RIEMANN SURFACES

9. WEEK 10: CoMPACT RIEMANN SURFACES

9.1. Pairing of H; with H},,. Intersection pairing on H;.

9.1.1. Given a piecewise differential path v and a form w on X one can
integrate w along v and get a complex number.
Integration of a closed form along a path satisfies two properties:
L. If v and 4" are homotopic (with fixed ends) then [ w = [, w. This follows
from Stokes formula.
2. Concatenation of paths corresponds to the sum of the integrals.

In particular, integrating of one-forms defines a bilinear map
H\(X) = m(X)/[m(X), m(X)] x 2" — C,

where Z! denotes the space of closed one-forms. The restriction to the harmonic
forms gives a pairing
(1) H,(X,C)x H—C,
We claim that this pairing is nondegenerate if X is a compact Riemann surface.

This will imply, in particular, that the dimension of the space of harmonic
forms on X is 2¢g where g is the genus of X.

Assume that w is a harmonic form such that fvw = 0 for any closed path ~.
Then w = df where f is the function defined by the formula

fe) = /w

the formula defines a single-valued function. The function f is automatically
harmonic since

d+xdf =d+w=0.
Since X is compact, there are no nonconstant harmonic functions by the maximim
principle. Therefore, we deduce that the pairing (1) defines an injective map

H —— Homy(H,(X),C).

We will immediately check that this map is surjective.

9.1.2.
We wish now to use the standard presentation of a compact Riemann surface of

genus ¢. In case g = 0 it is homeomorphic to a sphere which is simply connected
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(m1 = 0). For g > 0 X can be obtained from a 4g-gon by the identification of the
edges defined by the word

I1y1$1_1y1_1 e xgyg:vg_lyl_l.
The fundamental group of X is generated by the simple loops a4,...,a, and
by, ..., by corresponding to the edges x; and y;, subject to one relation

g
Haibiai_lbi_l =1.
i=1

The homology group H;(X) is freely generated (as an abelian group) by the
classes of a; and b;.
Recall that for a simple closed curve v we define a closed one-form 7, such

that
/a = (a, *n,).
v

The one-forms 17,,, 7, are not harmonic; however, their orthogonal projections
to H, as we will see soon, will suffice to generate the whole Homy(H;(X), C).

9.1.3.
Define a pairing on the set of cycles on X by the formula
2) 0 b= [ mnm=(n-xm)
X

(recall that 7, are real so we do not need complex conjugation).
We will prove below that the pairing so defined “counts” the number of times
a intersects b. This will imply, in particular, that

We will write ag1,...,ay, instead of by,...,b;. Define the harmnic forms
hi, i = 1,...,2¢, as the orthogonal projections of the closed forms 7,,. Since

hi — nq, is exact, one has

/hi:/nam
Y Y

so that the images of h; form a basis in Homz(H;(X),C) dual to {a;}. This
proves the following

9.1.4. Theorem. The pairing (1) is nondegenerate for a compact Riemann sur-
face. In particular, the dimension of the space of harmonic one-forms on X is

2g.
We will now study the properties of the intersection pairing (2).

9.1.5. Proposition. The intersection pairing (2) satisfies the following proper-
ties.



1. The intersection ab depends only on the homology classes of a and b.

2. One hasa-b= —b-a.

3. a-b € Z. In case the intersection points of the curves a and b are transver-
sal, a - b is the (signed) number of intersection points.

Proof. The first property has already been explained: intergals of a closed form
along homotopic paths are the same. The second property results from the anti-
commutativity of the multiplication of one-forms.

The third property can be checked for simple closed curves since any piecewise
smooth closed curve is a finite union of simple closed curves. In this case a-b =
fa ny and we have to check that each intersection point of a with b contributes
+1 or —1, depending on the orientation of the curves at the intersection point.

Recall that 7, is defined as differential of a function f, having a discontinuity
along b. The function f, is zero far away from b. Thus, the integral over a can
be presented as a sum of the integrals over small segments of a; of a containing
the intersection points x; of a with b.

The intergral fai 7, has been already calculated once. The result was £1. [

As aresult, we have deduce that the intersection matrix in the basis (ay, . . ., agg)
of Hi(X,C) looks like J := _O] é .

In what follows we will work with any fixed basis of H;(X,Z) having the same
intersection matrix. We will can such basis a canonical basis of H1(X). We do
not care whether this basis comes from a polygonal presentation of X.

9.1.6. Corollary. For any canonical basis {a;} of Hy its dual basis {c;li =
1,...,2g} of H consists of real-valued harmonic functions.

Proof. This is the property of all our constructions. The complex conjugation is
defined on L?*(X) and the spaces F, E* and H are invariant with respect to it.
Thus, the orthogonal projection to H commutes with the complex conjugation.
Since 7,, are real, their projections to H are real. This proves the claim for the
choice of a; derived from the polygonal presentation of X. In general one has to

apply a transfer matrix with real (even integral) values.
O

9.2. Holomorphic one-forms. We wish to understand how do holomorphic
forms lie in the space of harmonic forms. This is a pure linear algebra. Recall
that the space H of harmonic complex-valued forms has complex dimension 2g.
Two R-linear operators are defined on H: a complex conjugation and the operator
*.

9.2.1. Decomposition of H



The operator a — %a+2’ * o transforms any harmonic form into a holomorphic
form and acts identically on holomorphic forms. Its kernel consists of antiholo-
morphic forms since if o + i * @« = 0, one has & — i * @ = 0 which means that &
is holomorphic. We denote by H the space of holomorphic forms.

This proves the following

Theorem. One has a canonical decomposition
H=HoH

of the space of harmonic forms into the sum of holomorphic and antiholomorphic
forms. In particular, dim¢c H = g.

9.2.2. The matrix of the operator x

Recall that the space H has a basis aj,...,a, dual to a chosen canonical
basis ay, ..., as, of Hy. The intersection form on H; is dual to the inner product
on H. Since the forms «; are real, the inner product is given by a symmetric

positive definite real 2g x 2¢g matrix. Denote it I' = (I'; ;) = < é IB; ) Note

that A= A', D= D! C + B! and that A >0, D > 0.
The x-operator restricted to H is a linear operator whose square is —1.
We note that (o, ;) =T ; and

(ai,*ozj) = —/ a; A\ ij = —a; - &j = _Ji,j-
X

Comparing two formulas above we deduce the formula for the operator .
Assume that = is given by a matrix G' = (G} ;). Then

—Jij = (i, xa;) = (au, Z G jox) = Zri,ka,j
k k
so that —J = I'G or, since G2 = —1, G = J~'T' = —JI'. Therefore,
—-C|-D
G- ( ol ) |
Note that G* = —1 implies that

CD=DB, AC=BA, C>-DA+1=0, B>—AD+1=0.

9.2.3. Proposition. Let w and w' be closed one-forms on X. Then

g
/w/\w’:Z[/w/ w’—/ w/w'].
X i=1 a; Ag4i Ag4i a;
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Proof. Both expressions are bilinear in w,w’. Both vanish of one of them is
closed (Stokes). Thus, we can assume they are harmonic. Since «; form a basis
of harmonic forms, it is sufficient to check the formula from w = o;, W' = «;
where 7,7 = 1,...,2¢. In this case the claim amount to the formula

(ai, a]’) = Jz]
O]

In what follows we will be willing to use a generalization of the above formula
for pairs w,w’ with w’ meromorphic, see formula (4).

9.2.4. Corollary. Ifw € H, one has

9
||w||2:2 /w/ *w—/ w/*w .
i=1 @i Ag+i Ag+i @i

Let now w € H. Denote forv=1,...,¢g

ai Ag+i

The numbers A; and B; are called a-periods and b-periods of w.
Then one has

9.2.5. Corollary.
g
lw[[* =) (A:Bi = B;A)
i=1

The latter result implies that if a holomorphic one-form w has vanishing a-
periods then w = 0. The same is true for a holomorphic form having real all a-
and b-periods.

9.2.6. Period matrix of X
Choose an arbitrary basis (i, ..., (, of H. We claim that the matrix

1,7 H/ Cj
a;
is nondegenerate.

In fact, if this were not true, a certain linear combination § = " ¢;(; of the
basic holomorphic one-forms would have vanishing a-periods.
Therefore, there exists a unique basis of H satisfying the condition

/Cjzéi,j;izlp--,g-



We define the period matriz B of a compact Riemann surface X by the formulas

Bi,j:/<j~
b;

Applying Proposition 9.2.3 to the forms (;, (; one gets B; ; = B;;. Thus, the
period matrix is symmetric.
Finally, applying Corollary 9.2.5 to 0 = > ¢;(;, we get its periods

Aj=c¢, By = ZBi,jcj7

so that
g —
16]1> =i > (¢;Bjstx — ¢ Bjkcr)

J,k=1

which implies that Im B > 0.

We have therefore proven that the period matrix B is symmetric and its imag-
inary part is positively definite.

Note that our construction of B depends on the choice of a canonical ba-
sis ay,...,as,. Another choice of canonical basis, af, ... ,a;g, is described by a
transfer matrix C' € GL(2¢g,Z) (more precisely, C' € Sp(2g,7)). In the same
way the dual basis aq,...,ay, is being changed. It is, however, difficult to de-
scribe what happens with the basis (i, ...,(, of holomorphic forms defined by
the conditions fai G=0ij 4,7=1,...,9.

Therefore, the Period matrix of a compact Riemann surface is not uniquely
defined — it depends on the choice of a canonical basis in Hj.

9.3. Periods of meromorphic differentials. Let 7 be a meromorphic differ-
ential and let v be a closed loop wich does not pass through the poles of 7. The
integral f7 7 is still defined, but the result may change if one replaces v with a
homotopic curve .

If 7 has zero residues, this problem does not appear. Otherwise one can use
integration along specific paths, but it is forbidden to replace carelessly a path
with a homotopic one.

A typical problem one can ask is as follows.

Let 7 be a fixed meromorphic differential. We can add a linear combination of
(; to make sure that the a-periods of 7 vanish. If 7 were holomorphic, it would
have to be zero, so that its b-periods would also vanish. However, since 7 is
merely meromorphic, the b-periods have some interesting values.

In order to be able to apply the bilinear relations to 7, we will present another
approach to this formula.

Let 6 and 7 be closed one-forms.
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We present the Riemann surface X as the quotient of the polygon P by the
relation identifying its edges. Then the integral

/9/\7
X

can be calculated as the integral over P of the inverse image of the corresponding
two-form. We will denote it by the same letter as the original forms.

Now @ is a closed form on a contractible surface P, so it is exact, § = df where
f is a smooth function on P (having in general different values at the boundary
points of P which are identified in X.

We have

/)(QAT:/Tdf/\T:/?d(fT): 3TfT:jzg;(/ajfT+/bjfT+/aj1fT+ bjlfT)-

Now the sum
/ fT+/_1 fr

can be easily calculated. In fact, 7 is the same along a; and aj’l and the difference
of values of f at different sides is constant, equal to fbi 0. Thus, the above sum

is equal to
/ 7‘/ 6.
aj  Jbj

Making the similar calculation with the second pair of summands, we get 9.2.3.
Let now 6 be holomorphic and let 7 be a meromorphic differential. We will
assume that 7 has no poles on the boundary 0P.
We can still write

(4)

ame_ji(/ajfT+/bjfT+/aj1fT+ bjlfT)—jil(/aje/bjT—/%T/bje).

The left-hand side can be calculated using Residue theorem, and the right-hand
side has the values we are interesed in.

9.3.1. Let 7., be a meromorphic differential having two poles with residues
1 and —1 at points x,y of X. Normalize 7, , so that it has vanishing a-periods.
Apply the formula (4) to § := (¢ and 7 = 7,,. The left-hand side yields

2mi(f(x) — f(y)) = 2mi fyx ¢;. Thus,

(5) o /y - /bj -

9.3.2. Another possibility is to take 7 = ngn) to be a meromorphic differential
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with the only pole at x € X, behaving as f—j near z. We normalize 7" so that

it has zero a-periods and we wish to express its b-periods.
Similarly to the above we choose 6 = (; and we get

[r= [ g,
b; oP

J
. )
If G = >0 cl(j)zkdz at the neighborhood of z, so that f = 37, 52", we
get

2m
©) [ =,
b

Home assignment.

1. Let a canonical basis a1, ..., as, of H; correspond to a polygonal presenta-
tion of X. Write down explicit formulas expressing a; via 7, .

2. Let X = C/L be an elliptic curve. Find a holomorphic differential on X
and calculate the period matrix in this case. Show explicitly how the answer
depends on the choice of a canonical basis.




