RIEMANN SURFACES

10. WEEKS 11-12: RIEMANN-ROCH THEOREM AND APPLICATIONS

10.1. Divisors. The notion of a divisor looks very simple. Let X be a compact
Riemann surface. A divisor is an expression
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where the coefficients a, are integers, and only a finite number of them are
nonzero.

The set of all divisors on X forms an abelian group denoted Div(X). This is
a free abelian group generated by the points of X.

Let M denote the field of meromorphic functions on X. Any 0 # f € M defines
a divisor

(f) =) ordy(f) =

where ord,(f) is the degree of zero of f at x or the negative degree of pole at z.
Such a divisor is called principal.

The group of classes of divisors CI(X) is defined as the quotient of Div(X) by
the subgroup of principal divisors. One has a short exact sequence

0 —— M* — Div(X) — CI(X) — 0.

A degree of a divisor ) a,z is ) a, € Z. The degree of a principal divisor
is zero since any nonvanishing meromorphic function has any value the same
number of times (taking into account multiplicities).

Therefore, one has a canonical map

deg: Cl(X) — Z.
A divisor of zeroes f~1(0) of f € M — C is defined as

Z max(0, deg, f)z.

The class of f71(0) in CI(X) coincides with the class of the divisor of any other
value f~!(c) including ¢ = oo.
Let w be a nonzero meromorphic differential. We define its class

(w) = Z ord, (w)x.
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since any two meromorphic differentials differ by a meromorphic function, one
immediately deduces that the class of (w) in CI(X) does not depend on w. It is
called the canonical class of X and is denoted K € CI(X).

We say that a divisor D > 0 if D = ) a,x with a, > 0. This defines a partial
order on Div(X).

Let D € Div(X). We define

L(D) ={f e M|(f) = D}.

(We assume for convenience that (0) is greater than any divisor.) The dimension
of L(D) is called the dimension of D; it is denoted r(D).
The following properties of the function r are easy.

10.1.1. Proposition. L. r(0) = 1.

2. If D> D' then L(D) C L(D') so that (D) < r(D").

3. deg(D) > 0 implies r(D) = 0.
Proof. L(0) is the space of holomorphic functions. Since X is compact, L(0)
consists of constants.

The second claim is obvious. If D > 0, L(D) consists of holomorphic functions
having at least one zero. Thus, L(D) = 0. O

10.1.2. Definition. Index of specialty ¢(D) of a divisor D is the dimension of the
space
(D) = {w meromorphic |(w) > D}.

10.1.3. Proposition. The numbers r(D) and i(D) depend only on the class of D
in ClI(X). Moreover, one has

i(D)=r(D—-K)
where K is the canonical class of X.

Proof. If D and D’ are equivalent, there exists f € M* such that D' = D + (f).
Then the multiplication by f defines an isomorphism

L(D) — L(D").
To check the second claim, let w be a nonzero meromorphic differential on X.

Then the isomorphism L(D — K) — (D) is given by a multiplication by
w. 0

Finally, the space ©(0) is the space of holomorphic differentials H. Therefore,
i(0) = g.
We are now ready to formulate the famous

10.1.4. Theorem (Riemann-Roch for Riemann surfaces). Let g be the genus of
a compact Riemann surface X. Then for any divisor D one has

r(—D) =deg(D) — g+ 1+ i(D).
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Let us just note that if D = 0, the theorem just says that ¢(0) = g which we
already know.

10.2. Some applications.

10.2.1. Proposition. Let X be compact of genus zero. Then X s isomorphic to
the Riemann sphere.

Proof. Chose a point x € X and apply RR to the divisor D = x. We get
r(—D)=2+41i(D)
and i(D) = 0 since there are no holomorphic forms on X. Thus, r(—D) = 2, so

that there exists a nonconstant meromorphic function on X having a simple pole
at x. This function establishes an isomorphism of X with C. OJ

10.2.2. Proposition. deg K = 2g — 2.

Proof. We do not want to give a proof based on RR since this fact will be used
in the proof. We just mention it for the reference in Gap Theorems below. [

10.2.3. Theorem (Weierstrass gap theorem). Let X be compact of genus g > 0
and let v € X. There exist precisely g numbers

I=n1<ny<...<ng <2

such that there does not exist a holomorphic function on X — x with a pole of
order n; at x.

A more general theorem will be proven. Let x1, 2, ... be an infinite sequence
of points of X of genus g > 0. Define the divisors Dy = Zle x;. We will say
that a number k is exceptional if L(—Dy) = L(—Dy_1). Note that if x; = z a
number £ is exceptional if and only if there are no meromorphic functions on X
with the only pole at = of order k.

10.2.4. Theorem (Noether gap theorem). There are precisely g exceptional in-
tegers for any sequence of points. k =1 is always exceptional and all exceptional
integers are less than 2g.

Proof. The number 1 is always exceptional since g > 0 and therefore there are
no meromorphic functinos having one simple pole.
By RR
T(—Dk) — T’(—Dk_l) =1 + Z(Dk) - l(Dk_l) S 1.
Thus, the difference is always 0 or 1, so the number of non-exceptinal values < k
is

T(—Dk) — T(—DO) =k + Z(Dk) — Z(DO)
T(—Dk) —1=k + Z(Dk) —dg.
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If £ > 2g — 2 the degree of D, is greater than 29 — 2 which is the degree of the
canonical divisor. Thus, i(Dj) = 0 and we get k— g non-exceptional integers < k.
This means there are precisely g exceptional integers all they are all < 2¢g—1. [

10.3. RR in the positive case. We will prove first that RR holds for D > 0.
The case D = 0 being settled before, we may assume D > 0.
Let D = 221 n;x; where n; are integers > 0. Denote

i=1
and define
Qo(—D™)
as the space of meromorphic differentials of second kind (that is, with zero

residues) whose divisor is > —D™ and having zero a-periods.
The spaces L(—D) and Qy(—D™) are connected by the de Rham differential

(1) d: L(~D) — Qo(~D")

since the differential of a meromorphic function gives automatically a differential
having zero residues and zero a-periods s (as well as the b-periods). The kernel of
d is one-dimensional (the constants), so we can calculate the dimension of L(—D)
studying the image of d.

We claim that dim Qy(—D") = > n; = deg(D). In fact, choose disjoint coor-
dinate neighborhoods near the points x; € X for each ¢ = 1,...,m. Recall that
for each 2 < j < n; + 1 a meromorphic differential réf)
an only pole of order j at z;. Since the functions 79

was constructed, having

2/ are linearly independent,

we deduce that dim Qy(—D7*) > > n; = deg(D). We will show that the functions
Téf ) actually span the whole Qo(—D7). In fact, define a linear map

(2) QO(—D+) . Cdeg(D)

assigning to each meromorphic differential w its Laurent coefficients in the chosen
coordinate systems at z; (note that —1st coefficients vanish since w is assumed to
have no residues). The kernel of (2) consists of regular differentials having zero
a-periods, therefore, the map (2) is injective.

The image of d in (1) coincides with the space of differentials having zero b-
periods. Thus, the image is given by g linear equations in Q(—D%) which yields
an inequality

(3) r(—D) = dimIm(d) +1 > deg(D) — g + 1.

called Riemann inequality (this is a weaker form of RR theorem).
In order to get a precise formula, we have to express the rank of the matrix
composed of the coeflicients of the g equations defining the image of the de Rham



differential in (1). If g is actual value of the rank, we will have
r(—D)=degD — g+ 1.

iRecall that the space Qy(—D™) is spanned by the elements ngf) withi=1,...,m
and j = 2,...,n; + 1 and that the image of d is define in Qy(—D%) by the
conditions that the b-differentials vanish.

Recall the formula for the b-differentials of 7’s.

21 ()
() J = e

where the coefficients o are defined by the decomposition of the basis elements
¢; of the space of holomorphic differentials dual to the a-basis, as follows

(5) G = (Z a,gi,)zs)dz at x; € X.
s=0

Thus, the equations defining our subspace of Qo(—D™) are given by the matrix
with entries

271 ;
(6) P
where the upper index j = 1,. .., g denotes the row number, and the pair of lower

indices (i,k —2), withi =1,...,m and k = 2,...,n; + 1, denotes the column
number.

Note that the coefficient ,fi”l has no influence on the rank of the matrix. By
formula (5) the transpose of this matrix defines a linear map

T : Q(0) — Cee®)

assigning to any regular differential the Taylor coefficients of its decomposition
near x;. The kernel of T" is the space €2(D) so we finally have

g=yg—iD)
or
r(=D)=degD —g+1+i(D).

Riemann-Roch formula is proven for nonnegative divisors.

10.4. Some consequences. Note that the positive part of RR is already suf-
ficient to deduce that a compact genus 0 Riemann surface is isomorphic to the
Riemann sphere. In fact, in the proof of the assertion we applied RR to D = z,
a single point in X. This is a positive divisor.

10.4.1. Lemma. The degree of a canonical divisior is 2g — 2.
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Proof. If g = 0, we have a Riemann sphere. Choose w = dz; this is a meromorphic
divisor having an only pole at z = oo of degree 2.

If ¢ > 0 X admits a nonzero holomorphic differential, say, w. Since w is
holomorphic, (w) is positive. Apply RR to D = (w). We get

r(—D) =degD — g+ 1+ i(D)
We know that r(—D) =i(0) and (D) =r(0) =1, so
deg D = 2g — 2.
U

10.5. Bootstraping. Note that the RR formula depends only on the class of D
in C1(X). Therefore, we get that RR holds for any D equivalent to a nonnegative
divisor.

Another idea: the RR formula is invariant with respect to substitution D —
K — D. In fact, we know that i(D) = r(D — K) so that if RR holds for D we
have

i(K — D) =deg(D)+1—-g+r(D - K)
or
r(—(K —D)) = —deg(D)—14g+i(K — D) =deg(K —D)+1—g+i(K — D).

Thus, we deduce that RR holds as well for any divisor equivalent to K — D
where D is nonnegative.

Note that if r(—D) > 0 then there exists a meromorphic function f such that
(f) > —D which means that D is equivalent to (f) + D > 0, so in this case RR
holds for D.

Symmetrically, if ¢(D) > 0 then K — D is equivalent to a nonnegative divisor.
Thus, the only remaining case implies r(—D) = i(D) = 0. It remains, therefore,
to prove

10.5.1. Proposition. Assume neither D nor K — D is equivalent to a nonnegative
divisor. Then deg(D) = g — 1.

Proof. Write D = Dy — Dy where D; are positive and have disjoint supports.
We know deg(D) = deg(D;) — deg(Ds). By RR applied to D; we get
r(—=D1) = deg(D1) + 1 — g = deg(D) + deg(D2) + 1 —g.
Let us assume deg(D) > g — 1. Then the above inequality yields
r(—Dy) > deg(Ds).

In other words, the space of meromorphic functions f satisfying (f) — D; > 0
has dimension strictly greater than deg(Ds).

Such functions are holomorphic at the support of Dy since the supports of D;
are disjoint. Therefore, the requirements deg,(f) > deg,(D3) give deg(D5) linear
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equation on f. Therefore, we deduce that there exists a meromorphic function
f belonging to L(—D; + Dy) = L(—D). Contradiction — with the assumption
deg(D) > g — 1. Therefore, we deduce that

deg(D) < g —1.

Appying the same reasoning to K — D instead of D, we get the opposite inequality.
Proposition (and, therefore, the general form of RR) is proven. O

10.6. Some more applications.

10.6.1. Genus one

Let X be a compact RS of genus one. We know that X admits a holomorphic
differential. The corresponding divisor is nonnegative and has degree 2g —2 = 0,
so it is trivial. Fix this differential w; it is unique up to multiplicative constant
and it has no zeroes. The integrals fa w and fbw generate a lattice L in C and
the expression

define a holomorphic map from X to C/L. It is obviously invertible since w has
no zeroes, so any genus 1 Riemann surface is an elliptic curve.

10.6.2. m-differentials

Take care: here is a small terminological problem: we say differentials instead
of one-forms. Now we will define m-differentials which will not be m-forms!

A meromorphic one-form is defined by an assignment of an expression f(z)dz
to each local chart so that it changes properly under the change of coordinates:
f(2)dz — f(z(w))zl,dw. Similarly, a meromorphic m-differntial is an expression
f(2)(dz)™ which changes properly with the change of coordinates, so that

F)(dz)™ = f(2(w))(z,)" (dw)™.
Any two m-differentials differ by a meromorphic function, so they define the

same element in CI(X). It is clear that this element is just mK.
Assume m > 1 and D = mK. Assume as well that g > 1. We have by RR

r(—mK)=m(2g—2)—g+1+i(mK)=2m—1)(g—1)
since i(mK') = 0 — the divisor of a differential cannot be greater then the divisor

of m-differential since degKK = 2g — 2 and degmK = m(2g — 2) > 2g — 2.

10.7. More on Weierstrass gaps. Recall that for each x € X there are pre-
cisely g “gaps” between 1 and 2g — 1. Thus, there are precisely g “non-gaps”
between 1 and 2¢g, which we will denote

<o <... a4 =2g.
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10.7.1. Proposition. For any j =1,...,g one has

aj+agj 229

Proof. Recall that the number of gaps and of non-gaps between 1 and 2g is the
same. Moreover, the sum of non-gaps is a non-gap. Thus, if a; + a,_; were
less than 2g the same was true for oy + a4—; for all k& < 7 which would give at
least j non-gaps strictly between o,_; and ay. This would give altogether more
non-gaps than one can have: g —j+j5+1 > g. 0

10.7.2. Corollary. If ay = 2, then oy, = 2k for all k =1,...,d.

In fact, if 2 is a non-gap, all even integers are non-gaps; since there are g even
numbers between 1 and 2g, these are all non-gaps.

10.7.3. Lemma. If a; > 2 than o + ag—; > 2n for some j.

Proof. 1f g = 2 the only possibility is (3,4) and there is nothing to prove.

If g = 3 the possibilities are (3,4,6) and (3,5,6) and again there is nothing to
prove.

Assume now g > 4. Assume that a; + ay_; = 2¢g for all j. Consider the
sequence [3; = j - ag. The number of 3; in the range up to 2g is strictly less
than g; therefore, there exists an non-gap between the (3’s. Let a be the first
such non-gap, 3, < a < fBr41. Then a = o411, ag—r—1 = 29 — o, a; = jay and
ag_j =29 —joy for j <.

We deduce that

o+ Qg =0 +29—a > 29 —ra; = g,

The latter means that we have found a non-gap o; + a4, greater than ay_,_;
but not among o,_;, j < r. Contradiction. U

10.7.4. Corollary. One has

with the equality iff a; = 2.

Proof. The inequality follows from the inequality o; + ay—; > 2g. If oy = 2, the
inequality becomes equality. Otherwise Lemma 10.7.3 ensures the inequality is
strict. 0
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10.8. Wronskian. Let fi,..., f, be holomorphic functions in an open subset
U C X. Define the Wronskian by the formula

W(fi,...o fa) = det(f771),

where fU) denotes j—th derivative of f.

Since f; are holomorphic, their Wronskian is holomorphic as well. We want to
know the degree of W at x € U. It can be calculated as follows.

Let V' be the vector space of functions generated by f;. We define a sequence
of nonnegative integers d; < dy < ... < d,, depending on x, as follows.

10.8.1. Definition. The sequence d; < ... < d, is defined uniquely by the
condition

{dy,...,d,} ={deg, f|f € V}.

Note that the above definition contains a claim which needs to be proven. In
fact, it is claimed that the number of different values of deg,(f) coicides with
dim V. This is actually an easy exercise: choose f; € V to have the minimal
degree and let V' be the space of functions in V' whose degree is strictly greater
than deg, f1. Then obviously V.=C- f; & VT so dim V" = dimV — 1 and we
get the claim by induction.

10.8.2. Lemma. One has

deg, W => (d; —i+1).

1=1

Proof. Linear transformation of f; multiplies W by a constant, therefore, it does
not change the degree of W. Therefore, we can assume that deg, f; = d;. Choose
a coordinate near x so that x corresponds to z = 0. Let

fi = 2" + a2° + higher terms

where 6 > d;.
We will prove the lemma by induction in n. We have

n

W= =S Wy, Pl £L):

i=1

The degree of i-th summand in the right-hand side is

n—2 n n—1
di+0—1+> (di—1)=> j=0+> dj—Y j
J#Li J=1 J=2 J=1

for i # 1 and

n n—1
di+> di—> ]
j=2 j=1
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for © = 1. We see that component corresponding to ¢ = 1 has degree strictly less
than the rest of the summands, so it will give the degree of the sum. 0

10.8.3. Corollary. If f; are linearly independent, W (f1, ..., fn) is not identically
zero.

In what follows we will call the weight of V' at x the degree of the Wronskian
at . As we saw above it is given by the formula

wt, V=) (di—i+1).

i=1

10.9. Weierstrass points. We apply the constructions of the previous subsec-
tion to the space H of holomorphic differentials.

In a coordinate neighrorhood U holomorphic one-forms can be written as
f(2)dz so one can directly apply the above constructions. Note that if one
makes a change of coordinates z = z(w), the differentials (; = f;(2)dz become
fi(z(w)z!,dw and one can easily see that the Wronskian changes to

W (z(w))(z,)"

w

where m = g(g; U Thus, the wronskian of a sytem of ¢ one-forms is an m-

differential. That is the only difference.

10.9.1. Definition. A point x € X of a compact Riemann surface of genus g is
called Weierstrass point if wt, 3 # 0.

There are no Weierstrass points for g < 1: for g = 0 there are no holomorphic
differentials and for g = 1 the only holomorphic differential has no zeroes.
In what follows we assume g > 1.

10.9.2. Proposition. The point x s Weierstrass iff one of the following equiva-
lent conditions holds.

o i(g-x)>0.

o r(—g-x)>2.

Proof. wt, JH > 0 means that there is a holomorphic differential w with deg, w >
g. This means the first condition. The equivalence of the two conditions follows
from RR applied to D =g - x. ([l

Note that the second condition is equivalent to saying that oy < g. Thus, the
usage of Wronskian immediately implies that for the non-Weierstrass points one
hasa; =g+, 1=1,...,9.

Let W be the Wronskian of a basis of holomorphic differentials. We have
explained that W is an m-differential where m = @. It is holomorphic,

therefore it has precisely deg W = m(2g — 2) zeroes. Thus, we have
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10.9.3. Proposition.
> deg, W = (g—1)g(g+1).
zeX
10.9.4. Corollary. Let g > 2. There exist Weierstrass ponts.

10.9.5. Theorem. For each x € X one has wt, H < @. The equality happens
only when the gap sequence starts with 2.

Proof. Fix x € X. Let 1 < oy < ... < ayg = 2g be the non-gap sequence and
1=mn; <...<n, be the gap sequence.
Recall that by RR we have

r(—nz) —r(—(n—1)z) =1 +i(nz) —i((n — 1)z)

which implies that n is a gap iff there are holomorphic differentials having degree
n — 1 at x. Thus, in the above notation
g

wtoH=> (d;—(j—1) = (n;—j).

j=1 j=1
Furthermore,
g 2g9—1 7—1
. . 39(g — 1) 9(g — 1)
Wi =) (=)= 3 i-) s —glg— 1) = S5
j=1 Jj=g+1 7=1

by Corollary 10.7.4. By the same Corollary the equality holds only when a; =
2. O

10.9.6. Corollary. The number of Weierstrass points of a compact surface of
genus g s at least 2g + 2.

Home assignment.

1. A compact RS X is called hyperelliptic curve if it has a meromorphic
function f having two poles. Let B be the number of branch points of the
covering f : X — C. Express B through the genus g of X using Riemann-
Hurwitz formula.

2 (cont. of 1.) Let x € X be a branch point for f. Find a meromorphic
function on X having a double pole at x. Deduce, using Corollary 10.7.2, that x
is a Weierstrass point of X with the non-gap sequence 2,4, . ... Deduce from this
that branch points are the only Weierstrass points in the hyperelliptic case.

3. Deduce that if the number of Weierstrass points on X is 2¢g + 2 then X is
hyperelliptic.

4. Let F': X —— X be a nontrivial automorphism of X. Choose z # F(x) and
let f be a meromorphic function with an only pole at x and r :=deg, f < g+ 1.
Thus, the polar divisor of f is r-x. Deduce that the function h := f — f o F has
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at most 2g + 2 zeroes. Deduce from this that F' cannot have more than 2g + 2
fixed points.

5. Assume now that X is not hyperelliptic. Prove that any automorphism of
X is uniquely defined by the permutation of Weierstrass points it defines. This
proves that the group of automorphisms of a non-hyperelliptic curve is finite.

Note. It is finite even for hyperelliptic curves of genus > 1. Thus, however,
requires a more careful analysis.



