RIEMANN SURFACES

10. Weeks 11–12: Riemann-Roch theorem and applications

10.1. **Divisors.** The notion of a divisor looks very simple. Let X be a compact Riemann surface. A divisor is an expression

$$\sum_{x \in X} a_x x$$

where the coefficients a_x are integers, and only a finite number of them are nonzero.

The set of all divisors on X forms an abelian group denoted Div(X). This is a free abelian group generated by the points of X.

Let \mathcal{M} denote the field of meromorphic functions on X. Any $0 \neq f \in \mathcal{M}$ defines a divisor

$$(f) = \sum_{x} \operatorname{ord}_{x}(f) \cdot x$$

where $\operatorname{ord}_x(f)$ is the degree of zero of f at x or the negative degree of pole at x. Such a divisor is called *principal*.

The group of classes of divisors Cl(X) is defined as the quotient of Div(X) by the subgroup of principal divisors. One has a short exact sequence

$$0 \longrightarrow \mathcal{M}^* \longrightarrow Div(X) \longrightarrow Cl(X) \longrightarrow 0.$$

A degree of a divisor $\sum a_x x$ is $\sum_x a_x \in \mathbb{Z}$. The degree of a principal divisor is zero since any nonvanishing meromorphic function has any value the same number of times (taking into account multiplicities).

Therefore, one has a canonical map

$$\deg: Cl(X) \longrightarrow \mathbb{Z}.$$

A divisor of zeroes $f^{-1}(0)$ of $f \in \mathcal{M} - \mathbb{C}$ is defined as

$$\sum_{x} \max(0, \deg_x f) x.$$

The class of $f^{-1}(0)$ in Cl(X) coincides with the class of the divisor of any other value $f^{-1}(c)$ including $c = \infty$.

Let ω be a nonzero meromorphic differential. We define its class

$$(\omega) = \sum_{1} \operatorname{ord}_x(\omega) x.$$

since any two meromorphic differentials differ by a meromorphic function, one immediately deduces that the class of (ω) in Cl(X) does not depend on ω . It is called the canonical class of X and is denoted $K \in Cl(X)$.

We say that a divisor $D \ge 0$ if $D = \sum a_x x$ with $a_x \ge 0$. This defines a partial order on Div(X).

Let $D \in Div(X)$. We define

$$L(D) = \{ f \in \mathcal{M} | (f) \ge D \}.$$

(We assume for convenience that (0) is greater than any divisor.) The dimension of L(D) is called *the dimension of D*; it is denoted r(D).

The following properties of the function r are easy.

10.1.1. **Proposition.** 1. r(0) = 1. 2. If $D \ge D'$ then $L(D) \subset L(D')$ so that $r(D) \le r(D')$. 3. $\deg(D) > 0$ implies r(D) = 0.

Proof. L(0) is the space of holomorphic functions. Since X is compact, L(0) consists of constants.

The second claim is obvious. If D > 0, L(D) consists of holomorphic functions having at least one zero. Thus, L(D) = 0.

10.1.2. **Definition.** Index of specialty i(D) of a divisor D is the dimension of the space

$$\Omega(D) = \{ \omega \text{ meromorphic } | (\omega) \ge D \}.$$

10.1.3. **Proposition.** The numbers r(D) and i(D) depend only on the class of D in Cl(X). Moreover, one has

$$i(D) = r(D - K)$$

where K is the canonical class of X.

Proof. If D and D' are equivalent, there exists $f \in \mathcal{M}^*$ such that D' = D + (f). Then the multiplication by f defines an isomorphism

$$L(D) \longrightarrow L(D').$$

To check the second claim, let ω be a nonzero meromorphic differential on X.

Then the isomorphism $L(D - K) \rightarrow \Omega(D)$ is given by a multiplication by ω .

Finally, the space $\Omega(0)$ is the space of holomorphic differentials \mathcal{H} . Therefore, i(0) = g.

We are now ready to formulate the famous

10.1.4. **Theorem** (Riemann-Roch for Riemann surfaces). Let g be the genus of a compact Riemann surface X. Then for any divisor D one has

$$r(-D) = \deg(D) - g + 1 + i(D).$$

10.2. Some applications.

10.2.1. **Proposition.** Let X be compact of genus zero. Then X is isomorphic to the Riemann sphere.

Proof. Chose a point $x \in X$ and apply RR to the divisor D = x. We get

$$r(-D) = 2 + i(D)$$

and i(D) = 0 since there are no holomorphic forms on X. Thus, r(-D) = 2, so that there exists a nonconstant meromorphic function on X having a simple pole at x. This function establishes an isomorphism of X with $\widehat{\mathbb{C}}$.

10.2.2. **Proposition.** deg K = 2g - 2.

Proof. We do not want to give a proof based on RR since this fact will be used in the proof. We just mention it for the reference in Gap Theorems below. \Box

10.2.3. **Theorem** (Weierstrass gap theorem). Let X be compact of genus g > 0and let $x \in X$. There exist precisely g numbers

$$1 = n_1 < n_2 < \ldots < n_q < 2g$$

such that there does not exist a holomorphic function on X - x with a pole of order n_i at x.

A more general theorem will be proven. Let x_1, x_2, \ldots be an infinite sequence of points of X of genus g > 0. Define the divisors $D_k = \sum_{i=1}^k x_i$. We will say that a number k is exceptional if $L(-D_k) = L(-D_{k-1})$. Note that if $x_i = x$ a number k is exceptional if and only if there are no meromorphic functions on X with the only pole at x of order k.

10.2.4. **Theorem** (Noether gap theorem). There are precisely g exceptional integers for any sequence of points. k = 1 is always exceptional and all exceptional integers are less than 2g.

Proof. The number 1 is always exceptional since g > 0 and therefore there are no meromorphic functions having one simple pole.

By RR

$$r(-D_k) - r(-D_{k-1}) = 1 + i(D_k) - i(D_{k-1}) \le 1.$$

Thus, the difference is always 0 or 1, so the number of non-exceptinal values $\leq k$ is

$$r(-D_k) - r(-D_0) = k + i(D_k) - i(D_0)$$

or

$$r(-D_k) - 1 = k + i(D_k) - g.$$

If k > 2g - 2 the degree of D_k is greater than 2g - 2 which is the degree of the canonical divisor. Thus, $i(D_k) = 0$ and we get k - g non-exceptional integers $\leq k$. This means there are precisely g exceptional integers all they are all $\leq 2g - 1$. \Box

10.3. **RR in the positive case.** We will prove first that RR holds for $D \ge 0$. The case D = 0 being settled before, we may assume D > 0.

Let $D = \sum_{i=1}^{m} n_i x_i$ where n_i are integers > 0. Denote

$$D^{+} = \sum_{i=1}^{m} (n_i + 1) x_i$$

and define

 $\Omega_0(-D^+)$

as the space of meromorphic differentials of second kind (that is, with zero residues) whose divisor is $\geq -D^+$ and having zero *a*-periods.

The spaces L(-D) and $\Omega_0(-D^+)$ are connected by the de Rham differential

(1)
$$d: L(-D) \longrightarrow \Omega_0(-D^+)$$

since the differential of a meromorphic function gives automatically a differential having zero residues and zero *a*-periods s (as well as the *b*-periods). The kernel of d is one-dimensional (the constants), so we can calculate the dimension of L(-D) studying the image of d.

We claim that $\dim \Omega_0(-D^+) = \sum n_i = \deg(D)$. In fact, choose disjoint coordinate neighborhoods near the points $x_i \in X$ for each $i = 1, \ldots, m$. Recall that for each $2 \leq j \leq n_i + 1$ a meromorphic differential $\tau_{x_i}^{(j)}$ was constructed, having an only pole of order j at x_i . Since the functions $\tau_{x_i}^{(j)}$ are linearly independent, we deduce that $\dim \Omega_0(-D^+) \geq \sum n_i = \deg(D)$. We will show that the functions $\tau_{x_i}^{(j)}$ actually span the whole $\Omega_0(-D^+)$. In fact, define a linear map

(2)
$$\Omega_0(-D^+) \longrightarrow \mathbb{C}^{\deg(D)}$$

assigning to each meromorphic differential ω its Laurent coefficients in the chosen coordinate systems at x_i (note that -1st coefficients vanish since ω is assumed to have no residues). The kernel of (2) consists of regular differentials having zero *a*-periods, therefore, the map (2) is injective.

The image of d in (1) coincides with the space of differentials having zero b-periods. Thus, the image is given by g linear equations in $\Omega_0(-D^+)$ which yields an inequality

(3)
$$r(-D) = \dim \operatorname{Im}(d) + 1 \ge \deg(D) - g + 1.$$

called *Riemann inequality* (this is a weaker form of RR theorem).

In order to get a precise formula, we have to express the rank of the matrix composed of the coefficients of the q equations defining the image of the de Rham

differential in (1). If \tilde{g} is actual value of the rank, we will have

$$r(-D) = \deg D - \tilde{g} + 1.$$

iRecall that the space $\Omega_0(-D^+)$ is spanned by the elements $\tau_{x_i}^{(j)}$ with $i = 1, \ldots, m$ and $j = 2, \ldots, n_i + 1$ and that the image of d is define in $\Omega_0(-D^+)$ by the conditions that the *b*-differentials vanish.

Recall the formula for the *b*-differentials of τ 's.

(4)
$$\int_{b_j} \tau_{x_i}^{(k)} = \frac{2\pi i}{k-1} \alpha_{i,k-2}^{(j)}$$

where the coefficients α are defined by the decomposition of the basis elements ζ_j of the space of holomorphic differentials dual to the *a*-basis, as follows

(5)
$$\zeta_j = (\sum_{s=0}^{\infty} \alpha_{i,s}^{(j)} z^s) dz \text{ at } x_i \in X.$$

Thus, the equations defining our subspace of $\Omega_0(-D^+)$ are given by the matrix with entries

(6)
$$\frac{2\pi i}{k-1} \alpha_{i,k-2}^{(j)}$$

where the upper index $j = 1, \ldots, g$ denotes the row number, and the pair of lower indices (i, k - 2), with $i = 1, \ldots, m$ and $k = 2, \ldots, n_i + 1$, denotes the column number.

Note that the coefficient $\frac{2\pi i}{k-1}$ has no influence on the rank of the matrix. By formula (5) the transpose of this matrix defines a linear map

$$T: \Omega(0) \to \mathbb{C}^{\deg(D)}$$

assigning to any regular differential the Taylor coefficients of its decomposition near x_i . The kernel of T is the space $\Omega(D)$ so we finally have

$$\widetilde{g} = g - i(D)$$

or

$$r(-D) = \deg D - g + 1 + i(D).$$

Riemann-Roch formula is proven for nonnegative divisors.

10.4. Some consequences. Note that the positive part of RR is already sufficient to deduce that a compact genus 0 Riemann surface is isomorphic to the Riemann sphere. In fact, in the proof of the assertion we applied RR to D = x, a single point in X. This is a positive divisor.

10.4.1. Lemma. The degree of a canonical divisior is 2g - 2.

Proof. If g = 0, we have a Riemann sphere. Choose $\omega = dz$; this is a meromorphic divisor having an only pole at $z = \infty$ of degree 2.

If g > 0 X admits a nonzero holomorphic differential, say, ω . Since ω is holomorphic, (ω) is positive. Apply RR to $D = (\omega)$. We get

$$r(-D) = \deg D - g + 1 + i(D)$$

We know that $r(-D) = i(0)$ and $i(D) = r(0) = 1$, so
 $\deg D = 2g - 2.$

10.5. **Bootstraping.** Note that the RR formula depends only on the class of D in Cl(X). Therefore, we get that RR holds for any D equivalent to a nonnegative divisor.

Another idea: the RR formula is invariant with respect to substitution $D \mapsto K - D$. In fact, we know that i(D) = r(D - K) so that if RR holds for D we have

$$i(K - D) = deg(D) + 1 - g + r(D - K)$$

or

$$r(-(K-D)) = -deg(D) - 1 + g + i(K-D) = deg(K-D) + 1 - g + i(K-D).$$

Thus, we deduce that RR holds as well for any divisor equivalent to K - D where D is nonnegative.

Note that if r(-D) > 0 then there exists a meromorphic function f such that $(f) \ge -D$ which means that D is equivalent to $(f) + D \ge 0$, so in this case RR holds for D.

Symmetrically, if i(D) > 0 then K - D is equivalent to a nonnegative divisor. Thus, the only remaining case implies r(-D) = i(D) = 0. It remains, therefore, to prove

10.5.1. **Proposition.** Assume neither D nor K-D is equivalent to a nonnegative divisor. Then $\deg(D) = g - 1$.

Proof. Write $D = D_1 - D_2$ where D_i are positive and have disjoint supports. We know $\deg(D) = \deg(D_1) - \deg(D_2)$. By RR applied to D_1 we get

$$r(-D_1) \ge \deg(D_1) + 1 - g = \deg(D) + \deg(D_2) + 1 - g.$$

Let us assume $\deg(D) > g - 1$. Then the above inequality yields

$$r(-D_1) > \deg(D_2).$$

In other words, the space of meromorphic functions f satisfying $(f) - D_1 \ge 0$ has dimension strictly greater than $\deg(D_2)$.

Such functions are holomorphic at the support of D_2 since the supports of D_i are disjoint. Therefore, the requirements $\deg_x(f) \ge \deg_x(D_2)$ give $\deg(D_2)$ linear

6

equation on f. Therefore, we deduce that there exists a meromorphic function f belonging to $L(-D_1 + D_2) = L(-D)$. Contradiction — with the assumption $\deg(D) > g - 1$. Therefore, we deduce that

$$\deg(D) \le g - 1.$$

Appying the same reasoning to K-D instead of D, we get the opposite inequality. Proposition (and, therefore, the general form of RR) is proven.

Proposition (and, therefore, the general form of RR) is proven.

10.6. Some more applications.

10.6.1. Genus one

Let X be a compact RS of genus one. We know that X admits a holomorphic differential. The corresponding divisor is nonnegative and has degree 2g - 2 = 0, so it is trivial. Fix this differential ω ; it is unique up to multiplicative constant and it has no zeroes. The integrals $\int_a \omega$ and $\int_b \omega$ generate a lattice L in \mathbb{C} and the expression

$$f(x) = \int_{x_0}^x \omega$$

define a holomorphic map from X to \mathbb{C}/L . It is obviously invertible since ω has no zeroes, so any genus 1 Riemann surface is an elliptic curve.

10.6.2. *m*-differentials

Take care: here is a small terminological problem: we say differentials instead of one-forms. Now we will define m-differentials which will not be m-forms!

A meromorphic one-form is defined by an assignment of an expression f(z)dzto each local chart so that it changes properly under the change of coordinates: $f(z)dz \mapsto f(z(w))z'_wdw$. Similarly, a meromorphic *m*-differntial is an expression $f(z)(dz)^m$ which changes properly with the change of coordinates, so that

$$f(z)(dz)^m \mapsto f(z(w))(z'_w)^m (dw)^m.$$

Any two *m*-differentials differ by a meromorphic function, so they define the same element in Cl(X). It is clear that this element is just mK.

Assume m > 1 and D = mK. Assume as well that g > 1. We have by RR

$$r(-mK) = m(2g-2) - g + 1 + i(mK) = (2m-1)(g-1)$$

since i(mK) = 0 — the divisor of a differential cannot be greater than the divisor of *m*-differential since degK = 2g - 2 and deg mK = m(2g - 2) > 2g - 2.

10.7. More on Weierstrass gaps. Recall that for each $x \in X$ there are precisely g "gaps" between 1 and 2g - 1. Thus, there are precisely g "non-gaps" between 1 and 2g, which we will denote

$$1 < \alpha_1 < \dots, \alpha_g = 2g.$$

10.7.1. **Proposition.** For any $j = 1, \ldots, g$ one has

$$\alpha_j + \alpha_{g-j} \ge 2g$$

Proof. Recall that the number of gaps and of non-gaps between 1 and 2g is the same. Moreover, the sum of non-gaps is a non-gap. Thus, if $\alpha_j + \alpha_{g-j}$ were less than 2g the same was true for $\alpha_k + \alpha_{g-j}$ for all k < j which would give at least j non-gaps strictly between α_{g-j} and α_g . This would give altogether more non-gaps than one can have: g - j + j + 1 > g.

10.7.2. Corollary. If
$$\alpha_1 = 2$$
, then $\alpha_k = 2k$ for all $k = 1, \ldots, d$.

In fact, if 2 is a non-gap, all even integers are non-gaps; since there are g even numbers between 1 and 2g, these are all non-gaps.

10.7.3. Lemma. If $\alpha_1 > 2$ than $\alpha_j + \alpha_{q-j} > 2n$ for some j.

Proof. If g = 2 the only possibility is (3, 4) and there is nothing to prove.

If g = 3 the possibilities are (3, 4, 6) and (3, 5, 6) and again there is nothing to prove.

Assume now $g \geq 4$. Assume that $\alpha_j + \alpha_{g-j} = 2g$ for all j. Consider the sequence $\beta_j = j \cdot \alpha_1$. The number of β_j in the range up to 2g is strictly less than g; therefore, there exists an non-gap between the β 's. Let α be the first such non-gap, $\beta_r < \alpha < \beta_{r+1}$. Then $\alpha = \alpha_{r+1}$, $\alpha_{g-r-1} = 2g - \alpha$, $\alpha_j = j\alpha_1$ and $\alpha_{g-j} = 2g - j\alpha_1$ for $j \leq r$.

We deduce that

$$\alpha_1 + \alpha_{q-r-1} = \alpha_1 + 2g - \alpha > 2g - r\alpha_1 = \alpha_{q-r}.$$

The latter means that we have found a non-gap $\alpha_1 + \alpha_{g-r-1}$ greater than α_{g-r-1} but not among α_{g-j} , $j \leq r$. Contradiction.

10.7.4. Corollary. One has

$$\sum_{i=1}^{g-1} \alpha_i \ge g(g-1),$$

with the equality iff $\alpha_1 = 2$.

Proof. The inequality follows from the inequality $\alpha_j + \alpha_{g-j} \ge 2g$. If $\alpha_1 = 2$, the inequality becomes equality. Otherwise Lemma 10.7.3 ensures the inequality is strict.

10.8. Wronskian. Let f_1, \ldots, f_n be holomorphic functions in an open subset $U \subset X$. Define the Wronskian by the formula

$$W(f_1,\ldots,f_n) = \det(f_i^{(j-1)}),$$

where $f^{(j)}$ denotes j-th derivative of f.

Since f_i are holomorphic, their Wronskian is holomorphic as well. We want to know the degree of W at $x \in U$. It can be calculated as follows.

Let V be the vector space of functions generated by f_i . We define a sequence of nonnegative integers $d_1 < d_2 < \ldots < d_n$, depending on x, as follows.

10.8.1. **Definition.** The sequence $d_1 < \ldots < d_n$ is defined uniquely by the condition

$$\{d_1,\ldots,d_n\} = \{\deg_x f | f \in V\}.$$

Note that the above definition contains a claim which needs to be proven. In fact, it is claimed that the number of different values of $\deg_x(f)$ coicides with dim V. This is actually an easy exercise: choose $f_1 \in V$ to have the minimal degree and let V^+ be the space of functions in V whose degree is strictly greater than $\deg_x f_1$. Then obviously $V = \mathbb{C} \cdot f_1 \oplus V^+$ so dim $V^+ = \dim V - 1$ and we get the claim by induction.

10.8.2. Lemma. One has

$$\deg_x W = \sum_{i=1}^n (d_i - i + 1).$$

Proof. Linear transformation of f_i multiplies W by a constant, therefore, it does not change the degree of W. Therefore, we can assume that $\deg_x f_i = d_i$. Choose a coordinate near x so that x corresponds to z = 0. Let

 $f_1 = z^{d_1} + az^{\delta} +$ higher terms

where $\delta > d_1$.

We will prove the lemma by induction in n. We have

$$W = -\sum_{i=1}^{n} (-1)^{i} f_{i} W(f'_{1}, \dots, \widehat{f}'_{i}, \dots, f'_{n}).$$

The degree of *i*-th summand in the right-hand side is

$$d_i + \delta - 1 + \sum_{j \neq 1, i} (d_j - 1) - \sum_{j=1}^{n-2} j = \delta + \sum_{j=2}^n d_j - \sum_{j=1}^{n-1} j$$

for $i \neq 1$ and

$$d_1 + \sum_{j=2}^n d_j - \sum_{j=1}^{n-1} j$$

for i = 1. We see that component corresponding to i = 1 has degree strictly less than the rest of the summands, so it will give the degree of the sum.

10.8.3. Corollary. If f_i are linearly independent, $W(f_1, \ldots, f_n)$ is not identically zero.

In what follows we will call the weight of V at x the degree of the Wronskian at x. As we saw above it is given by the formula

wt_x V =
$$\sum_{i=1}^{n} (d_i - i + 1).$$

10.9. Weierstrass points. We apply the constructions of the previous subsection to the space \mathcal{H} of holomorphic differentials.

In a coordinate neighborhood U holomorphic one-forms can be written as f(z)dz so one can directly apply the above constructions. Note that if one makes a change of coordinates z = z(w), the differentials $\zeta_i = f_i(z)dz$ become $f_i(z(w)z'_w dw)$ and one can easily see that the Wronskian changes to

$$W(z(w))(z'_w)^r$$

where $m = \frac{g(g+1)}{2}$. Thus, the wronskian of a system of g one-forms is an m-differential. That is the only difference.

10.9.1. **Definition.** A point $x \in X$ of a compact Riemann surface of genus g is called Weierstrass point if $wt_x \mathcal{H} \neq 0$.

There are no Weierstrass points for $g \leq 1$: for g = 0 there are no holomorphic differentials and for g = 1 the only holomorphic differential has no zeroes.

In what follows we assume g > 1.

10.9.2. **Proposition.** The point x is Weierstrass iff one of the following equivalent conditions holds.

- $i(g \cdot x) > 0.$
- $r(-g \cdot x) \ge 2$.

Proof. $\operatorname{wt}_x \mathcal{H} > 0$ means that there is a holomorphic differential ω with $\deg_x \omega > g$. This means the first condition. The equivalence of the two conditions follows from RR applied to $D = g \cdot x$.

Note that the second condition is equivalent to saying that $\alpha_1 \leq g$. Thus, the usage of Wronskian immediately implies that for the non-Weierstrass points one has $\alpha_i = g + i$, $i = 1, \ldots, g$.

Let W be the Wronskian of a basis of holomorphic differentials. We have explained that W is an m-differential where $m = \frac{g(g+1)}{2}$. It is holomorphic, therefore it has precisely deg W = m(2g-2) zeroes. Thus, we have

10

10.9.3. Proposition.

$$\sum_{x \in X} \deg_x W = (g-1)g(g+1).$$

10.9.4. Corollary. Let $g \ge 2$. There exist Weierstrass ponts.

10.9.5. **Theorem.** For each $x \in X$ one has $\operatorname{wt}_x \mathcal{H} \leq \frac{g(g-1)}{2}$. The equality happens only when the gap sequence starts with 2.

Proof. Fix $x \in X$. Let $1 < \alpha_1 < \ldots < \alpha_g = 2g$ be the non-gap sequence and $1 = n_1 < \ldots < n_g$ be the gap sequence.

Recall that by RR we have

$$r(-nx) - r(-(n-1)x) = 1 + i(nx) - i((n-1)x)$$

which implies that n is a gap iff there are holomorphic differentials having degree n-1 at x. Thus, in the above notation

wt_x
$$\mathcal{H} = \sum_{j=1}^{g} (d_j - (j-1)) = \sum_{j=1}^{g} (n_j - j).$$

Furthermore,

$$\operatorname{wt}_{x} \mathcal{H} = \sum_{j=1}^{g} (n_{j} - j) = \sum_{j=g+1}^{2g-1} j - \sum_{j=1}^{j-1} \alpha_{j} \le \frac{3g(g-1)}{2} - g(g-1) = \frac{g(g-1)}{2}$$

by Corollary 10.7.4. By the same Corollary the equality holds only when $\alpha_1 = 2$.

10.9.6. Corollary. The number of Weierstrass points of a compact surface of genus g is at least 2g + 2.

Home assignment.

1. A compact RS X is called *hyperelliptic curve* if it has a meromorphic function f having two poles. Let B be the number of branch points of the covering $f : X \to \widehat{\mathbb{C}}$. Express B through the genus g of X using Riemann-Hurwitz formula.

2 (cont. of 1.) Let $x \in X$ be a branch point for f. Find a meromorphic function on X having a double pole at x. Deduce, using Corollary 10.7.2, that xis a Weierstrass point of X with the non-gap sequence 2, 4, Deduce from this that branch points are the only Weierstrass points in the hyperelliptic case.

3. Deduce that if the number of Weierstrass points on X is 2g + 2 then X is hyperelliptic.

4. Let $F: X \longrightarrow X$ be a nontrivial automorphism of X. Choose $x \neq F(x)$ and let f be a meromorphic function with an only pole at x and $r := \deg_x f \leq g+1$. Thus, the polar divisor of f is $r \cdot x$. Deduce that the function $h := f - f \circ F$ has at most 2g + 2 zeroes. Deduce from this that F cannot have more than 2g + 2 fixed points.

5. Assume now that X is *not* hyperelliptic. Prove that any automorphism of X is uniquely defined by the permutation of Weierstrass points it defines. This proves that the group of automorphisms of a non-hyperelliptic curve is finite.

Note. It is finite even for hyperelliptic curves of genus > 1. Thus, however, requires a more careful analysis.

12