ALGEBRAIC GEOMETRY - EXERCISE 10

- 1. Let A be an integrally closed domain and let G be a finite group of automorphisms of A. Denote $B = A^G$ the subring of invariant elements of A. Prove that
 - a. A is an integral extension of B.
 - b. B is integrally closed.
- 2. (continuation) In the special case A = k[x, y] and the group \mathbb{Z}_2 whose nontrivial element acts by $x \mapsto -x, y \mapsto -y$, prove that the resulting invariant subring B is not smooth. (Note that B is normal with $\dim(B) =$ 2; this is the simplest Kleinian singularity).
- 3. Prove that the mormalization of $k[x, y]/(y^2 x^3)$ is isomorphic to k[z]. 4. The same for $k[x, y]/(y^2 x^2(x 1))$.
- 5. Prove that $\mathbb{Z}[\sqrt{-5}]$ is the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{-5})$. Show that this ring is not UFD.