ALGEBRAIC GEOMETRY - EXERCISE 11

- 1. Prove that the sheafification of the constant presheaf with the value A assigns to U the set of locally constant functions $U \to A$.
- 2. Let $f: M \to N$ be a homomorphism of sheaves. Prove that the presheaf $U \mapsto \operatorname{Ker}(f_U: M(U) \to N(U))$ is a sheaf.
- 3. Let $X = S^1$ be the circle, \mathfrak{O} be the sheaf of continuous \mathbb{R} -valued functions on X and \mathbb{Z} be the constant sheaf with value \mathbb{Z} . Verify that the presheaf $U \mapsto \mathfrak{O}(U)/\mathbb{Z}(U)$ is not a sheaf.
- 4. Given a map $f: Y \to X$, define a presheaf S_f on X by the formula

$$S_f(U) = \{s : U \to Y | f \circ s = \mathrm{id}_U\}.$$

Is S_f a sheaf?

5. Complete the proof of the claim $\operatorname{Pic}(\mathbb{P}^n) = \mathbb{Z}$. Using the example $X = \mathbb{P}^n$, compare global sections of $L \otimes L'$ with the tensor product of global sections to see that the presheaf $U \mapsto L(U) \otimes_{\mathbb{O}(U)} L'(U)$ is not a sheaf in general.