RIEMANN SURFACES

9. Week 10: Compact Riemann Surfaces

9.1. Pairing of H_{1} with $H_{D R}^{1}$. Intersection pairing on H_{1}.

9.1.1. Given a piecewise differential path γ and a form ω on X one can integrate ω along γ and get a complex number.

Integration of a closed form along a path satisfies two properties:

1. If γ and γ^{\prime} are homotopic (with fixed ends) then $\int_{\gamma} \omega=\int_{\gamma^{\prime}} \omega$. This follows from Stokes formula.
2. Concatenation of paths corresponds to the sum of the integrals.

In particular, integrating of one-forms defines a bilinear map

$$
H_{1}(X)=\pi_{1}(X) /\left[\pi_{1}(X), \pi_{1}(X)\right] \times Z^{1} \longrightarrow \mathbb{C}
$$

where Z^{1} denotes the space of closed one-forms. The restriction to the harmonic forms gives a pairing

$$
\begin{equation*}
H_{1}(X, \mathbb{C}) \times H \longrightarrow \mathbb{C} . \tag{1}
\end{equation*}
$$

We claim that this pairing is nondegenerate if X is a compact Riemann surface.
This will imply, in particular, that the dimension of the space of harmonic forms on X is $2 g$ where g is the genus of X.

Assume that ω is a harmonic form such that $\int_{\gamma} \omega=0$ for any closed path γ. Then $\omega=d f$ where f is the function defined by the formula

$$
f(x)=\int_{x_{0}}^{x} \omega .
$$

the formula defines a single-valued function. The function f is automatically harmonic since

$$
d * d f=d * \omega=0 .
$$

Since X is compact, there are no nonconstant harmonic functions by the maximim principle. Therefore, we deduce that the pairing (1) defines an injective map

$$
H \longrightarrow \operatorname{Hom}_{\mathbb{Z}}\left(H_{1}(X), \mathbb{C}\right)
$$

We will immediately check that this map is surjective.

9.1.2.

We wish now to use the standard presentation of a compact Riemann surface of genus g. In case $g=0$ it is homeomorphic to a sphere which is simply connected
$\left(\pi_{1}=0\right)$. For $g>0 X$ can be obtained from a $4 g$-gon by the identification of the edges defined by the word

$$
x_{1} y_{1} x_{1}^{-1} y_{1}^{-1} \ldots x_{g} y_{g} x_{g}^{-1} y_{1}^{-1} .
$$

The fundamental group of X is generated by the simple loops a_{1}, \ldots, a_{g} and b_{1}, \ldots, b_{g} corresponding to the edges x_{i} and y_{j}, subject to one relation

$$
\prod_{i=1}^{g} a_{i} b_{i} a_{i}^{-1} b_{i}^{-1}=1
$$

The homology group $H_{1}(X)$ is freely generated (as an abelian group) by the classes of a_{i} and b_{j}.

Recall that for a simple closed curve γ we define a closed one-form η_{γ} such that

$$
\int_{\gamma} \alpha=\left(\alpha, * \eta_{\gamma}\right) .
$$

The one-forms $\eta_{a_{i}}, \eta_{b_{j}}$ are not harmonic; however, their orthogonal projections to H, as we will see soon, will suffice to generate the whole $\operatorname{Hom}_{\mathbb{Z}}\left(H_{1}(X), \mathbb{C}\right)$.

9.1.3.

Define a pairing on the set of cycles on X by the formula

$$
\begin{equation*}
a \cdot b=\int_{X} \eta_{a} \wedge \eta_{b}=\left(\eta_{a},-* \eta_{b}\right) \tag{2}
\end{equation*}
$$

(recall that η_{γ} are real so we do not need complex conjugation).
We will prove below that the pairing so defined "counts" the number of times a intersects b. This will imply, in particular, that

$$
\begin{equation*}
a_{i} \cdot a_{j}=b_{i} \cdot b_{j}=0 ; \quad a_{i} \cdot b_{i}=1 ; \quad a_{i} \cdot b_{j}=0(i \neq j) \tag{3}
\end{equation*}
$$

We will write $a_{g+1}, \ldots, a_{2 g}$ instead of b_{1}, \ldots, b_{g}. Define the harmnic forms $h_{i}, i=1, \ldots, 2 g$, as the orthogonal projections of the closed forms $\eta_{a_{i}}$. Since $h_{i}-\eta_{a_{i}}$ is exact, one has

$$
\int_{\gamma} h_{i}=\int_{\gamma} \eta_{a_{i}}
$$

so that the images of h_{i} form a basis in $\operatorname{Hom}_{\mathbb{Z}}\left(H_{1}(X), \mathbb{C}\right)$ dual to $\left\{a_{i}\right\}$. This proves the following
9.1.4. Theorem. The pairing (1) is nondegenerate for a compact Riemann surface. In particular, the dimension of the space of harmonic one-forms on X is $2 g$.

We will now study the properties of the intersection pairing (2).
9.1.5. Proposition. The intersection pairing (2) satisfies the following properties.

1. The intersection $a \dot{b}$ depends only on the homology classes of a and b.
2. One has $a \cdot b=-b \cdot a$.
3. $a \cdot b \in \mathbb{Z}$. In case the intersection points of the curves a and b are transversal, $a \cdot b$ is the (signed) number of intersection points.

Proof. The first property has already been explained: intergals of a closed form along homotopic paths are the same. The second property results from the anticommutativity of the multiplication of one-forms.

The third property can be checked for simple closed curves since any piecewise smooth closed curve is a finite union of simple closed curves. In this case $a \cdot b=$ $\int_{a} \eta_{b}$ and we have to check that each intersection point of a with b contributes +1 or -1 , depending on the orientation of the curves at the intersection point.

Recall that η_{b} is defined as differential of a function f_{b} having a discontinuity along b. The function f_{b} is zero far away from b. Thus, the integral over a can be presented as a sum of the integrals over small segments of a_{i} of a containing the intersection points x_{i} of a with b.

The intergral $\int_{a_{i}} \eta_{b}$ has been already calculated once. The result was ± 1.
As a result, we have deduce that the intersection matrix in the basis $\left(a_{1}, \ldots, a_{2 g}\right)$ of $H_{1}(X, \mathbb{C})$ looks like $J:=\left(\begin{array}{c|c}0 & I \\ \hline-I & 0\end{array}\right)$.

In what follows we will work with any fixed basis of $H_{1}(X, \mathbb{Z})$ having the same intersection matrix. We will can such basis a canonical basis of $H_{1}(X)$. We do not care whether this basis comes from a polygonal presentation of X.
9.1.6. Corollary. For any canonical basis $\left\{a_{i}\right\}$ of H_{1} its dual basis $\left\{\alpha_{i} \mid i=\right.$ $1, \ldots, 2 g\}$ of H consists of real-valued harmonic functions.

Proof. This is the property of all our constructions. The complex conjugation is defined on $L^{2}(X)$ and the spaces E, E^{*} and H are invariant with respect to it. Thus, the orthogonal projection to H commutes with the complex conjugation. Since $\eta_{a_{i}}$ are real, their projections to H are real. This proves the claim for the choice of a_{i} derived from the polygonal presentation of X. In general one has to apply a transfer matrix with real (even integral) values.
9.2. Holomorphic one-forms. We wish to understand how do holomorphic forms lie in the space of harmonic forms. This is a pure linear algebra. Recall that the space H of harmonic complex-valued forms has complex dimension $2 g$. Two \mathbb{R}-linear operators are defined on H : a complex conjugation and the operator *.

9.2.1. Decomposition of H

The operator $\alpha \mapsto \frac{1}{2} \alpha+i * \alpha$ transforms any harmonic form into a holomorphic form and acts identically on holomorphic forms. Its kernel consists of antiholomorphic forms since if $\alpha+i * \alpha=0$, one has $\bar{\alpha}-i * \bar{\alpha}=0$ which means that $\bar{\alpha}$ is holomorphic. We denote by \mathcal{H} the space of holomorphic forms.

This proves the following
Theorem. One has a canonical decomposition

$$
H=\mathcal{H} \oplus \overline{\mathcal{H}}
$$

of the space of harmonic forms into the sum of holomorphic and antiholomorphic forms. In particular, $\operatorname{dim}_{\mathbb{C}} \mathcal{H}=g$.

9.2.2. The matrix of the operator $*$

Recall that the space H has a basis $\alpha_{1}, \ldots, \alpha_{2 g}$ dual to a chosen canonical basis $a_{1}, \ldots, a_{2 g}$ of H_{1}. The intersection form on H_{1} is dual to the inner product on H. Since the forms α_{i} are real, the inner product is given by a symmetric positive definite real $2 g \times 2 g$ matrix. Denote it $\Gamma=\left(\Gamma_{i, j}\right)=\left(\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right)$. Note that $A=A^{t}, D=D^{t}, C+B^{t}$ and that $A>0, D>0$.

The $*$-operator restricted to H is a linear operator whose square is -1 .
We note that $\left(\alpha_{i}, \alpha_{j}\right)=\Gamma_{i, j}$ and

$$
\left(\alpha_{i}, * \alpha_{j}\right)=-\int_{X} \alpha_{i} \wedge \alpha_{j}=-a_{i} \cdot a_{j}=-J_{i, j}
$$

Comparing two formulas above we deduce the formula for the operator $*$. Assume that $*$ is given by a matrix $G=\left(G_{i, j}\right)$. Then

$$
-J_{i, j}=\left(\alpha_{i}, * \alpha_{j}\right)=\left(\alpha_{i}, \sum_{k} G_{k, j} \alpha_{k}\right)=\sum_{k} \Gamma_{i, k} G_{k, j}
$$

so that $-J=\Gamma G$ or, since $G^{2}=-1, G=J^{-1} \Gamma=-J \Gamma$. Therefore,

$$
G=\left(\begin{array}{c|c}
-C & -D \\
\hline A & B
\end{array}\right)
$$

Note that $G^{2}=-1$ implies that

$$
C D=D B, A C=B A, C^{2}-D A+1=0, B^{2}-A D+1=0
$$

9.2.3. Proposition. Let ω and ω^{\prime} be closed one-forms on X. Then

$$
\int_{X} \omega \wedge \omega^{\prime}=\sum_{i=1}^{g}\left[\int_{a_{i}} \omega \int_{a_{g+i}} \omega^{\prime}-\int_{a_{g+i}} \omega \int_{a_{i}} \omega^{\prime}\right] .
$$

Proof. Both expressions are bilinear in ω, ω^{\prime}. Both vanish of one of them is closed (Stokes). Thus, we can assume they are harmonic. Since α_{i} form a basis of harmonic forms, it is sufficient to check the formula from $\omega=\alpha_{i}, \omega^{\prime}=\alpha_{j}$ where $i, j=1, \ldots, 2 g$. In this case the claim amount to the formula

$$
\left(a_{i}, a_{j}\right)=J_{i j} .
$$

In what follows we will be willing to use a generalization of the above formula for pairs ω, ω^{\prime} with ω^{\prime} meromorphic, see formula (4).
9.2.4. Corollary. If $\omega \in H$, one has

$$
\|\omega\|^{2}=\sum_{i=1}^{g}\left[\int_{a_{i}} \omega \int_{a_{g+i}} * \bar{\omega}-\int_{a_{g+i}} \omega \int_{a_{i}} * \bar{\omega}\right] .
$$

Let now $\omega \in \mathcal{H}$. Denote for $i=1, \ldots, g$

$$
A_{i}=\int_{a_{i}} \omega, B_{i}=\int_{a_{g+i}} \omega
$$

The numbers A_{i} and B_{i} are called a-periods and b-periods of ω.
Then one has

9.2.5. Corollary.

$$
\|\omega\|^{2}=i \sum_{i=1}^{g}\left(A_{i} \bar{B}_{i}-B_{i} \bar{A}_{i}\right)
$$

The latter result implies that if a holomorphic one-form ω has vanishing a periods then $\omega=0$. The same is true for a holomorphic form having real all a and b-periods.

9.2.6. Period matrix of X

Choose an arbitrary basis $\zeta_{1}, \ldots, \zeta_{g}$ of \mathcal{H}. We claim that the matrix

$$
i, j \mapsto \int_{a_{i}} \zeta_{j}
$$

is nondegenerate.
In fact, if this were not true, a certain linear combination $\theta=\sum c_{i} \zeta_{i}$ of the basic holomorphic one-forms would have vanishing a-periods.

Therefore, there exists a unique basis of \mathcal{H} satisfying the condition

$$
\int_{a_{i}} \zeta_{j}=\delta_{i, j}, i=1, \ldots, g
$$

We define the period matrix B of a compact Riemann surface X by the formulas

$$
B_{i, j}=\int_{b_{i}} \zeta_{j} .
$$

Applying Proposition 9.2.3 to the forms ζ_{i}, ζ_{j} one gets $B_{i, j}=B_{j, i}$. Thus, the period matrix is symmetric.

Finally, applying Corollary 9.2.5 to $\theta=\sum c_{i} \zeta_{i}$, we get its periods

$$
A_{i}=c_{i}, B_{i}=\sum B_{i, j} c_{j},
$$

so that

$$
\|\theta\|^{2}=i \sum_{j, k=1}^{g}\left(c_{j} \bar{B}_{j, k} \bar{c}_{k}-\bar{c}_{j} B_{j, k} c_{k}\right)
$$

which implies that $\operatorname{Im} B>0$.
We have therefore proven that the period matrix B is symmetric and its imaginary part is positively definite.

Note that our construction of B depends on the choice of a canonical basis $a_{1}, \ldots, a_{2 g}$. Another choice of canonical basis, $a_{1}^{\prime}, \ldots, a_{2 g}^{\prime}$, is described by a transfer matrix $C \in G L(2 g, \mathbb{Z})$ (more precisely, $C \in S p(2 g, \mathbb{Z})$). In the same way the dual basis $\alpha_{1}, \ldots, \alpha_{2 g}$ is being changed. It is, however, difficult to describe what happens with the basis $\zeta_{1}, \ldots, \zeta_{g}$ of holomorphic forms defined by the conditions $\int_{a_{i}} \zeta_{j}=\delta_{i, j}, i, j=1, \ldots, g$.

Therefore, the Period matrix of a compact Riemann surface is not uniquely defined - it depends on the choice of a canonical basis in H_{1}.
9.3. Periods of meromorphic differentials. Let τ be a meromorphic differential and let γ be a closed loop wich does not pass through the poles of τ. The integral $\int_{\gamma} \tau$ is still defined, but the result may change if one replaces γ with a homotopic curve γ^{\prime}.

If τ has zero residues, this problem does not appear. Otherwise one can use integration along specific paths, but it is forbidden to replace carelessly a path with a homotopic one.

A typical problem one can ask is as follows.
Let τ be a fixed meromorphic differential. We can add a linear combination of ζ_{i} to make sure that the a-periods of τ vanish. If τ were holomorphic, it would have to be zero, so that its b-periods would also vanish. However, since τ is merely meromorphic, the b-periods have some interesting values.

In order to be able to apply the bilinear relations to τ, we will present another approach to this formula.

Let θ and τ be closed one-forms.

We present the Riemann surface X as the quotient of the polygon \mathcal{P} by the relation identifying its edges. Then the integral

$$
\int_{X} \theta \wedge \tau
$$

can be calculated as the integral over \mathcal{P} of the inverse image of the corresponding two-form. We will denote it by the same letter as the original forms.

Now θ is a closed form on a contractible surface \mathcal{P}, so it is exact, $\theta=d f$ where f is a smooth function on \mathcal{P} (having in general different values at the boundary points of \mathcal{P} which are identified in X.

We have
$\int_{X} \theta \wedge \tau=\int_{\mathcal{P}} d f \wedge \tau=\int_{\mathcal{P}} d(f \tau)=\int_{\partial \mathcal{P}} f \tau=\sum_{j=1}^{g}\left(\int_{a_{j}} f \tau+\int_{b_{j}} f \tau+\int_{a_{j}^{-1}} f \tau+\int_{b_{j}^{-1}} f \tau\right)$.
Now the sum

$$
\int_{a_{j}} f \tau+\int_{a_{j}^{-1}} f \tau
$$

can be easily calculated. In fact, τ is the same along a_{j} and a_{j}^{-1} and the difference of values of f at different sides is constant, equal to $\int_{b_{i}} \theta$. Thus, the above sum is equal to

$$
\int_{a_{j}} \tau \int_{b_{j}} \theta
$$

Making the similar calculation with the second pair of summands, we get 9.2.3.
Let now θ be holomorphic and let τ be a meromorphic differential. We will assume that τ has no poles on the boundary $\partial \mathcal{P}$.

We can still write
$\int_{\partial \mathcal{P}} f \tau=\sum_{j=1}^{g}\left(\int_{a_{j}} f \tau+\int_{b_{j}} f \tau+\int_{a_{j}^{-1}} f \tau+\int_{b_{j}^{-1}} f \tau\right)=\sum_{j=1}^{g}\left(\int_{a_{j}} \theta \int_{b_{j}} \tau-\int_{a_{j}} \tau \int_{b_{j}} \theta\right)$.
The left-hand side can be calculated using Residue theorem, and the right-hand side has the values we are interesed in.
9.3.1. Let $\tau_{x, y}$ be a meromorphic differential having two poles with residues 1 and -1 at points x, y of X. Normalize $\tau_{x, y}$ so that it has vanishing a-periods.

Apply the formula (4) to $\theta:=\zeta_{k}$ and $\tau=\tau_{x, y}$. The left-hand side yields $2 \pi i(f(x)-f(y))=2 \pi i \int_{y}^{x} \zeta_{j}$. Thus,

$$
\begin{equation*}
2 \pi i \int_{y}^{x} \zeta_{j}=\int_{b_{j}} \tau_{x, y} \tag{5}
\end{equation*}
$$

9.3.2. Another possibility is to take $\tau=\tau_{x}^{(n)}$ to be a meromorphic differential
with the only pole at $x \in X$, behaving as $\frac{d z}{z^{n}}$ near x. We normalize $\tau_{x}^{(n)}$ so that it has zero a-periods and we wish to express its b-periods.

Similarly to the above we choose $\theta=\zeta_{j}$ and we get

$$
\int_{b_{j}} \tau_{x}^{(n)}=\int_{\partial \mathcal{P}} f \tau_{x}^{(n)} .
$$

If $\zeta_{j}=\sum_{k \geq 0} c_{k}^{(j)} z^{k} d z$ at the neighborhood of x, so that $f=\sum_{k \geq 0} \frac{c_{k}^{(j)}}{k+1} z^{k+1}$, we get

$$
\begin{equation*}
\int_{b_{j}} \tau_{x}^{(n)}=\frac{2 \pi i}{n-1} c_{n-2}^{(j)} . \tag{6}
\end{equation*}
$$

Home assignment.

1. Let a canonical basis $a_{1}, \ldots, a_{2 g}$ of H_{1} correspond to a polygonal presentation of X. Write down explicit formulas expressing α_{i} via $\eta_{a_{j}}$.
2. Let $X=\mathbb{C} / L$ be an elliptic curve. Find a holomorphic differential on X and calculate the period matrix in this case. Show explicitly how the answer depends on the choice of a canonical basis.
