
RIEMANN SURFACES

9. Week 10: Compact Riemann Surfaces

9.1. Pairing of H1 with H1
DR. Intersection pairing on H1.

9.1.1. Given a piecewise differential path γ and a form ω on X one can
integrate ω along γ and get a complex number.

Integration of a closed form along a path satisfies two properties:

1. If γ and γ′ are homotopic (with fixed ends) then
∫

γ
ω =

∫
γ′

ω. This follows

from Stokes formula.
2. Concatenation of paths corresponds to the sum of the integrals.

In particular, integrating of one-forms defines a bilinear map

H1(X) = π1(X)/[π1(X), π1(X)]× Z1 - C,

where Z1 denotes the space of closed one-forms. The restriction to the harmonic
forms gives a pairing

(1) H1(X, C)×H - C.

We claim that this pairing is nondegenerate if X is a compact Riemann surface.
This will imply, in particular, that the dimension of the space of harmonic

forms on X is 2g where g is the genus of X.
Assume that ω is a harmonic form such that

∫
γ
ω = 0 for any closed path γ.

Then ω = df where f is the function defined by the formula

f(x) =

∫ x

x0

ω.

the formula defines a single-valued function. The function f is automatically
harmonic since

d ∗ df = d ∗ ω = 0.

Since X is compact, there are no nonconstant harmonic functions by the maximim
principle. Therefore, we deduce that the pairing (1) defines an injective map

H - HomZ(H1(X), C).

We will immediately check that this map is surjective.

9.1.2.
We wish now to use the standard presentation of a compact Riemann surface of

genus g. In case g = 0 it is homeomorphic to a sphere which is simply connected
1



2

(π1 = 0). For g > 0 X can be obtained from a 4g-gon by the identification of the
edges defined by the word

x1y1x
−1
1 y−1

1 . . . xgygx
−1
g y−1

1 .

The fundamental group of X is generated by the simple loops a1, . . . , ag and
b1, . . . , bg corresponding to the edges xi and yj, subject to one relation

g∏
i=1

aibia
−1
i b−1

i = 1.

The homology group H1(X) is freely generated (as an abelian group) by the
classes of ai and bj.

Recall that for a simple closed curve γ we define a closed one-form ηγ such
that ∫

γ

α = (α, ∗ηγ).

The one-forms ηai
, ηbj

are not harmonic; however, their orthogonal projections
to H, as we will see soon, will suffice to generate the whole HomZ(H1(X), C).

9.1.3.
Define a pairing on the set of cycles on X by the formula

(2) a · b =

∫
X

ηa ∧ ηb = (ηa,− ∗ ηb)

(recall that ηγ are real so we do not need complex conjugation).
We will prove below that the pairing so defined “counts” the number of times

a intersects b. This will imply, in particular, that

(3) ai · aj = bi · bj = 0; ai · bi = 1; ai · bj = 0 (i 6= j).

We will write ag+1, . . . , a2g instead of b1, . . . , bg. Define the harmnic forms
hi, i = 1, . . . , 2g, as the orthogonal projections of the closed forms ηai

. Since
hi − ηai

is exact, one has ∫
γ

hi =

∫
γ

ηai
,

so that the images of hi form a basis in HomZ(H1(X), C) dual to {ai}. This
proves the following

9.1.4. Theorem. The pairing (1) is nondegenerate for a compact Riemann sur-
face. In particular, the dimension of the space of harmonic one-forms on X is
2g.

We will now study the properties of the intersection pairing (2).

9.1.5. Proposition. The intersection pairing (2) satisfies the following proper-
ties.
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1. The intersection aḃ depends only on the homology classes of a and b.
2. One has a · b = −b · a.
3. a·b ∈ Z. In case the intersection points of the curves a and b are transver-

sal, a · b is the (signed) number of intersection points.

Proof. The first property has already been explained: intergals of a closed form
along homotopic paths are the same. The second property results from the anti-
commutativity of the multiplication of one-forms.

The third property can be checked for simple closed curves since any piecewise
smooth closed curve is a finite union of simple closed curves. In this case a · b =∫

a
ηb and we have to check that each intersection point of a with b contributes

+1 or −1, depending on the orientation of the curves at the intersection point.
Recall that ηb is defined as differential of a function fb having a discontinuity

along b. The function fb is zero far away from b. Thus, the integral over a can
be presented as a sum of the integrals over small segments of ai of a containing
the intersection points xi of a with b.

The intergral
∫

ai
ηb has been already calculated once. The result was ±1. �

As a result, we have deduce that the intersection matrix in the basis (a1, . . . , a2g)

of H1(X, C) looks like J :=

(
0 I
−I 0

)
.

In what follows we will work with any fixed basis of H1(X, Z) having the same
intersection matrix. We will can such basis a canonical basis of H1(X). We do
not care whether this basis comes from a polygonal presentation of X.

9.1.6. Corollary. For any canonical basis {ai} of H1 its dual basis {αi|i =
1, . . . , 2g} of H consists of real-valued harmonic functions.

Proof. This is the property of all our constructions. The complex conjugation is
defined on L2(X) and the spaces E, E∗ and H are invariant with respect to it.
Thus, the orthogonal projection to H commutes with the complex conjugation.
Since ηai

are real, their projections to H are real. This proves the claim for the
choice of ai derived from the polygonal presentation of X. In general one has to
apply a transfer matrix with real (even integral) values.

�

9.2. Holomorphic one-forms. We wish to understand how do holomorphic
forms lie in the space of harmonic forms. This is a pure linear algebra. Recall
that the space H of harmonic complex-valued forms has complex dimension 2g.
Two R-linear operators are defined on H: a complex conjugation and the operator
∗.

9.2.1. Decomposition of H
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The operator α 7→ 1
2
α+ i∗α transforms any harmonic form into a holomorphic

form and acts identically on holomorphic forms. Its kernel consists of antiholo-
morphic forms since if α + i ∗ α = 0, one has ᾱ − i ∗ ᾱ = 0 which means that ᾱ
is holomorphic. We denote by H the space of holomorphic forms.

This proves the following

Theorem. One has a canonical decomposition

H = H ⊕ H̄

of the space of harmonic forms into the sum of holomorphic and antiholomorphic
forms. In particular, dimC H = g.

9.2.2. The matrix of the operator ∗
Recall that the space H has a basis α1, . . . , α2g dual to a chosen canonical

basis a1, . . . , a2g of H1. The intersection form on H1 is dual to the inner product
on H. Since the forms αi are real, the inner product is given by a symmetric

positive definite real 2g × 2g matrix. Denote it Γ = (Γi,j) =

(
A B
C D

)
. Note

that A = At, D = Dt, C + Bt and that A > 0, D > 0.
The ∗-operator restricted to H is a linear operator whose square is −1.
We note that (αi, αj) = Γi,j and

(αi, ∗αj) = −
∫

X

αi ∧ αj = −ai · aj = −Ji,j.

Comparing two formulas above we deduce the formula for the operator ∗.
Assume that ∗ is given by a matrix G = (Gi,j). Then

−Ji,j = (αi, ∗αj) = (αi,
∑

k

Gk,jαk) =
∑

k

Γi,kGk,j

so that −J = ΓG or, since G2 = −1, G = J−1Γ = −JΓ. Therefore,

G =

(
−C −D
A B

)
.

Note that G2 = −1 implies that

CD = DB, AC = BA, C2 −DA + 1 = 0, B2 − AD + 1 = 0.

9.2.3. Proposition. Let ω and ω′ be closed one-forms on X. Then∫
X

ω ∧ ω′ =

g∑
i=1

[∫
ai

ω

∫
ag+i

ω′ −
∫

ag+i

ω

∫
ai

ω′

]
.
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Proof. Both expressions are bilinear in ω, ω′. Both vanish of one of them is
closed (Stokes). Thus, we can assume they are harmonic. Since αi form a basis
of harmonic forms, it is sufficient to check the formula from ω = αi, ω′ = αj

where i, j = 1, . . . , 2g. In this case the claim amount to the formula

(ai, aj) = Jij.

�

In what follows we will be willing to use a generalization of the above formula
for pairs ω, ω′ with ω′ meromorphic, see formula (4).

9.2.4. Corollary. If ω ∈ H, one has

||ω||2 =

g∑
i=1

[∫
ai

ω

∫
ag+i

∗ω̄ −
∫

ag+i

ω

∫
ai

∗ω̄

]
.

Let now ω ∈ H. Denote for i = 1, . . . , g

Ai =

∫
ai

ω, Bi =

∫
ag+i

ω.

The numbers Ai and Bi are called a-periods and b-periods of ω.
Then one has

9.2.5. Corollary.

||ω||2 = i

g∑
i=1

(AiB̄i −BiĀi)

The latter result implies that if a holomorphic one-form ω has vanishing a-
periods then ω = 0. The same is true for a holomorphic form having real all a-
and b-periods.

9.2.6. Period matrix of X
Choose an arbitrary basis ζ1, . . . , ζg of H. We claim that the matrix

i, j 7→
∫

ai

ζj

is nondegenerate.
In fact, if this were not true, a certain linear combination θ =

∑
ciζi of the

basic holomorphic one-forms would have vanishing a-periods.
Therefore, there exists a unique basis of H satisfying the condition∫

ai

ζj = δi,j, i = 1, . . . , g.
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We define the period matrix B of a compact Riemann surface X by the formulas

Bi,j =

∫
bi

ζj.

Applying Proposition 9.2.3 to the forms ζi, ζj one gets Bi,j = Bj,i. Thus, the
period matrix is symmetric.

Finally, applying Corollary 9.2.5 to θ =
∑

ciζi, we get its periods

Ai = ci, Bi =
∑

Bi,jcj,

so that

||θ||2 = i

g∑
j,k=1

(cjB̄j,kc̄k − c̄jBj,kck)

which implies that Im B > 0.
We have therefore proven that the period matrix B is symmetric and its imag-

inary part is positively definite.
Note that our construction of B depends on the choice of a canonical ba-

sis a1, . . . , a2g. Another choice of canonical basis, a′1, . . . , a
′
2g, is described by a

transfer matrix C ∈ GL(2g, Z) (more precisely, C ∈ Sp(2g, Z)). In the same
way the dual basis α1, . . . , α2g is being changed. It is, however, difficult to de-
scribe what happens with the basis ζ1, . . . , ζg of holomorphic forms defined by
the conditions

∫
ai

ζj = δi,j, i, j = 1, . . . , g.
Therefore, the Period matrix of a compact Riemann surface is not uniquely

defined — it depends on the choice of a canonical basis in H1.

9.3. Periods of meromorphic differentials. Let τ be a meromorphic differ-
ential and let γ be a closed loop wich does not pass through the poles of τ . The
integral

∫
γ
τ is still defined, but the result may change if one replaces γ with a

homotopic curve γ′.
If τ has zero residues, this problem does not appear. Otherwise one can use

integration along specific paths, but it is forbidden to replace carelessly a path
with a homotopic one.

A typical problem one can ask is as follows.
Let τ be a fixed meromorphic differential. We can add a linear combination of

ζi to make sure that the a-periods of τ vanish. If τ were holomorphic, it would
have to be zero, so that its b-periods would also vanish. However, since τ is
merely meromorphic, the b-periods have some interesting values.

In order to be able to apply the bilinear relations to τ , we will present another
approach to this formula.

Let θ and τ be closed one-forms.
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We present the Riemann surface X as the quotient of the polygon P by the
relation identifying its edges. Then the integral∫

X

θ ∧ τ

can be calculated as the integral over P of the inverse image of the corresponding
two-form. We will denote it by the same letter as the original forms.

Now θ is a closed form on a contractible surface P, so it is exact, θ = df where
f is a smooth function on P (having in general different values at the boundary
points of P which are identified in X.

We have∫
X

θ∧τ =

∫
P

df∧τ =

∫
P

d(fτ) =

∫
∂P

fτ =

g∑
j=1

(

∫
aj

fτ+

∫
bj

fτ+

∫
a−1

j

fτ+

∫
b−1
j

fτ).

Now the sum ∫
aj

fτ +

∫
a−1

j

fτ

can be easily calculated. In fact, τ is the same along aj and a−1
j and the difference

of values of f at different sides is constant, equal to
∫

bi
θ. Thus, the above sum

is equal to ∫
aj

τ

∫
bj

θ.

Making the similar calculation with the second pair of summands, we get 9.2.3.
Let now θ be holomorphic and let τ be a meromorphic differential. We will

assume that τ has no poles on the boundary ∂P.
We can still write

(4)∫
∂P

fτ =

g∑
j=1

(

∫
aj

fτ +

∫
bj

fτ +

∫
a−1

j

fτ +

∫
b−1
j

fτ) =

g∑
j=1

(

∫
aj

θ

∫
bj

τ −
∫

aj

τ

∫
bj

θ).

The left-hand side can be calculated using Residue theorem, and the right-hand
side has the values we are interesed in.

9.3.1. Let τx,y be a meromorphic differential having two poles with residues
1 and −1 at points x, y of X. Normalize τx,y so that it has vanishing a-periods.

Apply the formula (4) to θ := ζk and τ = τx,y. The left-hand side yields
2πi(f(x)− f(y)) = 2πi

∫ x

y
ζj. Thus,

(5) 2πi

∫ x

y

ζj =

∫
bj

τx,y.

9.3.2. Another possibility is to take τ = τ
(n)
x to be a meromorphic differential
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with the only pole at x ∈ X, behaving as dz
zn near x. We normalize τ

(n)
x so that

it has zero a-periods and we wish to express its b-periods.
Similarly to the above we choose θ = ζj and we get∫

bj

τ (n)
x =

∫
∂P

fτ (n)
x .

If ζj =
∑

k≥0 c
(j)
k zkdz at the neighborhood of x, so that f =

∑
k≥0

c
(j)
k

k+1
zk+1, we

get

(6)

∫
bj

τ (n)
x =

2πi

n− 1
c
(j)
n−2.

Home assignment.
1. Let a canonical basis a1, . . . , a2g of H1 correspond to a polygonal presenta-

tion of X. Write down explicit formulas expressing αi via ηaj
.

2. Let X = C/L be an elliptic curve. Find a holomorphic differential on X
and calculate the period matrix in this case. Show explicitly how the answer
depends on the choice of a canonical basis.


