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10. Weeks 11–12: Riemann-Roch theorem and applications

10.1. Divisors. The notion of a divisor looks very simple. Let X be a compact
Riemann surface. A divisor is an expression∑

x∈X

axx

where the coefficients ax are integers, and only a finite number of them are
nonzero.

The set of all divisors on X forms an abelian group denoted Div(X). This is
a free abelian group generated by the points of X.

Let M denote the field of meromorphic functions on X. Any 0 6= f ∈M defines
a divisor

(f) =
∑
x

ordx(f) · x

where ordx(f) is the degree of zero of f at x or the negative degree of pole at x.
Such a divisor is called principal.

The group of classes of divisors Cl(X) is defined as the quotient of Div(X) by
the subgroup of principal divisors. One has a short exact sequence

0 - M∗ - Div(X) - Cl(X) - 0.

A degree of a divisor
∑
axx is

∑
x ax ∈ Z. The degree of a principal divisor

is zero since any nonvanishing meromorphic function has any value the same
number of times (taking into account multiplicities).

Therefore, one has a canonical map

deg : Cl(X) - Z.

A divisor of zeroes f−1(0) of f ∈M− C is defined as∑
x

max(0, degx f)x.

The class of f−1(0) in Cl(X) coincides with the class of the divisor of any other
value f−1(c) including c =∞.

Let ω be a nonzero meromorphic differential. We define its class

(ω) =
∑

ordx(ω)x.
1
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since any two meromorphic differentials differ by a meromorphic function, one
immediately deduces that the class of (ω) in Cl(X) does not depend on ω. It is
called the canonical class of X and is denoted K ∈ Cl(X).

We say that a divisor D ≥ 0 if D =
∑
axx with ax ≥ 0. This defines a partial

order on Div(X).
Let D ∈ Div(X). We define

L(D) = {f ∈M|(f) ≥ D}.
(We assume for convenience that (0) is greater than any divisor.) The dimension
of L(D) is called the dimension of D; it is denoted r(D).

The following properties of the function r are easy.

10.1.1. Proposition. 1. r(0) = 1.
2. If D ≥ D′ then L(D) ⊂ L(D′) so that r(D) ≤ r(D′).
3. deg(D) > 0 implies r(D) = 0.

Proof. L(0) is the space of holomorphic functions. Since X is compact, L(0)
consists of constants.

The second claim is obvious. If D > 0, L(D) consists of holomorphic functions
having at least one zero. Thus, L(D) = 0. �

10.1.2. Definition. Index of specialty i(D) of a divisor D is the dimension of the
space

Ω(D) = {ω meromorphic |(ω) ≥ D}.

10.1.3. Proposition. The numbers r(D) and i(D) depend only on the class of D
in Cl(X). Moreover, one has

i(D) = r(D −K)

where K is the canonical class of X.

Proof. If D and D′ are equivalent, there exists f ∈M∗ such that D′ = D + (f).
Then the multiplication by f defines an isomorphism

L(D) - L(D′).

To check the second claim, let ω be a nonzero meromorphic differential on X.
Then the isomorphism L(D − K) → Ω(D) is given by a multiplication by

ω. �

Finally, the space Ω(0) is the space of holomorphic differentials H. Therefore,
i(0) = g.

We are now ready to formulate the famous

10.1.4. Theorem (Riemann-Roch for Riemann surfaces). Let g be the genus of
a compact Riemann surface X. Then for any divisor D one has

r(−D) = deg(D)− g + 1 + i(D).
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Let us just note that if D = 0, the theorem just says that i(0) = g which we
already know.

10.2. Some applications.

10.2.1. Proposition. Let X be compact of genus zero. Then X is isomorphic to
the Riemann sphere.

Proof. Chose a point x ∈ X and apply RR to the divisor D = x. We get

r(−D) = 2 + i(D)

and i(D) = 0 since there are no holomorphic forms on X. Thus, r(−D) = 2, so
that there exists a nonconstant meromorphic function on X having a simple pole

at x. This function establishes an isomorphism of X with Ĉ. �

10.2.2. Proposition. degK = 2g − 2.

Proof. We do not want to give a proof based on RR since this fact will be used
in the proof. We just mention it for the reference in Gap Theorems below. �

10.2.3. Theorem (Weierstrass gap theorem). Let X be compact of genus g > 0
and let x ∈ X. There exist precisely g numbers

1 = n1 < n2 < . . . < ng < 2g

such that there does not exist a holomorphic function on X − x with a pole of
order ni at x.

A more general theorem will be proven. Let x1, x2, . . . be an infinite sequence
of points of X of genus g > 0. Define the divisors Dk =

∑k
i=1 xi. We will say

that a number k is exceptional if L(−Dk) = L(−Dk−1). Note that if xi = x a
number k is exceptional if and only if there are no meromorphic functions on X
with the only pole at x of order k.

10.2.4. Theorem (Noether gap theorem). There are precisely g exceptional in-
tegers for any sequence of points. k = 1 is always exceptional and all exceptional
integers are less than 2g.

Proof. The number 1 is always exceptional since g > 0 and therefore there are
no meromorphic functinos having one simple pole.

By RR
r(−Dk)− r(−Dk−1) = 1 + i(Dk)− i(Dk−1) ≤ 1.

Thus, the difference is always 0 or 1, so the number of non-exceptinal values ≤ k
is

r(−Dk)− r(−D0) = k + i(Dk)− i(D0)

or
r(−Dk)− 1 = k + i(Dk)− g.
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If k > 2g − 2 the degree of Dk is greater than 2g − 2 which is the degree of the
canonical divisor. Thus, i(Dk) = 0 and we get k−g non-exceptional integers ≤ k.
This means there are precisely g exceptional integers all they are all ≤ 2g−1. �

10.3. RR in the positive case. We will prove first that RR holds for D ≥ 0.
The case D = 0 being settled before, we may assume D > 0.

Let D =
∑m

i=1 nixi where ni are integers > 0. Denote

D+ =
m∑
i=1

(ni + 1)xi

and define

Ω0(−D+)

as the space of meromorphic differentials of second kind (that is, with zero
residues) whose divisor is ≥ −D+ and having zero a-periods.

The spaces L(−D) and Ω0(−D+) are connected by the de Rham differential

(1) d : L(−D) - Ω0(−D+)

since the differential of a meromorphic function gives automatically a differential
having zero residues and zero a-periods s (as well as the b-periods). The kernel of
d is one-dimensional (the constants), so we can calculate the dimension of L(−D)
studying the image of d.

We claim that dim Ω0(−D+) =
∑
ni = deg(D). In fact, choose disjoint coor-

dinate neighborhoods near the points xi ∈ X for each i = 1, . . . ,m. Recall that

for each 2 ≤ j ≤ ni + 1 a meromorphic differential τ
(j)
xi was constructed, having

an only pole of order j at xi. Since the functions τ
(j)
xi are linearly independent,

we deduce that dim Ω0(−D+) ≥
∑
ni = deg(D). We will show that the functions

τ
(j)
xi actually span the whole Ω0(−D+). In fact, define a linear map

(2) Ω0(−D+) - Cdeg(D)

assigning to each meromorphic differential ω its Laurent coefficients in the chosen
coordinate systems at xi (note that −1st coefficients vanish since ω is assumed to
have no residues). The kernel of (2) consists of regular differentials having zero
a-periods, therefore, the map (2) is injective.

The image of d in (1) coincides with the space of differentials having zero b-
periods. Thus, the image is given by g linear equations in Ω0(−D+) which yields
an inequality

(3) r(−D) = dim Im(d) + 1 ≥ deg(D)− g + 1.

called Riemann inequality (this is a weaker form of RR theorem).
In order to get a precise formula, we have to express the rank of the matrix

composed of the coefficients of the g equations defining the image of the de Rham
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differential in (1). If g̃ is actual value of the rank, we will have

r(−D) = degD − g̃ + 1.

iRecall that the space Ω0(−D+) is spanned by the elements τ
(j)
xi with i = 1, . . . ,m

and j = 2, . . . , ni + 1 and that the image of d is define in Ω0(−D+) by the
conditions that the b-differentials vanish.

Recall the formula for the b-differentials of τ ’s.

(4)

∫
bj

τ (k)
xi

=
2πi

k − 1
α

(j)
i,k−2,

where the coefficients α are defined by the decomposition of the basis elements
ζj of the space of holomorphic differentials dual to the a-basis, as follows

(5) ζj = (
∞∑
s=0

α
(j)
i,s z

s)dz at xi ∈ X.

Thus, the equations defining our subspace of Ω0(−D+) are given by the matrix
with entries

(6)
2πi

k − 1
α

(j)
i,k−2,

where the upper index j = 1, . . . , g denotes the row number, and the pair of lower
indices (i, k − 2), with i = 1, . . . ,m and k = 2, . . . , ni + 1, denotes the column
number.

Note that the coefficient 2πi
k−1

has no influence on the rank of the matrix. By
formula (5) the transpose of this matrix defines a linear map

T : Ω(0)→ Cdeg(D)

assigning to any regular differential the Taylor coefficients of its decomposition
near xi. The kernel of T is the space Ω(D) so we finally have

g̃ = g − i(D)

or

r(−D) = degD − g + 1 + i(D).

Riemann-Roch formula is proven for nonnegative divisors.

10.4. Some consequences. Note that the positive part of RR is already suf-
ficient to deduce that a compact genus 0 Riemann surface is isomorphic to the
Riemann sphere. In fact, in the proof of the assertion we applied RR to D = x,
a single point in X. This is a positive divisor.

10.4.1. Lemma. The degree of a canonical divisior is 2g − 2.
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Proof. If g = 0, we have a Riemann sphere. Choose ω = dz; this is a meromorphic
divisor having an only pole at z =∞ of degree 2.

If g > 0 X admits a nonzero holomorphic differential, say, ω. Since ω is
holomorphic, (ω) is positive. Apply RR to D = (ω). We get

r(−D) = degD − g + 1 + i(D)

We know that r(−D) = i(0) and i(D) = r(0) = 1, so

degD = 2g − 2.

�

10.5. Bootstraping. Note that the RR formula depends only on the class of D
in Cl(X). Therefore, we get that RR holds for any D equivalent to a nonnegative
divisor.

Another idea: the RR formula is invariant with respect to substitution D 7→
K − D. In fact, we know that i(D) = r(D − K) so that if RR holds for D we
have

i(K −D) = deg(D) + 1− g + r(D −K)

or

r(−(K −D)) = −deg(D)− 1 + g+ i(K −D) = deg(K −D) + 1− g+ i(K −D).

Thus, we deduce that RR holds as well for any divisor equivalent to K − D
where D is nonnegative.

Note that if r(−D) > 0 then there exists a meromorphic function f such that
(f) ≥ −D which means that D is equivalent to (f) +D ≥ 0, so in this case RR
holds for D.

Symmetrically, if i(D) > 0 then K −D is equivalent to a nonnegative divisor.
Thus, the only remaining case implies r(−D) = i(D) = 0. It remains, therefore,
to prove

10.5.1. Proposition. Assume neither D nor K−D is equivalent to a nonnegative
divisor. Then deg(D) = g − 1.

Proof. Write D = D1 −D2 where Di are positive and have disjoint supports.
We know deg(D) = deg(D1)− deg(D2). By RR applied to D1 we get

r(−D1) ≥ deg(D1) + 1− g = deg(D) + deg(D2) + 1− g.
Let us assume deg(D) > g − 1. Then the above inequality yields

r(−D1) > deg(D2).

In other words, the space of meromorphic functions f satisfying (f) − D1 ≥ 0
has dimension strictly greater than deg(D2).

Such functions are holomorphic at the support of D2 since the supports of Di

are disjoint. Therefore, the requirements degx(f) ≥ degx(D2) give deg(D2) linear



7

equation on f . Therefore, we deduce that there exists a meromorphic function
f belonging to L(−D1 + D2) = L(−D). Contradiction — with the assumption
deg(D) > g − 1. Therefore, we deduce that

deg(D) ≤ g − 1.

Appying the same reasoning to K−D instead of D, we get the opposite inequality.
Proposition (and, therefore, the general form of RR) is proven. �

10.6. Some more applications.

10.6.1. Genus one
Let X be a compact RS of genus one. We know that X admits a holomorphic

differential. The corresponding divisor is nonnegative and has degree 2g− 2 = 0,
so it is trivial. Fix this differential ω; it is unique up to multiplicative constant
and it has no zeroes. The integrals

∫
a
ω and

∫
b
ω generate a lattice L in C and

the expression

f(x) =

∫ x

x0

ω

define a holomorphic map from X to C/L. It is obviously invertible since ω has
no zeroes, so any genus 1 Riemann surface is an elliptic curve.

10.6.2. m-differentials
Take care: here is a small terminological problem: we say differentials instead

of one-forms. Now we will define m-differentials which will not be m-forms!
A meromorphic one-form is defined by an assignment of an expression f(z)dz

to each local chart so that it changes properly under the change of coordinates:
f(z)dz 7→ f(z(w))z′wdw. Similarly, a meromorphic m-differntial is an expression
f(z)(dz)m which changes properly with the change of coordinates, so that

f(z)(dz)m 7→ f(z(w))(z′w)m(dw)m.

Any two m-differentials differ by a meromorphic function, so they define the
same element in Cl(X). It is clear that this element is just mK.

Assume m > 1 and D = mK. Assume as well that g > 1. We have by RR

r(−mK) = m(2g − 2)− g + 1 + i(mK) = (2m− 1)(g − 1)

since i(mK) = 0 — the divisor of a differential cannot be greater then the divisor
of m-differential since degK = 2g − 2 and degmK = m(2g − 2) > 2g − 2.

10.7. More on Weierstrass gaps. Recall that for each x ∈ X there are pre-
cisely g “gaps” between 1 and 2g − 1. Thus, there are precisely g “non-gaps”
between 1 and 2g, which we will denote

1 < α1 < . . . , αg = 2g.
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10.7.1. Proposition. For any j = 1, . . . , g one has

αj + αg−j ≥ 2g

.

Proof. Recall that the number of gaps and of non-gaps between 1 and 2g is the
same. Moreover, the sum of non-gaps is a non-gap. Thus, if αj + αg−j were
less than 2g the same was true for αk + αg−j for all k < j which would give at
least j non-gaps strictly between αg−j and αg. This would give altogether more
non-gaps than one can have: g − j + j + 1 > g. �

10.7.2. Corollary. If α1 = 2, then αk = 2k for all k = 1, . . . , d.

In fact, if 2 is a non-gap, all even integers are non-gaps; since there are g even
numbers between 1 and 2g, these are all non-gaps.

10.7.3. Lemma. If α1 > 2 than αj + αg−j > 2n for some j.

Proof. If g = 2 the only possibility is (3, 4) and there is nothing to prove.
If g = 3 the possibilities are (3, 4, 6) and (3, 5, 6) and again there is nothing to

prove.
Assume now g ≥ 4. Assume that αj + αg−j = 2g for all j. Consider the

sequence βj = j · α1. The number of βj in the range up to 2g is strictly less
than g; therefore, there exists an non-gap between the β’s. Let α be the first
such non-gap, βr < α < βr+1. Then α = αr+1, αg−r−1 = 2g − α, αj = jα1 and
αg−j = 2g − jα1 for j ≤ r.

We deduce that

α1 + αg−r−1 = α1 + 2g − α > 2g − rα1 = αg−r.

The latter means that we have found a non-gap α1 +αg−r−1 greater than αg−r−1

but not among αg−j, j ≤ r. Contradiction. �

10.7.4. Corollary. One has

g−1∑
i=1

αi ≥ g(g − 1),

with the equality iff α1 = 2.

Proof. The inequality follows from the inequality αj + αg−j ≥ 2g. If α1 = 2, the
inequality becomes equality. Otherwise Lemma 10.7.3 ensures the inequality is
strict. �
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10.8. Wronskian. Let f1, . . . , fn be holomorphic functions in an open subset
U ⊂ X. Define the Wronskian by the formula

W (f1, . . . , fn) = det(f
(j−1)
i ),

where f (j) denotes j−th derivative of f .
Since fi are holomorphic, their Wronskian is holomorphic as well. We want to

know the degree of W at x ∈ U . It can be calculated as follows.
Let V be the vector space of functions generated by fi. We define a sequence

of nonnegative integers d1 < d2 < . . . < dn, depending on x, as follows.

10.8.1. Definition. The sequence d1 < . . . < dn is defined uniquely by the
condition

{d1, . . . , dn} = {degx f |f ∈ V }.

Note that the above definition contains a claim which needs to be proven. In
fact, it is claimed that the number of different values of degx(f) coicides with
dimV . This is actually an easy exercise: choose f1 ∈ V to have the minimal
degree and let V + be the space of functions in V whose degree is strictly greater
than degx f1. Then obviously V = C · f1 ⊕ V + so dimV + = dimV − 1 and we
get the claim by induction.

10.8.2. Lemma. One has

degxW =
n∑
i=1

(di − i+ 1).

Proof. Linear transformation of fi multiplies W by a constant, therefore, it does
not change the degree of W . Therefore, we can assume that degx fi = di. Choose
a coordinate near x so that x corresponds to z = 0. Let

f1 = zd1 + azδ + higher terms

where δ > d1.
We will prove the lemma by induction in n. We have

W = −
n∑
i=1

(−1)ifiW (f ′1, . . . , f̂
′
i , . . . , f

′
n).

The degree of i-th summand in the right-hand side is

di + δ − 1 +
∑
j 6=1,i

(dj − 1)−
n−2∑
j=1

j = δ +
n∑
j=2

dj −
n−1∑
j=1

j

for i 6= 1 and

d1 +
n∑
j=2

dj −
n−1∑
j=1

j



10

for i = 1. We see that component corresponding to i = 1 has degree strictly less
than the rest of the summands, so it will give the degree of the sum. �

10.8.3. Corollary. If fi are linearly independent, W (f1, . . . , fn) is not identically
zero.

In what follows we will call the weight of V at x the degree of the Wronskian
at x. As we saw above it is given by the formula

wtx V =
n∑
i=1

(di − i+ 1).

10.9. Weierstrass points. We apply the constructions of the previous subsec-
tion to the space H of holomorphic differentials.

In a coordinate neighrorhood U holomorphic one-forms can be written as
f(z)dz so one can directly apply the above constructions. Note that if one
makes a change of coordinates z = z(w), the differentials ζi = fi(z)dz become
fi(z(w)z′wdw and one can easily see that the Wronskian changes to

W (z(w))(z′w)m

where m = g(g+1)
2

. Thus, the wronskian of a sytem of g one-forms is an m-
differential. That is the only difference.

10.9.1. Definition. A point x ∈ X of a compact Riemann surface of genus g is
called Weierstrass point if wtx H 6= 0.

There are no Weierstrass points for g ≤ 1: for g = 0 there are no holomorphic
differentials and for g = 1 the only holomorphic differential has no zeroes.

In what follows we assume g > 1.

10.9.2. Proposition. The point x is Weierstrass iff one of the following equiva-
lent conditions holds.

• i(g · x) > 0.
• r(−g · x) ≥ 2.

Proof. wtx H > 0 means that there is a holomorphic differential ω with degx ω >
g. This means the first condition. The equivalence of the two conditions follows
from RR applied to D = g · x. �

Note that the second condition is equivalent to saying that α1 ≤ g. Thus, the
usage of Wronskian immediately implies that for the non-Weierstrass points one
has αi = g + i, i = 1, . . . , g.

Let W be the Wronskian of a basis of holomorphic differentials. We have

explained that W is an m-differential where m = g(g+1)
2

. It is holomorphic,
therefore it has precisely degW = m(2g − 2) zeroes. Thus, we have
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10.9.3. Proposition. ∑
x∈X

degxW = (g − 1)g(g + 1).

10.9.4. Corollary. Let g ≥ 2. There exist Weierstrass ponts.

10.9.5. Theorem. For each x ∈ X one has wtx H ≤ g(g−1)
2

. The equality happens
only when the gap sequence starts with 2.

Proof. Fix x ∈ X. Let 1 < α1 < . . . < αg = 2g be the non-gap sequence and
1 = n1 < . . . < ng be the gap sequence.

Recall that by RR we have

r(−nx)− r(−(n− 1)x) = 1 + i(nx)− i((n− 1)x)

which implies that n is a gap iff there are holomorphic differentials having degree
n− 1 at x. Thus, in the above notation

wtx H =

g∑
j=1

(dj − (j − 1)) =

g∑
j=1

(nj − j).

Furthermore,

wtx H =

g∑
j=1

(nj − j) =

2g−1∑
j=g+1

j −
j−1∑
j=1

αj ≤
3g(g − 1)

2
− g(g − 1) =

g(g − 1)

2

by Corollary 10.7.4. By the same Corollary the equality holds only when α1 =
2. �

10.9.6. Corollary. The number of Weierstrass points of a compact surface of
genus g is at least 2g + 2.

Home assignment.
1. A compact RS X is called hyperelliptic curve if it has a meromorphic

function f having two poles. Let B be the number of branch points of the

covering f : X → Ĉ. Express B through the genus g of X using Riemann-
Hurwitz formula.

2 (cont. of 1.) Let x ∈ X be a branch point for f . Find a meromorphic
function on X having a double pole at x. Deduce, using Corollary 10.7.2, that x
is a Weierstrass point of X with the non-gap sequence 2, 4, . . .. Deduce from this
that branch points are the only Weierstrass points in the hyperelliptic case.

3. Deduce that if the number of Weierstrass points on X is 2g + 2 then X is
hyperelliptic.

4. Let F : X - X be a nontrivial automorphism of X. Choose x 6= F (x) and
let f be a meromorphic function with an only pole at x and r := degx f ≤ g+ 1.
Thus, the polar divisor of f is r · x. Deduce that the function h := f − f ◦F has
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at most 2g + 2 zeroes. Deduce from this that F cannot have more than 2g + 2
fixed points.

5. Assume now that X is not hyperelliptic. Prove that any automorphism of
X is uniquely defined by the permutation of Weierstrass points it defines. This
proves that the group of automorphisms of a non-hyperelliptic curve is finite.

Note. It is finite even for hyperelliptic curves of genus > 1. Thus, however,
requires a more careful analysis.


