RIEMANN SURFACES

10. Weeks 11-12: Riemann-Roch theorem and applications

10.1. Divisors. The notion of a divisor looks very simple. Let X be a compact Riemann surface. A divisor is an expression

$$
\sum_{x \in X} a_{x} x
$$

where the coefficients a_{x} are integers, and only a finite number of them are nonzero.

The set of all divisors on X forms an abelian group denoted $\operatorname{Div}(X)$. This is a free abelian group generated by the points of X.

Let \mathcal{M} denote the field of meromorphic functions on X. Any $0 \neq f \in \mathcal{M}$ defines a divisor

$$
(f)=\sum_{x} \operatorname{ord}_{x}(f) \cdot x
$$

where $\operatorname{ord}_{x}(f)$ is the degree of zero of f at x or the negative degree of pole at x. Such a divisor is called principal.

The group of classes of divisors $C l(X)$ is defined as the quotient of $\operatorname{Div}(X)$ by the subgroup of principal divisors. One has a short exact sequence

$$
0 \longrightarrow \mathcal{N}^{*} \longrightarrow \operatorname{Div}(X) \longrightarrow C l(X) \longrightarrow 0
$$

A degree of a divisor $\sum a_{x} x$ is $\sum_{x} a_{x} \in \mathbb{Z}$. The degree of a principal divisor is zero since any nonvanishing meromorphic function has any value the same number of times (taking into account multiplicities).

Therefore, one has a canonical map

$$
\operatorname{deg}: C l(X) \longrightarrow \mathbb{Z}
$$

A divisor of zeroes $f^{-1}(0)$ of $f \in \mathcal{M}-\mathbb{C}$ is defined as

$$
\sum_{x} \max \left(0, \operatorname{deg}_{x} f\right) x
$$

The class of $f^{-1}(0)$ in $C l(X)$ coincides with the class of the divisor of any other value $f^{-1}(c)$ including $c=\infty$.

Let ω be a nonzero meromorphic differential. We define its class

$$
(\omega)=\sum_{1} \operatorname{ord}_{x}(\omega) x
$$

since any two meromorphic differentials differ by a meromorphic function, one immediately deduces that the class of (ω) in $C l(X)$ does not depend on ω. It is called the canonical class of X and is denoted $K \in C l(X)$.

We say that a divisor $D \geq 0$ if $D=\sum a_{x} x$ with $a_{x} \geq 0$. This defines a partial order on $\operatorname{Div}(X)$.

Let $D \in \operatorname{Div}(X)$. We define

$$
L(D)=\{f \in \mathcal{M} \mid(f) \geq D\} .
$$

(We assume for convenience that (0) is greater than any divisor.) The dimension of $L(D)$ is called the dimension of D; it is denoted $r(D)$.

The following properties of the function r are easy.
10.1.1. Proposition. 1. $r(0)=1$.
2. If $D \geq D^{\prime}$ then $L(D) \subset L\left(D^{\prime}\right)$ so that $r(D) \leq r\left(D^{\prime}\right)$.
3. $\operatorname{deg}(D)>0$ implies $r(D)=0$.

Proof. $L(0)$ is the space of holomorphic functions. Since X is compact, $L(0)$ consists of constants.

The second claim is obvious. If $D>0, L(D)$ consists of holomorphic functions having at least one zero. Thus, $L(D)=0$.
10.1.2. Definition. Index of specialty $i(D)$ of a divisor D is the dimension of the space

$$
\Omega(D)=\{\omega \text { meromorphic } \mid(\omega) \geq D\} .
$$

10.1.3. Proposition. The numbers $r(D)$ and $i(D)$ depend only on the class of D in $\mathrm{Cl}(\mathrm{X})$. Moreover, one has

$$
i(D)=r(D-K)
$$

where K is the canonical class of X.
Proof. If D and D^{\prime} are equivalent, there exists $f \in \mathcal{N}^{*}$ such that $D^{\prime}=D+(f)$. Then the multiplication by f defines an isomorphism

$$
L(D) \longrightarrow L\left(D^{\prime}\right) .
$$

To check the second claim, let ω be a nonzero meromorphic differential on X.
Then the isomorphism $L(D-K) \rightarrow \Omega(D)$ is given by a multiplication by ω.

Finally, the space $\Omega(0)$ is the space of holomorphic differentials \mathcal{H}. Therefore, $i(0)=g$.

We are now ready to formulate the famous
10.1.4. Theorem (Riemann-Roch for Riemann surfaces). Let g be the genus of a compact Riemann surface X. Then for any divisor D one has

$$
r(-D)=\operatorname{deg}(D)-g+1+i(D)
$$

Let us just note that if $D=0$, the theorem just says that $i(0)=g$ which we already know.

10.2. Some applications.

10.2.1. Proposition. Let X be compact of genus zero. Then X is isomorphic to the Riemann sphere.

Proof. Chose a point $x \in X$ and apply RR to the divisor $D=x$. We get

$$
r(-D)=2+i(D)
$$

and $i(D)=0$ since there are no holomorphic forms on X. Thus, $r(-D)=2$, so that there exists a nonconstant meromorphic function on X having a simple pole at x. This function establishes an isomorphism of X with $\widehat{\mathbb{C}}$.
10.2.2. Proposition. $\operatorname{deg} K=2 g-2$.

Proof. We do not want to give a proof based on RR since this fact will be used in the proof. We just mention it for the reference in Gap Theorems below.
10.2.3. Theorem (Weierstrass gap theorem). Let X be compact of genus $g>0$ and let $x \in X$. There exist precisely g numbers

$$
1=n_{1}<n_{2}<\ldots<n_{g}<2 g
$$

such that there does not exist a holomorphic function on $X-x$ with a pole of order n_{i} at x.

A more general theorem will be proven. Let x_{1}, x_{2}, \ldots be an infinite sequence of points of X of genus $g>0$. Define the divisors $D_{k}=\sum_{i=1}^{k} x_{i}$. We will say that a number k is exceptional if $L\left(-D_{k}\right)=L\left(-D_{k-1}\right)$. Note that if $x_{i}=x$ a number k is exceptional if and only if there are no meromorphic functions on X with the only pole at x of order k.
10.2.4. Theorem (Noether gap theorem). There are precisely g exceptional integers for any sequence of points. $k=1$ is always exceptional and all exceptional integers are less than $2 g$.

Proof. The number 1 is always exceptional since $g>0$ and therefore there are no meromorphic functinos having one simple pole.

By RR

$$
r\left(-D_{k}\right)-r\left(-D_{k-1}\right)=1+i\left(D_{k}\right)-i\left(D_{k-1}\right) \leq 1
$$

Thus, the difference is always 0 or 1 , so the number of non-exceptinal values $\leq k$ is

$$
r\left(-D_{k}\right)-r\left(-D_{0}\right)=k+i\left(D_{k}\right)-i\left(D_{0}\right)
$$

or

$$
r\left(-D_{k}\right)-1=k+i\left(D_{k}\right)-g .
$$

If $k>2 g-2$ the degree of D_{k} is greater than $2 g-2$ which is the degree of the canonical divisor. Thus, $i\left(D_{k}\right)=0$ and we get $k-g$ non-exceptional integers $\leq k$. This means there are precisely g exceptional integers all they are all $\leq 2 g-1$.
10.3. $\mathbf{R R}$ in the positive case. We will prove first that RR holds for $D \geq 0$. The case $D=0$ being settled before, we may assume $D>0$.

Let $D=\sum_{i=1}^{m} n_{i} x_{i}$ where n_{i} are integers >0. Denote

$$
D^{+}=\sum_{i=1}^{m}\left(n_{i}+1\right) x_{i}
$$

and define

$$
\Omega_{0}\left(-D^{+}\right)
$$

as the space of meromorphic differentials of second kind (that is, with zero residues) whose divisor is $\geq-D^{+}$and having zero a-periods.

The spaces $L(-D)$ and $\Omega_{0}\left(-D^{+}\right)$are connected by the de Rham differential

$$
\begin{equation*}
d: L(-D) \longrightarrow \Omega_{0}\left(-D^{+}\right) \tag{1}
\end{equation*}
$$

since the differential of a meromorphic function gives automatically a differential having zero residues and zero a-periods s (as well as the b-periods). The kernel of d is one-dimensional (the constants), so we can calculate the dimension of $L(-D)$ studying the image of d.

We claim that $\operatorname{dim} \Omega_{0}\left(-D^{+}\right)=\sum n_{i}=\operatorname{deg}(D)$. In fact, choose disjoint coordinate neighborhoods near the points $x_{i} \in X$ for each $i=1, \ldots, m$. Recall that for each $2 \leq j \leq n_{i}+1$ a meromorphic differential $\tau_{x_{i}}^{(j)}$ was constructed, having an only pole of order j at x_{i}. Since the functions $\tau_{x_{i}}^{(j)}$ are linearly independent, we deduce that $\operatorname{dim} \Omega_{0}\left(-D^{+}\right) \geq \sum n_{i}=\operatorname{deg}(D)$. We will show that the functions $\tau_{x_{i}}^{(j)}$ actually span the whole $\Omega_{0}\left(-D^{+}\right)$. In fact, define a linear map

$$
\begin{equation*}
\Omega_{0}\left(-D^{+}\right) \longrightarrow \mathbb{C}^{\operatorname{deg}(D)} \tag{2}
\end{equation*}
$$

assigning to each meromorphic differential ω its Laurent coefficients in the chosen coordinate systems at x_{i} (note that -1 st coefficients vanish since ω is assumed to have no residues). The kernel of (2) consists of regular differentials having zero a-periods, therefore, the map (2) is injective.

The image of d in (1) coincides with the space of differentials having zero b periods. Thus, the image is given by g linear equations in $\Omega_{0}\left(-D^{+}\right)$which yields an inequality

$$
\begin{equation*}
r(-D)=\operatorname{dim} \operatorname{Im}(d)+1 \geq \operatorname{deg}(D)-g+1 \tag{3}
\end{equation*}
$$

called Riemann inequality (this is a weaker form of RR theorem).
In order to get a precise formula, we have to express the rank of the matrix composed of the coefficients of the g equations defining the image of the de Rham
differential in (1). If \widetilde{g} is actual value of the rank, we will have

$$
r(-D)=\operatorname{deg} D-\widetilde{g}+1
$$

iRecall that the space $\Omega_{0}\left(-D^{+}\right)$is spanned by the elements $\tau_{x_{i}}^{(j)}$ with $i=1, \ldots, m$ and $j=2, \ldots, n_{i}+1$ and that the image of d is define in $\Omega_{0}\left(-D^{+}\right)$by the conditions that the b-differentials vanish.

Recall the formula for the b-differentials of τ 's.

$$
\begin{equation*}
\int_{b_{j}} \tau_{x_{i}}^{(k)}=\frac{2 \pi i}{k-1} \alpha_{i, k-2}^{(j)} \tag{4}
\end{equation*}
$$

where the coefficients α are defined by the decomposition of the basis elements ζ_{j} of the space of holomorphic differentials dual to the a-basis, as follows

$$
\begin{equation*}
\zeta_{j}=\left(\sum_{s=0}^{\infty} \alpha_{i, s}^{(j)} z^{s}\right) d z \text { at } x_{i} \in X \tag{5}
\end{equation*}
$$

Thus, the equations defining our subspace of $\Omega_{0}\left(-D^{+}\right)$are given by the matrix with entries

$$
\begin{equation*}
\frac{2 \pi i}{k-1} \alpha_{i, k-2}^{(j)} \tag{6}
\end{equation*}
$$

where the upper index $j=1, \ldots, g$ denotes the row number, and the pair of lower indices $(i, k-2)$, with $i=1, \ldots, m$ and $k=2, \ldots, n_{i}+1$, denotes the column number.

Note that the coefficient $\frac{2 \pi i}{k-1}$ has no influence on the rank of the matrix. By formula (5) the transpose of this matrix defines a linear map

$$
T: \Omega(0) \rightarrow \mathbb{C}^{\operatorname{deg}(D)}
$$

assigning to any regular differential the Taylor coefficients of its decomposition near x_{i}. The kernel of T is the space $\Omega(D)$ so we finally have

$$
\widetilde{g}=g-i(D)
$$

or

$$
r(-D)=\operatorname{deg} D-g+1+i(D)
$$

Riemann-Roch formula is proven for nonnegative divisors.
10.4. Some consequences. Note that the positive part of RR is already sufficient to deduce that a compact genus 0 Riemann surface is isomorphic to the Riemann sphere. In fact, in the proof of the assertion we applied RR to $D=x$, a single point in X. This is a positive divisor.
10.4.1. Lemma. The degree of a canonical divisior is $2 g-2$.

Proof. If $g=0$, we have a Riemann sphere. Choose $\omega=d z$; this is a meromorphic divisor having an only pole at $z=\infty$ of degree 2 .

If $g>0 X$ admits a nonzero holomorphic differential, say, ω. Since ω is holomorphic, (ω) is positive. Apply RR to $D=(\omega)$. We get

$$
r(-D)=\operatorname{deg} D-g+1+i(D)
$$

We know that $r(-D)=i(0)$ and $i(D)=r(0)=1$, so

$$
\operatorname{deg} D=2 g-2
$$

10.5. Bootstraping. Note that the RR formula depends only on the class of D in $C l(X)$. Therefore, we get that RR holds for any D equivalent to a nonnegative divisor.

Another idea: the RR formula is invariant with respect to substitution $D \mapsto$ $K-D$. In fact, we know that $i(D)=r(D-K)$ so that if RR holds for D we have

$$
i(K-D)=\operatorname{deg}(D)+1-g+r(D-K)
$$

or
$r(-(K-D))=-\operatorname{deg}(D)-1+g+i(K-D)=\operatorname{deg}(K-D)+1-g+i(K-D)$.
Thus, we deduce that RR holds as well for any divisor equivalent to $K-D$ where D is nonnegative.

Note that if $r(-D)>0$ then there exists a meromorphic function f such that $(f) \geq-D$ which means that D is equivalent to $(f)+D \geq 0$, so in this case RR holds for D.

Symmetrically, if $i(D)>0$ then $K-D$ is equivalent to a nonnegative divisor. Thus, the only remaining case implies $r(-D)=i(D)=0$. It remains, therefore, to prove
10.5.1. Proposition. Assume neither D nor $K-D$ is equivalent to a nonnegative divisor. Then $\operatorname{deg}(D)=g-1$.

Proof. Write $D=D_{1}-D_{2}$ where D_{i} are positive and have disjoint supports.
We know $\operatorname{deg}(D)=\operatorname{deg}\left(D_{1}\right)-\operatorname{deg}\left(D_{2}\right)$. By RR applied to D_{1} we get

$$
r\left(-D_{1}\right) \geq \operatorname{deg}\left(D_{1}\right)+1-g=\operatorname{deg}(D)+\operatorname{deg}\left(D_{2}\right)+1-g .
$$

Let us assume $\operatorname{deg}(D)>g-1$. Then the above inequality yields

$$
r\left(-D_{1}\right)>\operatorname{deg}\left(D_{2}\right)
$$

In other words, the space of meromorphic functions f satisfying $(f)-D_{1} \geq 0$ has dimension strictly greater than $\operatorname{deg}\left(D_{2}\right)$.

Such functions are holomorphic at the support of D_{2} since the supports of D_{i} are disjoint. Therefore, the requirements $\operatorname{deg}_{x}(f) \geq \operatorname{deg}_{x}\left(D_{2}\right)$ give $\operatorname{deg}\left(D_{2}\right)$ linear
equation on f. Therefore, we deduce that there exists a meromorphic function f belonging to $L\left(-D_{1}+D_{2}\right)=L(-D)$. Contradiction - with the assumption $\operatorname{deg}(D)>g-1$. Therefore, we deduce that

$$
\operatorname{deg}(D) \leq g-1
$$

Appying the same reasoning to $K-D$ instead of D, we get the opposite inequality.
Proposition (and, therefore, the general form of $R R$) is proven.

10.6. Some more applications.

10.6.1. Genus one

Let X be a compact RS of genus one. We know that X admits a holomorphic differential. The corresponding divisor is nonnegative and has degree $2 g-2=0$, so it is trivial. Fix this differential ω; it is unique up to multiplicative constant and it has no zeroes. The integrals $\int_{a} \omega$ and $\int_{b} \omega$ generate a lattice L in \mathbb{C} and the expression

$$
f(x)=\int_{x_{0}}^{x} \omega
$$

define a holomorphic map from X to \mathbb{C} / L. It is obviously invertible since ω has no zeroes, so any genus 1 Riemann surface is an elliptic curve.

10.6.2. m-differentials

Take care: here is a small terminological problem: we say differentials instead of one-forms. Now we will define m-differentials which will not be m-forms!

A meromorphic one-form is defined by an assignment of an expression $f(z) d z$ to each local chart so that it changes properly under the change of coordinates: $f(z) d z \mapsto f(z(w)) z_{w}^{\prime} d w$. Similarly, a meromorphic m-differntial is an expression $f(z)(d z)^{m}$ which changes properly with the change of coordinates, so that

$$
f(z)(d z)^{m} \mapsto f(z(w))\left(z_{w}^{\prime}\right)^{m}(d w)^{m}
$$

Any two m-differentials differ by a meromorphic function, so they define the same element in $C l(X)$. It is clear that this element is just $m K$.

Assume $m>1$ and $D=m K$. Assume as well that $g>1$. We have by RR

$$
r(-m K)=m(2 g-2)-g+1+i(m K)=(2 m-1)(g-1)
$$

since $i(m K)=0$ - the divisor of a differential cannot be greater then the divisor of m-differential since $\operatorname{deg} K=2 g-2$ and $\operatorname{deg} m K=m(2 g-2)>2 g-2$.
10.7. More on Weierstrass gaps. Recall that for each $x \in X$ there are precisely g "gaps" between 1 and $2 g-1$. Thus, there are precisely g "non-gaps" between 1 and $2 g$, which we will denote

$$
1<\alpha_{1}<\ldots, \alpha_{g}=2 g
$$

10.7.1. Proposition. For any $j=1, \ldots, g$ one has

$$
\alpha_{j}+\alpha_{g-j} \geq 2 g
$$

Proof. Recall that the number of gaps and of non-gaps between 1 and $2 g$ is the same. Moreover, the sum of non-gaps is a non-gap. Thus, if $\alpha_{j}+\alpha_{g-j}$ were less than $2 g$ the same was true for $\alpha_{k}+\alpha_{g-j}$ for all $k<j$ which would give at least j non-gaps strictly between α_{g-j} and α_{g}. This would give altogether more non-gaps than one can have: $g-j+j+1>g$.
10.7.2. Corollary. If $\alpha_{1}=2$, then $\alpha_{k}=2 k$ for all $k=1, \ldots, d$.

In fact, if 2 is a non-gap, all even integers are non-gaps; since there are g even numbers between 1 and $2 g$, these are all non-gaps.
10.7.3. Lemma. If $\alpha_{1}>2$ than $\alpha_{j}+\alpha_{g-j}>2 n$ for some j.

Proof. If $g=2$ the only possibility is $(3,4)$ and there is nothing to prove.
If $g=3$ the possibilities are $(3,4,6)$ and $(3,5,6)$ and again there is nothing to prove.

Assume now $g \geq 4$. Assume that $\alpha_{j}+\alpha_{g-j}=2 g$ for all j. Consider the sequence $\beta_{j}=j \cdot \alpha_{1}$. The number of β_{j} in the range up to $2 g$ is strictly less than g; therefore, there exists an non-gap between the β 's. Let α be the first such non-gap, $\beta_{r}<\alpha<\beta_{r+1}$. Then $\alpha=\alpha_{r+1}, \alpha_{g-r-1}=2 g-\alpha, \alpha_{j}=j \alpha_{1}$ and $\alpha_{g-j}=2 g-j \alpha_{1}$ for $j \leq r$.

We deduce that

$$
\alpha_{1}+\alpha_{g-r-1}=\alpha_{1}+2 g-\alpha>2 g-r \alpha_{1}=\alpha_{g-r} .
$$

The latter means that we have found a non-gap $\alpha_{1}+\alpha_{g-r-1}$ greater than α_{g-r-1} but not among $\alpha_{g-j}, j \leq r$. Contradiction.
10.7.4. Corollary. One has

$$
\sum_{i=1}^{g-1} \alpha_{i} \geq g(g-1)
$$

with the equality iff $\alpha_{1}=2$.
Proof. The inequality follows from the inequality $\alpha_{j}+\alpha_{g-j} \geq 2 g$. If $\alpha_{1}=2$, the inequality becomes equality. Otherwise Lemma 10.7.3 ensures the inequality is strict.
10.8. Wronskian. Let f_{1}, \ldots, f_{n} be holomorphic functions in an open subset $U \subset X$. Define the Wronskian by the formula

$$
W\left(f_{1}, \ldots, f_{n}\right)=\operatorname{det}\left(f_{i}^{(j-1)}\right)
$$

where $f^{(j)}$ denotes j-th derivative of f.
Since f_{i} are holomorphic, their Wronskian is holomorphic as well. We want to know the degree of W at $x \in U$. It can be calculated as follows.

Let V be the vector space of functions generated by f_{i}. We define a sequence of nonnegative integers $d_{1}<d_{2}<\ldots<d_{n}$, depending on x, as follows.
10.8.1. Definition. The sequence $d_{1}<\ldots<d_{n}$ is defined uniquely by the condition

$$
\left\{d_{1}, \ldots, d_{n}\right\}=\left\{\operatorname{deg}_{x} f \mid f \in V\right\} .
$$

Note that the above definition contains a claim which needs to be proven. In fact, it is claimed that the number of different values of $\operatorname{deg}_{x}(f)$ coicides with $\operatorname{dim} V$. This is actually an easy exercise: choose $f_{1} \in V$ to have the minimal degree and let V^{+}be the space of functions in V whose degree is strictly greater than $\operatorname{deg}_{x} f_{1}$. Then obviously $V=\mathbb{C} \cdot f_{1} \oplus V^{+}$so $\operatorname{dim} V^{+}=\operatorname{dim} V-1$ and we get the claim by induction.
10.8.2. Lemma. One has

$$
\operatorname{deg}_{x} W=\sum_{i=1}^{n}\left(d_{i}-i+1\right)
$$

Proof. Linear transformation of f_{i} multiplies W by a constant, therefore, it does not change the degree of W. Therefore, we can assume that $\operatorname{deg}_{x} f_{i}=d_{i}$. Choose a coordinate near x so that x corresponds to $z=0$. Let

$$
f_{1}=z^{d_{1}}+a z^{\delta}+\text { higher terms }
$$

where $\delta>d_{1}$.
We will prove the lemma by induction in n. We have

$$
W=-\sum_{i=1}^{n}(-1)^{i} f_{i} W\left(f_{1}^{\prime}, \ldots, \widehat{f}_{i}^{\prime}, \ldots, f_{n}^{\prime}\right)
$$

The degree of i-th summand in the right-hand side is

$$
d_{i}+\delta-1+\sum_{j \neq 1, i}\left(d_{j}-1\right)-\sum_{j=1}^{n-2} j=\delta+\sum_{j=2}^{n} d_{j}-\sum_{j=1}^{n-1} j
$$

for $i \neq 1$ and

$$
d_{1}+\sum_{j=2}^{n} d_{j}-\sum_{j=1}^{n-1} j
$$

for $i=1$. We see that component corresponding to $i=1$ has degree strictly less than the rest of the summands, so it will give the degree of the sum.
10.8.3. Corollary. If f_{i} are linearly independent, $W\left(f_{1}, \ldots, f_{n}\right)$ is not identically zero.

In what follows we will call the weight of V at x the degree of the Wronskian at x. As we saw above it is given by the formula

$$
\mathrm{wt}_{x} V=\sum_{i=1}^{n}\left(d_{i}-i+1\right)
$$

10.9. Weierstrass points. We apply the constructions of the previous subsection to the space \mathcal{H} of holomorphic differentials.

In a coordinate neighrorhood U holomorphic one-forms can be written as $f(z) d z$ so one can directly apply the above constructions. Note that if one makes a change of coordinates $z=z(w)$, the differentials $\zeta_{i}=f_{i}(z) d z$ become $f_{i}\left(z(w) z_{w}^{\prime} d w\right.$ and one can easily see that the Wronskian changes to

$$
W(z(w))\left(z_{w}^{\prime}\right)^{m}
$$

where $m=\frac{g(g+1)}{2}$. Thus, the wronskian of a sytem of g one-forms is an m differential. That is the only difference.
10.9.1. Definition. A point $x \in X$ of a compact Riemann surface of genus g is called Weierstrass point if $\mathrm{wt}_{x} \mathcal{H} \neq 0$.

There are no Weierstrass points for $g \leq 1$: for $g=0$ there are no holomorphic differentials and for $g=1$ the only holomorphic differential has no zeroes.

In what follows we assume $g>1$.
10.9.2. Proposition. The point x is Weierstrass iff one of the following equivalent conditions holds.

- $i(g \cdot x)>0$.
- $r(-g \cdot x) \geq 2$.

Proof. $\mathrm{wt}_{x} \mathcal{H}>0$ means that there is a holomorphic differential ω with $\operatorname{deg}_{x} \omega>$ g. This means the first condition. The equivalence of the two conditions follows from RR applied to $D=g \cdot x$.

Note that the second condition is equivalent to saying that $\alpha_{1} \leq g$. Thus, the usage of Wronskian immediately implies that for the non-Weierstrass points one has $\alpha_{i}=g+i, i=1, \ldots, g$.

Let W be the Wronskian of a basis of holomorphic differentials. We have explained that W is an m-differential where $m=\frac{g(g+1)}{2}$. It is holomorphic, therefore it has precisely $\operatorname{deg} W=m(2 g-2)$ zeroes. Thus, we have

10.9.3. Proposition.

$$
\sum_{x \in X} \operatorname{deg}_{x} W=(g-1) g(g+1)
$$

10.9.4. Corollary. Let $g \geq 2$. There exist Weierstrass ponts.
10.9.5. Theorem. For each $x \in X$ one has $\operatorname{wt}_{x} \mathcal{H} \leq \frac{g(g-1)}{2}$. The equality happens only when the gap sequence starts with 2 .

Proof. Fix $x \in X$. Let $1<\alpha_{1}<\ldots<\alpha_{g}=2 g$ be the non-gap sequence and $1=n_{1}<\ldots<n_{g}$ be the gap sequence.

Recall that by RR we have

$$
r(-n x)-r(-(n-1) x)=1+i(n x)-i((n-1) x)
$$

which implies that n is a gap iff there are holomorphic differentials having degree $n-1$ at x. Thus, in the above notation

$$
\mathrm{wt}_{x} \mathcal{H}=\sum_{j=1}^{g}\left(d_{j}-(j-1)\right)=\sum_{j=1}^{g}\left(n_{j}-j\right) .
$$

Furthermore,

$$
\mathrm{wt}_{x} \mathcal{H}=\sum_{j=1}^{g}\left(n_{j}-j\right)=\sum_{j=g+1}^{2 g-1} j-\sum_{j=1}^{j-1} \alpha_{j} \leq \frac{3 g(g-1)}{2}-g(g-1)=\frac{g(g-1)}{2}
$$

by Corollary 10.7.4. By the same Corollary the equality holds only when $\alpha_{1}=$ 2.
10.9.6. Corollary. The number of Weierstrass points of a compact surface of genus g is at least $2 g+2$.

Home assignment.

1. A compact $\mathrm{RS} X$ is called hyperelliptic curve if it has a meromorphic function f having two poles. Let B be the number of branch points of the covering $f: X \rightarrow \widehat{\mathbb{C}}$. Express B through the genus g of X using RiemannHurwitz formula.

2 (cont. of 1.) Let $x \in X$ be a branch point for f. Find a meromorphic function on X having a double pole at x. Deduce, using Corollary 10.7.2, that x is a Weierstrass point of X with the non-gap sequence $2,4, \ldots$. Deduce from this that branch points are the only Weierstrass points in the hyperelliptic case.
3. Deduce that if the number of Weierstrass points on X is $2 g+2$ then X is hyperelliptic.
4. Let $F: X \longrightarrow X$ be a nontrivial automorphism of X. Choose $x \neq F(x)$ and let f be a meromorphic function with an only pole at x and $r:=\operatorname{deg}_{x} f \leq g+1$. Thus, the polar divisor of f is $r \cdot x$. Deduce that the function $h:=f-f \circ F$ has
at most $2 g+2$ zeroes. Deduce from this that F cannot have more than $2 g+2$ fixed points.
5. Assume now that X is not hyperelliptic. Prove that any automorphism of X is uniquely defined by the permutation of Weierstrass points it defines. This proves that the group of automorphisms of a non-hyperelliptic curve is finite.

Note. It is finite even for hyperelliptic curves of genus >1. Thus, however, requires a more careful analysis.

