ALGEBRAIC GEOMETRY - EXERCISE 3

- 1. Prove that a topological space is irreducible iff any its nonempty open subset is dense.
- 2. Let X be a noetherian topological space. Assume that X is Hausdorff (any two different points have open neighborhoods with empty intersection). Prove that X is a finite set with the discrete topology.
- 3. Let X be a topological space, Z an irreducible subspace (as a topological space with the induced topology). Prove that the closure \overline{Z} of Z in X is also irreducible.
- 4. Let $Z \subset \mathbb{A}^3$ be given by the pair of equations $x^2 yz = 0, xz x = 0$. Show that Z has three irreducible components and find the corresponding prime ideals in the ring of regular functions.
- 5. Let A be a reduced finitely generated algebra over $k = \bar{k}$. Recall that the map $\operatorname{spec}_k(A) \to \operatorname{Spec}(A)$ carries an algebra homomorphism $x : A \to k$ to its kernel. Deduce from weak Nullstellensatz that the image of $\operatorname{spec}_k(A)$ is dense in $\operatorname{Spec}(A)$.
- 6. Let f : A → B be an algebra honmomorphism and let f*: spec_k(B) → spec_k(A) be the corresponding morphism of affine varieties. Let x ∈ spec_k(A) and let m ⊂ A be the corresponding maximal ideal. Identify f*⁻¹(x) with spec_k(B/f(m)B). What happens if B/f(m)B has nilpotents? Can this happen?