ALGEBRAIC GEOMETRY - EXERCISE 12

- 1. Let A be a commutative ring and let X = Spec(A) be the set of prime ideals of A endowed with the Zariski topology, see Notes, 2.6.4. Using the recipe of 10.2.1 (definition of the associated sheaf), define on Spec(A)a sheaf of commutative rings \mathcal{O}_X whose stalks at $\mathfrak{p} \in X$ are $A_\mathfrak{p}$ and the sections at $D(f) = \{\mathfrak{p} \not \ge f\}$ are A_f .
- 2. Let $X = \operatorname{spec}(A)$. Let M be an A-module and F a sheaf of \mathcal{O}_X -modules. Prove that any A-module homomorphism $f: M \to F(X)$ gives rise to a morphism of \mathcal{O}_X -modules $\widetilde{M} \to F$.
- 3. Let F be a coherent sheaf and $G \subset F$ a quasicoherent subsheaf. Prove that G is coherent.
- 4. Intersection of two quasicoherent subsheaves of a quasicoherent sheaf is also quasicoherent.
- 5. Let $f: X \to Y$ be an affine morphism. Verify that if F is a quasicoherent sheaf on X then $f_*(F)$ is also quasicoherent. Note: the claim holds for any morphism of algebraic varieties.