RIEMANN SURFACES

9. Week 10: Compact Riemann Surfaces

9.1. Pairing of H_1 with H_{DR}^1 . Intersection pairing on H_1 .

9.1.1. Given a piecewise differential path γ and a form ω on X one can integrate ω along γ and get a complex number.

Integration of a closed form along a path satisfies two properties:

- 1. If γ and γ' are homotopic (with fixed ends) then $\int_{\gamma} \omega = \int_{\gamma'} \omega$. This follows from Stokes formula.
- 2. Concatenation of paths corresponds to the sum of the integrals.

In particular, integrating of one-forms defines a bilinear map

$$H_1(X) = \pi_1(X) / [\pi_1(X), \pi_1(X)] \times Z^1 \longrightarrow \mathbb{C},$$

where Z^1 denotes the space of closed one-forms. The restriction to the harmonic forms gives a pairing

(1)
$$H_1(X,\mathbb{C}) \times H \longrightarrow \mathbb{C}$$

We claim that this pairing is nondegenerate if X is a compact Riemann surface.

This will imply, in particular, that the dimension of the space of harmonic forms on X is 2g where g is the genus of X.

Assume that ω is a harmonic form such that $\int_{\gamma} \omega = 0$ for any closed path γ . Then $\omega = df$ where f is the function defined by the formula

$$f(x) = \int_{x_0}^x \omega.$$

the formula defines a single-valued function. The function f is automatically harmonic since

$$d * df = d * \omega = 0.$$

Since X is compact, there are no nonconstant harmonic functions by the maximim principle. Therefore, we deduce that the pairing (1) defines an injective map

$$H \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(H_1(X), \mathbb{C}).$$

We will immediately check that this map is surjective.

9.1.2.

We wish now to use the standard presentation of a compact Riemann surface of genus g. In case g = 0 it is homeomorphic to a sphere which is simply connected

 $(\pi_1 = 0)$. For g > 0 X can be obtained from a 4g-gon by the identification of the edges defined by the word

$$x_1y_1x_1^{-1}y_1^{-1}\dots x_gy_gx_g^{-1}y_1^{-1}$$
.

The fundamental group of X is generated by the simple loops a_1, \ldots, a_g and b_1, \ldots, b_g corresponding to the edges x_i and y_j , subject to one relation

$$\prod_{i=1}^{g} a_i b_i a_i^{-1} b_i^{-1} = 1.$$

The homology group $H_1(X)$ is freely generated (as an abelian group) by the classes of a_i and b_j .

Recall that for a simple closed curve γ we define a closed one-form η_{γ} such that

$$\int_{\gamma} \alpha = (\alpha, *\eta_{\gamma}).$$

The one-forms η_{a_i}, η_{b_j} are not harmonic; however, their orthogonal projections to H, as we will see soon, will suffice to generate the whole $\operatorname{Hom}_{\mathbb{Z}}(H_1(X), \mathbb{C})$.

9.1.3.

Define a pairing on the set of cycles on X by the formula

(2)
$$a \cdot b = \int_X \eta_a \wedge \eta_b = (\eta_a, -*\eta_b)$$

(recall that η_{γ} are real so we do not need complex conjugation).

We will prove below that the pairing so defined "counts" the number of times a intersects b. This will imply, in particular, that

(3)
$$a_i \cdot a_j = b_i \cdot b_j = 0; \quad a_i \cdot b_i = 1; \quad a_i \cdot b_j = 0 \ (i \neq j).$$

We will write a_{g+1}, \ldots, a_{2g} instead of b_1, \ldots, b_g . Define the harmnic forms h_i , $i = 1, \ldots, 2g$, as the orthogonal projections of the closed forms η_{a_i} . Since $h_i - \eta_{a_i}$ is exact, one has

$$\int_{\gamma} h_i = \int_{\gamma} \eta_{a_i},$$

so that the images of h_i form a basis in $\operatorname{Hom}_{\mathbb{Z}}(H_1(X), \mathbb{C})$ dual to $\{a_i\}$. This proves the following

9.1.4. **Theorem.** The pairing (1) is nondegenerate for a compact Riemann surface. In particular, the dimension of the space of harmonic one-forms on X is 2g.

We will now study the properties of the intersection pairing (2).

9.1.5. **Proposition.** The intersection pairing (2) satisfies the following properties.

 $\mathbf{2}$

- 1. The intersection $a\dot{b}$ depends only on the homology classes of a and b.
- 2. One has $a \cdot b = -b \cdot a$.
- 3. $a \cdot b \in \mathbb{Z}$. In case the intersection points of the curves a and b are transversal, $a \cdot b$ is the (signed) number of intersection points.

Proof. The first property has already been explained: intergals of a closed form along homotopic paths are the same. The second property results from the anti-commutativity of the multiplication of one-forms.

The third property can be checked for simple closed curves since any piecewise smooth closed curve is a finite union of simple closed curves. In this case $a \cdot b = \int_a \eta_b$ and we have to check that each intersection point of a with b contributes +1 or -1, depending on the orientation of the curves at the intersection point.

Recall that η_b is defined as differential of a function f_b having a discontinuity along b. The function f_b is zero far away from b. Thus, the integral over a can be presented as a sum of the integrals over small segments of a_i of a containing the intersection points x_i of a with b.

The intergral $\int_{a_i} \eta_b$ has been already calculated once. The result was ± 1 . \Box

As a result, we have deduce that the intersection matrix in the basis (a_1, \ldots, a_{2g}) of $H_1(X, \mathbb{C})$ looks like $J := \left(\begin{array}{c|c} 0 & I \\ \hline -I & 0 \end{array}\right)$.

In what follows we will work with any fixed basis of $H_1(X,\mathbb{Z})$ having the same intersection matrix. We will can such basis a *canonical basis* of $H_1(X)$. We do not care whether this basis comes from a polygonal presentation of X.

9.1.6. Corollary. For any canonical basis $\{a_i\}$ of H_1 its dual basis $\{\alpha_i|i = 1, \ldots, 2g\}$ of H consists of real-valued harmonic functions.

Proof. This is the property of all our constructions. The complex conjugation is defined on $L^2(X)$ and the spaces E, E^* and H are invariant with respect to it. Thus, the orthogonal projection to H commutes with the complex conjugation. Since η_{a_i} are real, their projections to H are real. This proves the claim for the choice of a_i derived from the polygonal presentation of X. In general one has to apply a transfer matrix with real (even integral) values.

9.2. Holomorphic one-forms. We wish to understand how do holomorphic forms lie in the space of harmonic forms. This is a pure linear algebra. Recall that the space H of harmonic complex-valued forms has complex dimension 2g. Two \mathbb{R} -linear operators are defined on H: a complex conjugation and the operator *.

9.2.1. Decomposition of H

The operator $\alpha \mapsto \frac{1}{2}\alpha + i * \alpha$ transforms any harmonic form into a holomorphic form and acts identically on holomorphic forms. Its kernel consists of antiholomorphic forms since if $\alpha + i * \alpha = 0$, one has $\bar{\alpha} - i * \bar{\alpha} = 0$ which means that $\bar{\alpha}$ is holomorphic. We denote by \mathcal{H} the space of holomorphic forms.

This proves the following

Theorem. One has a canonical decomposition

 $H=\mathcal{H}\oplus\bar{\mathcal{H}}$

of the space of harmonic forms into the sum of holomorphic and antiholomorphic forms. In particular, dim_{\mathbb{C}} $\mathcal{H} = g$.

9.2.2. The matrix of the operator *

Recall that the space H has a basis $\alpha_1, \ldots, \alpha_{2g}$ dual to a chosen canonical basis a_1, \ldots, a_{2g} of H_1 . The intersection form on H_1 is dual to the inner product on H. Since the forms α_i are real, the inner product is given by a symmetric positive definite real $2g \times 2g$ matrix. Denote it $\Gamma = (\Gamma_{i,j}) = \left(\frac{A \mid B}{C \mid D}\right)$. Note that $A = A^t$, $D = D^t$, $C + B^t$ and that A > 0, D > 0.

The *-operator restricted to H is a linear operator whose square is -1. We note that $(\alpha_i, \alpha_j) = \Gamma_{i,j}$ and

$$(\alpha_i, *\alpha_j) = -\int_X \alpha_i \wedge \alpha_j = -a_i \cdot a_j = -J_{i,j}.$$

Comparing two formulas above we deduce the formula for the operator *. Assume that * is given by a matrix $G = (G_{i,j})$. Then

$$-J_{i,j} = (\alpha_i, *\alpha_j) = (\alpha_i, \sum_k G_{k,j}\alpha_k) = \sum_k \Gamma_{i,k}G_{k,j}$$

so that $-J = \Gamma G$ or, since $G^2 = -1$, $G = J^{-1}\Gamma = -J\Gamma$. Therefore,

$$G = \left(\begin{array}{c|c} -C & -D \\ \hline A & B \end{array}\right).$$

Note that $G^2 = -1$ implies that

$$CD = DB, \ AC = BA, \ C^2 - DA + 1 = 0, \ B^2 - AD + 1 = 0.$$

9.2.3. **Proposition.** Let ω and ω' be closed one-forms on X. Then

$$\int_X \omega \wedge \omega' = \sum_{i=1}^g \left[\int_{a_i} \omega \int_{a_{g+i}} \omega' - \int_{a_{g+i}} \omega \int_{a_i} \omega' \right].$$

Proof. Both expressions are bilinear in ω, ω' . Both vanish of one of them is closed (Stokes). Thus, we can assume they are harmonic. Since α_i form a basis of harmonic forms, it is sufficient to check the formula from $\omega = \alpha_i$, $\omega' = \alpha_j$ where $i, j = 1, \ldots, 2g$. In this case the claim amount to the formula

$$(a_i, a_j) = J_{ij}.$$

In what follows we will be willing to use a generalization of the above formula for pairs ω, ω' with ω' meromorphic, see formula (4).

9.2.4. Corollary. If $\omega \in H$, one has

$$||\omega||^2 = \sum_{i=1}^g \left[\int_{a_i} \omega \int_{a_{g+i}} *\bar{\omega} - \int_{a_{g+i}} \omega \int_{a_i} *\bar{\omega} \right]$$

Let now $\omega \in \mathcal{H}$. Denote for $i = 1, \ldots, g$

$$A_i = \int_{a_i} \omega, \ B_i = \int_{a_{g+i}} \omega.$$

The numbers A_i and B_i are called *a*-periods and *b*-periods of ω .

Then one has

9.2.5. Corollary.

$$||\omega||^2 = i \sum_{i=1}^{g} (A_i \bar{B}_i - B_i \bar{A}_i)$$

The latter result implies that if a holomorphic one-form ω has vanishing *a*-periods then $\omega = 0$. The same is true for a holomorphic form having real all *a*-and *b*-periods.

9.2.6. Period matrix of X

Choose an arbitrary basis ζ_1, \ldots, ζ_g of \mathcal{H} . We claim that the matrix

$$i, j \mapsto \int_{a_i} \zeta_j$$

is nondegenerate.

In fact, if this were not true, a certain linear combination $\theta = \sum c_i \zeta_i$ of the basic holomorphic one-forms would have vanishing *a*-periods.

Therefore, there exists a unique basis of \mathcal{H} satisfying the condition

$$\int_{a_i} \zeta_j = \delta_{i,j}, i = 1, \dots, g.$$

We define the *period matrix* B of a compact Riemann surface X by the formulas

$$B_{i,j} = \int_{b_i} \zeta_j.$$

Applying Proposition 9.2.3 to the forms ζ_i, ζ_j one gets $B_{i,j} = B_{j,i}$. Thus, the period matrix is symmetric.

Finally, applying Corollary 9.2.5 to $\theta = \sum c_i \zeta_i$, we get its periods

$$A_i = c_i, \ B_i = \sum B_{i,j} c_j,$$

so that

$$||\theta||^{2} = i \sum_{j,k=1}^{g} (c_{j}\bar{B}_{j,k}\bar{c}_{k} - \bar{c}_{j}B_{j,k}c_{k})$$

which implies that Im B > 0.

We have therefore proven that the period matrix B is symmetric and its imaginary part is positively definite.

Note that our construction of B depends on the choice of a canonical basis a_1, \ldots, a_{2g} . Another choice of canonical basis, a'_1, \ldots, a'_{2g} , is described by a transfer matrix $C \in GL(2g, \mathbb{Z})$ (more precisely, $C \in Sp(2g, \mathbb{Z})$). In the same way the dual basis $\alpha_1, \ldots, \alpha_{2g}$ is being changed. It is, however, difficult to describe what happens with the basis ζ_1, \ldots, ζ_g of holomorphic forms defined by the conditions $\int_{a_i} \zeta_j = \delta_{i,j}, i, j = 1, \ldots, g$.

Therefore, the Period matrix of a compact Riemann surface is not uniquely defined — it depends on the choice of a canonical basis in H_1 .

9.3. Periods of meromorphic differentials. Let τ be a meromorphic differential and let γ be a closed loop wich does not pass through the poles of τ . The integral $\int_{\gamma} \tau$ is still defined, but the result may change if one replaces γ with a homotopic curve γ' .

If τ has zero residues, this problem does not appear. Otherwise one can use integration along specific paths, but it is forbidden to replace carelessly a path with a homotopic one.

A typical problem one can ask is as follows.

Let τ be a fixed meromorphic differential. We can add a linear combination of ζ_i to make sure that the *a*-periods of τ vanish. If τ were holomorphic, it would have to be zero, so that its *b*-periods would also vanish. However, since τ is merely meromorphic, the *b*-periods have some interesting values.

In order to be able to apply the bilinear relations to τ , we will present another approach to this formula.

Let θ and τ be closed one-forms.

We present the Riemann surface X as the quotient of the polygon \mathcal{P} by the relation identifying its edges. Then the integral

$$\int_X \theta \wedge \tau$$

can be calculated as the integral over \mathcal{P} of the inverse image of the corresponding two-form. We will denote it by the same letter as the original forms.

Now θ is a closed form on a contractible surface \mathcal{P} , so it is exact, $\theta = df$ where f is a smooth function on \mathcal{P} (having in general different values at the boundary points of \mathcal{P} which are identified in X.

We have

$$\int_X \theta \wedge \tau = \int_{\mathcal{P}} df \wedge \tau = \int_{\mathcal{P}} d(f\tau) = \int_{\partial \mathcal{P}} f\tau = \sum_{j=1}^g (\int_{a_j} f\tau + \int_{b_j} f\tau + \int_{a_j^{-1}} f\tau + \int_{b_j^{-1}} f\tau).$$
Now the sum

Now the sum

$$\int_{a_j} f\tau + \int_{a_j^{-1}} f\tau$$

can be easily calculated. In fact, τ is the same along a_j and a_j^{-1} and the difference of values of f at different sides is constant, equal to $\int_{b_i} \theta$. Thus, the above sum is equal to

$$\int_{a_j} \tau \int_{b_j} \theta.$$

Making the similar calculation with the second pair of summands, we get 9.2.3.

Let now θ be holomorphic and let τ be a meromorphic differential. We will assume that τ has no poles on the boundary $\partial \mathcal{P}$.

We can still write

$$\int_{\partial \mathcal{P}} f\tau = \sum_{j=1}^{g} (\int_{a_j} f\tau + \int_{b_j} f\tau + \int_{a_j^{-1}} f\tau + \int_{b_j^{-1}} f\tau) = \sum_{j=1}^{g} (\int_{a_j} \theta \int_{b_j} \tau - \int_{a_j} \tau \int_{b_j} \theta).$$

The left-hand side can be calculated using Residue theorem, and the right-hand side has the values we are interested in.

9.3.1. Let $\tau_{x,y}$ be a meromorphic differential having two poles with residues 1 and -1 at points x, y of X. Normalize $\tau_{x,y}$ so that it has vanishing *a*-periods.

Apply the formula (4) to $\theta := \zeta_k$ and $\tau = \tau_{x,y}$. The left-hand side yields $2\pi i(f(x) - f(y)) = 2\pi i \int_y^x \zeta_j$. Thus,

(5)
$$2\pi i \int_y^x \zeta_j = \int_{b_j} \tau_{x,y}.$$

9.3.2. Another possibility is to take $\tau = \tau_x^{(n)}$ to be a meromorphic differential

with the only pole at $x \in X$, behaving as $\frac{dz}{z^n}$ near x. We normalize $\tau_x^{(n)}$ so that it has zero *a*-periods and we wish to express its *b*-periods.

Similarly to the above we choose $\theta = \zeta_j$ and we get

$$\int_{b_j} \tau_x^{(n)} = \int_{\partial \mathcal{P}} f \tau_x^{(n)}.$$

If $\zeta_j = \sum_{k\geq 0} c_k^{(j)} z^k dz$ at the neighborhood of x, so that $f = \sum_{k\geq 0} \frac{c_k^{(j)}}{k+1} z^{k+1}$, we get

(6)
$$\int_{b_j} \tau_x^{(n)} = \frac{2\pi i}{n-1} c_{n-2}^{(j)}.$$

Home assignment.

1. Let a canonical basis a_1, \ldots, a_{2g} of H_1 correspond to a polygonal presentation of X. Write down explicit formulas expressing α_i via η_{a_i} .

2. Let $X = \mathbb{C}/L$ be an elliptic curve. Find a holomorphic differential on X and calculate the period matrix in this case. Show explicitly how the answer depends on the choice of a canonical basis.