BASIC ALGEBRA - EXERCISE 5

1. Let $f: A \rightarrow B$ be a ring homomorphism. Prove that if J is a prime ideal in $B, f^{-1}(J)$ is a prime ideal in A.
2. Recall that for an ideal I of a commutative ring A its radical \sqrt{I} is defined as the set of $x \in A$ whose certain power x^{n} belongs to I. Prove that $I=\sqrt{I}$ iff I is an intersection of prime ideals.
3. Let N be the nilradical of A. Prove that the following properties are equivalent.

- A has only one prime ideal.
- Every element of A is either invertible or nilpotent.
$-A / N$ is a field.

4. Let A be a local ring and M a f.g. A-module. A collection of elements x_{1}, \ldots, x_{n} is called a minimal system of generators if

- The set x_{1}, \ldots, x_{n} generates M.
- Any proper subset of x_{1}, \ldots, x_{n} does not generate M.

Prove that any two minimal systems of generators have the same number of elements.
5. Prove that if $T \supset S$ are two multiplicative systems, then $T^{-1} M$ is the module of fractions of $S^{-1} M$ with respect to T.
6. Prove that if A has no zero divisors and $0 \notin S$ then $S^{-1} A$ has no zero divisors.

