ALGEBRAIC GEOMETRY - EXERCISE 9

- 1. Prove that for $X = \operatorname{spec}(A)$ and for \mathfrak{m} the maximal ideal corresponding to $x \in X$, the ring homomorphism $A \to \mathcal{O}_{X,x}$ identifies $\mathcal{O}_{X,x}$ with the localization $A_{\mathfrak{m}}$.
- 2. Prove that the natural map

$$S^{-1}\Omega(A) \to \Omega(S^{-1}A)$$

is an isomorphism.

3. Prove the following prime avoidance lemma: in a commutative ring A, if an ideal \mathfrak{a} lies in the union $\bigcup_{i=1}^{n} \mathfrak{p}_i$ where \mathfrak{p}_i are prime for i > 2 then $\mathfrak{a} \subset \mathfrak{p}_i$ for some *i*.

I won't grade this; you can try proving it by induction in n or, if you are very busy, just read the proof in the Wikipedia.

- 4. A plane curve $C \subset \mathbb{A}^2$ is defined by the equation $y^2 = x(x-a)(x-b)$. When is the closure \overline{C} of C in \mathbb{P}^2 smooth?
- 5. Let X be a hypersurface in \mathbb{A}^n defined by the irreducible equation $f(x_1, \ldots, x_n) = 0$. Prove that X is smooth at $a = (a_1, \ldots, a_n)$ iff for some *i* the partial derivative $\frac{\partial f}{\partial x_i}$ does not vanish at *a*. *Hint:* use the proof of 8.4.3.
- 6. Conversely, let $\frac{\partial f}{\partial x_i}(x) = 0$ for all *i* for some $x \in X = V(f)$. Is x necessarily singular?
- 7. Complete the proof of 8.4.3: verify that the set of smooth points is open.