BASIC ALGEBRA - EXERCISE 2

- 1. Let G be a group. Construct an isomorphism of the group ring $\mathbb{C}G$ with its opposite.
- 2. Construct an isomorphism of the Weyl algebra A as defined in Exercise 1 with its opposite.
- 3. Recall that the Weyl algebra $A = A_k$ is defined as the subring of $\operatorname{End}_k(k[x])$ of k-linear endomorphisms of k[x] generated by X (multiplication by x) and D (derivative). Naturally, k[x] becomes a left A_k -module.
 - a. Prove that, if char(k) = 0, k[x] is a simple A_k -module.
 - b. Prove that, if char(k) = 0, A_k has no finite dimensional (over k) modules. (Hint: use the properties of trace of a matrix).
- 4. Describe commutative semisimple rings.
- 5. Prove that any module over a semisimple ring is both projective and injective.
- 6. Prove that the ring $R = k[x]/(x^n)$ is injective as an *R*-module (k is a field).