorphism of the circle. Denote
by Dn the set of all chord diagrams with n chords.

Every singular knot K ∈ Kn has a chord diagram ch(K) ∈ Dn whose chords
are the inverse images of the double points of K. Every (framed) knot invariant I
with values in an abelian group k extends to an invariant of singular knots by the
rule

I(K0) = I(K+)− I(K−), (57)

where K0, K+, and K− are singular knots which differ only inside a small ball as
shown on the figure below:
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A knot invariant I is called an invariant of order (≤) n if I(K) = 0 for any
K ∈ Kn+1.

We fix k and denote by Vn the set of all k-valued invariants of order n. We have
an obvious filtration

V0 ⊂ V1 ⊂ V2 . . . ⊂ Vn ⊂ . . . .

Elements of
V =

⋃
n

Vn

are called invariants of finite type or Vassiliev invariants.

The definition of Vassiliev invariants implies that the value of an invariant I ∈
Vn on a singular knot K with n self-intersections depends only on the diagram
ch(K) of K. In other words, I descends to a function on Dn which we still denote
by I. These functions satisfy the following relations
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 = 0. (58)

Here each of the four diagrams has n chords, but only chords whose endpoints
lie on the solid arcs are shown explicitly. The remaining n−2 chords have endpoints
on the dotted arcs and are the same in all four diagrams.

A function W : Dn → k is called a weight system of order n if it satisfies the
four-term relations (58). Denote by Wn the set of all weight systems of order n.

Let An be the dual space to Wn, i.e. the space of formal linear combinations of
diagrams from Dn modulo the relations

-

r
r

r

r

−
r

r
r

r

+

rr r

r

−
rr r

r

= 0. (59)

A Vassiliev invariant of order n defines a weight system of order n and it is easy
to see that the natural map Vn/Vn−1 →Wn is injective.

The remarkable fact proved by Kontsevich [K1] is that if k ⊃ Q this map is also
surjective. In other words, each weight system of order n is a restriction to Dn of
some Vassiliev invariant. To prove this Kontsevich constructed a knot invariant

Z : K0
- Â

where
Â =

∏
n≥0

An. (60)

The invariant Z is called Kontsevich’s integral.
If k is a commutative ring, then the product of two Vassiliev invariants of orders

m and n is a Vassiliev invariant of order m + n, therefore V is a filtered algebra.
The space ⊕

n≥0

Wn =
⊕
n≥0

Vn+1/Vn

becomes the associated graded algebra of V which induces a coproduct ∆ on

A =
⊕
n≥0

An
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defined as follows.
Let an element [D] ∈ A be presented by a chord diagram D ∈ Dm. Then

∆([D]) =
∑

D1tD2=D

[D1]⊗ [D2],

where the sum is taken over all presentations of D as a disjoint union of two
subdiagrams D1 and D2.

The operation of connected sum of diagrams induces on the coalgebra A a
product which makes A a commutative and co-commutative graded Hopf algebra.
It is called the algebra of chord diagrams.

6.2. Algebra A and Feynman diagrams

There exists an alternative description of the algebra A of chord diagrams in terms
of graphs.

6.2.1. Definition. A Feynman diagram of order p is a graph with 2p vertices of
degrees 1 or 3, such that each connected component has at least one vertex of degree
1 and cyclic orderings are fixed on the set of its univalent (external) vertices and
on each set of three edges meeting at a trivalent (internal) vertex.1 Let Fp denote
the set of all Feynman diagrams with 2p vertices (up to the natural equivalence of
graphs with orientations). The set Dp of chord diagrams with p chords is a subset
of Fp.

We draw Feynman diagrams by placing their external vertices (legs) on a circle
which is oriented counterclockwise. We assume that the edges meeting at each
internal vertex are oriented counterclockwise.

Denote by Gp the vector space generated by Feynman diagrams of order p mod-
ulo relations

r
DY

=
r

r

T
T TT

D||

−
r

rb
b

DX

(61)

More precisely,
Gp = 〈Fp〉/〈DY −D|| −DX〉,

where the diagrams D|| and DX are obtained from the diagram DY by replacing
its Y -fragment by the ||- and X- fragments respectively.

With this notation we have the following description of the space Ap (see [BN]).

1 Feynman diagrams are called Chinese character diagrams in [BN], but they are indeed Feyn-
man diagrams arising in the perturbative Chern-Simons-Witten quantum field theory.
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6.2.2. Proposition.
1. The embedding Dp ↪→ Fp induces an isomorphism Gp ' Ap.
2. The following local relations hold for internal vertices in Feynman diagrams:

(i) = −

and (62)

(ii)
¡

¡
¡

=
¡

¡
¡

T
T TT

−
¡

¡
¡b

b

6.3. Weight systems coming from Lie algebras

6.3.1. Here we recall a construction that assigns a family of weight systems to
every Lie algebra with an invariant metric.

Let g be a Lie algebra in a tensor category C with a g-invariant metric b :
g ⊗ g - 11. To each Feynman diagram F with m univalent vertices we assign a
tensor

Tg(F ) : 11 - g⊗m

as follows.
The Lie bracket [ , ] : g⊗ g - g can be considered as a tensor

11 - g∗ ⊗ g∗ ⊗ g.

The metric b allows us to identify the g-modules g and g∗, and therefore [ , ] can
be considered as a tensor

f : 11 - (g∗)⊗3

and b gives rise to an invariant symmetric tensor

c : 11 - g⊗ g.

For a Feynman diagram F denote by T the set of its trivalent vertices, by U
the set of its univalent (exterior) vertices, and by E the set of its edges. Taking
|T | copies of the tensor f and |E| copies of the tensor c we consider a new tensor

T̃g(F ) =
(⊗

v∈T

fv

)
⊗

(⊗
`∈E

c`

)
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which is considered as a map

11 - LF =
(⊗

v∈T

(g∗v,1 ⊗ g∗v,2 ⊗ g∗v,3)
)
⊗

(⊗
`∈E

(g`,1 ⊗ g`,2)
)
.

Here (v, i), i = 1, 2, 3, mark the three edges meeting at the vertex v (consistently
with the cyclic ordering of these edges), and (`, j), j = 1, 2, denote the endpoints
of the edge `. Since c is symmetric and f is completely antisymmetric, the tensor
T̃g(F ) does not depend on the choices of the orderings.

If (v, i) = ` and (`, j) = v, there is a natural contraction map

g∗v,i ⊗ g`,j
- 11.

Composing all such contractions we obtain a map

γ : LF −→
⊗
u∈U

g = g⊗m, where m = |U |.

The composition of γ with T̃g(F ) gives a tensor Tg(F ) : 11 - g⊗m.

Often it will be convenient to draw Feynman diagrams with their univalent
vertices along a horizontal line.

6.3.2. Example. Let g be a metric Lie algebra in Vect with a linear basis
e1, e2, . . . with a metric b given in this basis by b(ei, ej) = bij . Denote by (bij)
the inverse of the matrix (bij) and by f i

jk (or fijk after lowering indices by means
of b) the structure constants of g in the basis e1, e2, . . . .

For the diagrams

C = , B =

' $µ´¶³
,

and

K =

(63)

we have
Tg(C) =

∑
ij

bijei ⊗ ej = c,

the Casimir element corresponding to the metric b,

Tg(B) =
∑

bisbtjbkpblqfsklfpqtei ⊗ ej ,

the tensor in g⊗ g corresponding to the Killing form on g under the identification
g∗ ' g, and

Tg(K) =
∑

binbjpbqrbktb`sfnpqftsrei ⊗ ej ⊗ ek ⊗ e` .
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6.3.3. The tensor Tg(F ) is invariant with respect to the g-action on g⊗m and
its image Wg(F ) in the universal enveloping algebra U(g) belongs to the center
Z(U(g)) = U(g)g of the internal enveloping algebra (cf. Section 5.4). The ele-
ment Wg(F ) ∈ Z(U(g)) does not depend on the place where we cut the circle to
obtain a linear ordering of the external vertices of F . This gives a well-defined
map

⊕
p〈Fp〉 - Z(U(g)) which vanishes on the subspace generated by the equa-

tions (62) and (61): relations (62) follow from the anticommutativity and the
Jacobi identity for the Lie bracket f , and (61) in this case is just the definition of
the universal enveloping algebra as a quotient of the tensor algebra of g.

Therefore, for every Lie algebra g with an invariant metric we obtain an algebra
homomorphism

Wg : A - Z(U(g)) (64)

which is called the universal weight system corresponding to g. It is universal in
the sense that the weight system Wg,R constructed using a representation R of the
Lie algebra g (see [BN]) is an evaluation of Wg:

Wg,R(D) = TrR

(
Wg(D)

)
.

7. Applications

7.1. Algebra of chord diagrams as a universal enveloping algebra

As an application of the results of Section 3 we describe the algebra A as the
universal enveloping algebra of the universal Casimir Lie algebra and derive some
corollaries.

7.1.1. Theorem. The algebra A of chord diagrams is naturally isomorphic as a
Hopf algebra to the external enveloping algebra UC of the universal Casimir Lie
algebra LC .

Proof. Let us first construct a homomorphism a : UC - A. Define a map f :
LIEC(0, n) - A by assigning to each monomial in variables c ∈ LIEC(0, 2) and
λ ∈ LIEC(2, 1) the element of A presented by the corresponding Feynman diagram.

The map f extends by linearity to the external tensor algebra (38) and gives
an algebra homomorphism

g : T (LIE, LIEC) =
⊕

LIE(n + 1)⊗Σn
LIEC(0, n) =

⊕
LIEC(0, n) - A.

One can easily check that g factors through the projection

T (LIE, LIEC) - UC

and gives a well-defined algebra homomorphism a : UC - A.
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To prove that the map a is also a coalgebra homomorphism we notice that UC

is generated as an algebra by its primitive elements and therefore it is sufficient to
show that a maps primitive elements of UC to primitive elements of A. According
to Proposition 5.3.7 the primitive elements of UC are images of Γ(M(LIE)). The
map a sends an element of Γ(M(LIE)) to a linear combination of connected graphs
which are primitive in A. Since every Feynman diagram can be presented by a
graph whose edges do not have local minima, the map a is onto.

It remains to show that a is injective. Consider the diagram

UC ⊂ j - UM

@
@

@
@

@
a

RR ¡
¡

¡
¡

¡

W

µ

A

,

where W is the universal weight system (64) corresponding to the universal metric
Lie algebra LM ∈ LIEM , and j is the canonical map (46).

Since the diagram is commutative and j is injective by Corollary 5.2.3, this
proves the injectivity of a. ¤

7.1.2. Denote by B the symmetric algebra of LC ∈ LIEC . It can be described as
the algebra generated by graphs analogous to Feynman diagrams except that there
is no ordering on the set of its univalent vertices modulo relations (62). (In the
terminology of [BN] such graphs are called Chinese characters.)

Theorem 7.1.1 and the Poincaré-Birkhoff-Witt theorem for Lie algebras in tensor
categories (see Corollary 5.2.9) give the following result of [BN].

Theorem. The symmetrization map

B σ - A

is an isomorphism of vector spaces. ¤

7.2. Invariants from Casimir Lie algebras

7.2.1. Proposition. Let C be a tensor category with infinite direct sums and
(g, t) be a Casimir Lie algebra in C such that the symmetric powers Sn(g) exist in
C. There is a canonical algebra homomorphism

A - Z(U(g)).
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In particular, any linear functional on the center of U(g) gives rise to a sequence
of knot invariants.

Proof. It follows from Proposition 5.4.3 and Theorem 7.1.1. ¤

One should not expect this to give new knot invariants by applying traces of
finite-dimensional representations of g for C = Vect. However, there might exist
nontrivial infinite dimensional Casimir Lie algebras with a known center — this
may give something new.

7.2.2. Invariants from metric Lie algebras. Theorem 7.1.1 and Proposi-
tion 5.2.2 imply that any finite type invariant can be obtained from a linear func-
tional on the center of the enveloping algebra of a metric Lie algebra in a tensor
k-linear category C (one can take, for instance, C = LIEM and g = LM ). This does
not contradict the previous claim: it is possible that some invariants coming from
a Casimir Lie algebra in the category Vect cannot be obtained from a metric Lie
algebra in Vect.

7.3. Kontsevich integral via Drinfeld’s quasi-Hopf algebras

Let (g, t) be a Casimir Lie algebra in a tensor category C. In [Dr] Drinfeld con-
structed a ribbon category modr(g)[[h]] over k[[h]], where modr(g) is the category of
rigid g-modules. Then a version of Reshetikhin’s construction [RT] gives a universal
knot invariant lying in the center of the category modr(g)[[h]].

It is tempting to try to obtain Kontsevich’s integral

Z : K0
-

∏
n

Anhn ⊂ A[[h]]

from Theorem 7.1.1 using Drinfeld’s construction. We cannot apply Drinfeld’s
construction directly to C = LIEC since this category has no rigid objects. However
we can take C = LIEM and g = LM . We will obtain a knot invariant D with values
in the center of modr(LM )[[h]]. Let

i : UC - Z(modr(LM ))

be the composition
UC j- UM - Z(modr(LM )).

For a knot K the value D(K) belongs to the image of UC [[h]] in Z(modr(LM ))[[h]].
If the map i were injective, this would give another construction of Kontsevich’s
invariant Z. However, we do not know how to prove the injectivity of i.
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7.4. Graph complex

We showed above that the functor

M : CycOp - ModOp

applied to the cyclic operad LIE naturally leads to the algebra A of chord diagrams.
In another interesting situation this functor gives Kontsevich’s graph complex. We
will use the variant of its definition given by Getzler and Kapranov [GKM].

Let O be a cyclic Koszul operad (see [GKC], 3.2). The operad O∞, respon-
sible for the homotopy O-algebras, admits a natural cyclic structure (see [GKC],
5.4). For every non-empty finite set X the space O∞(X) is a complex whose only
cohomology (in degree zero) is canonically isomorphic to O(X).

The functor M applied to O∞ gives a modular operad M(O∞) in the category of
complexes. The quasi-isomorphismO∞ -O induces a morphism M(O∞) -M(O).

The operad O∞ is a free graded cyclic operad generated by O⊥, where O⊥ is
the quadratic co-operad dual to O (see [GJ]). One has

O⊥ = (O!{−1})∗,

where O! is the operad Koszul dual to O.
According to Remark 3.6.3, the modular operad M(O∞) considered without the

differential is freely generated by O⊥ = O{−1}∗. Together with the differential,
this gives the graph complex corresponding to the cyclic operad O.

The graph complex M(O∞) can be described in terms of the Feynman transform
of [GKM] as follows. The cyclic operad structure on O! defines on O!{−1} a
structure of an anticyclic operad (see [GKC], 2.11). Therefore by setting

(O!{−1})n(X) = 0 for n > 0

we can consider O!{−1} as a twisted modular operad with the twist given by the
dualizing cocycle (see [GKM], Section 4). Then the inverse Feynman transform
functor F−1 sends O!{−1} to the modular operad M(O∞).

7.5. BGRT conjecture

Following the analogy between Lie algebras and the algebras A and B of chord di-
agrams, Bar-Natan, Garoufalidis, Rozansky, and Thurston formulated in [BGRT]
a conjecture on the explicit form of the algebra isomorphism between certain mod-
ifications A′ and B′ of the algebras A and B (see below).2

2 According to Bar-Natan, the conjecture is now “multiply proven”, see [Mo] and several other
txts in preparation.
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As we saw in 7.1.1, the algebras A and B are isomorphic respectively to the
universal enveloping algebra (which is commutative in this case) and the symmetric
algebra of a certain Lie algebra in a tensor category.

This allows us to derive the BGRT conjecture from our Theorem 7.1.1, Propo-
sition 5.2.2, and Kontsevich’s theorem on Duflo-Kirillov isomorphism in arbitrary
rigid tensor category (see [K2], 8.3).

Denote by A′ and B′ the spaces generated by trivalent graphs similar to the
spaces A and B (see Sections 6.2 and 7.1.2) except that connected components
with no univalent vertices are allowed. According to Proposition 5.2.2 they can be
described in our notation as A′ = UM and B′ = S(LM ), and we obtain the BGRT
conjecture.

7.5.1. Theorem. There is a natural algebra isomorphism

B′ - A′

given by the Duflo-Kirillov formula. ¤
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