RIEMANN SURFACES

8. Week 9: Harmonic forms, meromorphic forms, meromorphic
 FUNCTIONS

8.1. Existence of harmonic differentials.

8.1.1. Theorem. Let X have a closed differential $\omega \in L^{2}(X)$ which is not exact. Then $H \neq 0$. The converse is true if X is compact.
Proof. If ω is closed, $\omega=\alpha+h$ where $\alpha \in E$ and $h \in H$. If ω is not exact, there exists a closed curve γ such that $\int_{\gamma} \omega \neq 0$. Note that $\alpha=\omega-h$ is C^{1}, so $\int_{\gamma} \alpha=\left(\alpha, * \eta_{\gamma}\right)=0$. Therefore, $\int_{\gamma} h \neq 0$ which implies that $h \neq 0$.

If X is compact and $h \neq 0$ then h itself is closed and not exact.
Let now γ be a simple closed curve in X such that $X-\gamma$ is connected. Then there exists another simple closed curve γ^{*} intersecting γ in exactly one point $P \in X$.

One has

$$
\begin{equation*}
\int_{\gamma^{*}} \eta_{\gamma}=\lim _{Q \rightarrow P^{-}} f(Q)-\lim _{Q \rightarrow P^{+}} f(Q)=1 \tag{1}
\end{equation*}
$$

This yields the following
8.1.2. Theorem. Let a Riemann surface X admits a closed curve γ such that $X-\gamma$ is connected. Then X admits a nonzero harmonic one-form.
8.2. Decomposition of smooth forms. Let $\omega \in L^{2}(X)$. We have an orthogonal decomposition

$$
\omega=\alpha+\beta+h
$$

where $\alpha \in E, \beta \in E^{*}$ and $h \in H$. We also know that if $\omega \in C^{1} \cap E$ then ω is exact and if $\omega \in E^{*} \cap C^{1}$ then it is coexact. However, we can not deduce smoothness of α and β from the smoothneww of ω. We intend to fix this.

In this subsection we will prove the existence of a decomposition

$$
\begin{equation*}
\omega=d f+* d g+h \tag{2}
\end{equation*}
$$

for $\omega \in L^{2} \cap C^{3}$ where $h \in H$ and f, g are function of class C^{2}.
As a first step we will look for a function g such that the difference $\omega-* d g$ is closed.

The latter is equivalent to saying that $d \omega-d * d g=0$ that is

$$
\begin{equation*}
\Delta g=d \omega \tag{3}
\end{equation*}
$$

8.2.1. Proposition. Let f be a C^{2} function with a compact support on \mathbb{C}. Then the Poisson equation

$$
\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}}=f
$$

has a solution $g \in C^{2}$.
Proof. We will prove that the formula

$$
\begin{equation*}
g(z)=-\frac{i}{4 \pi} \int_{\mathbb{C}} \log |z-\zeta| f(\zeta) d \zeta \wedge d \bar{\zeta} \tag{4}
\end{equation*}
$$

gives a C^{2} solution.
Passing to the polar coordinates $\zeta-z=r(\cos \phi+i \sin \phi)$, one gets $d \zeta \wedge d \bar{\zeta}=$ $-2 \operatorname{irdr} \wedge d \phi$. This ensures that the integral (4) converges since $\log (r) r \rightarrow 0$ for $r \rightarrow 0$.

In order to apply a differential operator to the function given by (4), it suffices to apply it to the function f. Thus, the Laplace operator of g is given by the formula

$$
\begin{equation*}
\Delta g=-\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\int_{0}^{\infty} \log r\left[\frac{\partial^{2} f}{\partial r^{2}}+\frac{1}{r} \frac{\partial f}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}\right] r d r\right) d \phi \tag{5}
\end{equation*}
$$

Recall that f has a compact support, so the limits of integration along r can be talen as $[0, R]$. Then
(6) $\Delta g=-\frac{1}{2 \pi} \lim _{\epsilon \rightarrow 0} \int_{0}^{2 \pi}\left(\int_{\epsilon}^{R}\left\{\frac{\partial}{\partial r}\left[r \log r \frac{\partial f}{\partial r}-f\right]+\frac{\partial}{\partial \phi}\left(\frac{\log r}{r} \frac{\partial f}{\partial \phi}\right)\right\} d r\right) d \phi$.

We can now use Stokes formula. The first summand will disappear, so we get

$$
\begin{equation*}
\Delta g=-\frac{1}{2 \pi} \lim _{\epsilon \rightarrow 0} \int_{0}^{2 \pi}\left[\left.\epsilon \log \epsilon \frac{\partial f}{\partial r}\right|_{r=\epsilon}-\left.f\right|_{r=\epsilon}\right] d \phi \tag{7}
\end{equation*}
$$

The expression $\epsilon \log \epsilon \rightarrow 0$ when $\epsilon \rightarrow 0$ and the absolute value of $\frac{\partial f}{\partial r}$ is bounded, so the first summand tends to zero; the second summand yields what we need.

Using Proposition 8.2.1 we can get a decomposition for smooth forms. The first result below is a local claim; the second one is what we really intended to get.
8.2.2. Lemma. Any form $\omega \in C^{3}$ can be locally decomposed as

$$
\omega=d f+* d g
$$

where f, g are functions of class C^{2}.

Proof. Let $x \in X$. Choose a coordinate chart around x so that $z=0$ corresponds to the point x. Choose a smooth function $s(z)$ in D which is 1 for $|z|<\frac{1}{3}$ and 0 for $|z|>\frac{2}{3}$. The product $s \omega$ is a C^{3} one-form with compact support; therefore, by Proposition 8.2.1 ensures there exists a function g in D such that $s \omega-* d g$ is closed and, therefore, exact.
8.2.3. Theorem. Let $\omega \in L^{2}(X)$ be of type C^{3}. Then in the orthogonal decomposition

$$
\omega=h+\alpha+\beta
$$

with $h \in H, \alpha \in E$ and $\beta \in E^{*}$ the forms α and β are of class C^{1}.
Note that the theorem implies that $\alpha=d f, \beta=* d g$ for f, g of class C^{2}.
Proof. Let $\omega=h+\alpha+\beta$ with $h \in H, \alpha \in E$ and $\beta \in E^{*}$.
Let $x \in X$. Choose a local coordinate around x so that the unit disc $D=$ $\{z||z|<1\}$ identifies with an open neighborhood of x.

By Lemma 8.2.2 the restriction of ω to D can be presented as $d f+* d g$. Note that $d f$ is closed and therefore belongs to $E(D) \oplus H(D)$; similarly $* d g$ belongs to $E^{*}(D) \oplus H(D)$. At the same time $\left.h\right|_{D}+\left.\alpha\right|_{D}$ belongs to $E(D) \oplus H(D)$ and $\left.\beta\right|_{D}$ belongs to $E^{*}(D) \oplus H(D)$.

Thus, the element $\left.h\right|_{D}+\left.\alpha\right|_{D}-d f=* d g-\left.\beta\right|_{D}$ is harmonic in D. This implies that $\left.\alpha\right|_{D}$ and $\left.\beta\right|_{D}$ are of class C^{1}.
8.3. Harmonic differentials with poles. Harmonic differentials on a compact Riemann surface X can not be exact: otherwise they would belong to the intersection $E \cap H$.

We will construct now harmonic differentials having a pole .
Let X be any Riemann surface and $x \in X$. Choose a chart in a neighborhood of x with a local coordinate so that the neighborhood identifies with the unit disc D and x corresponds to $z=0$.

Fix $n \geq 1$.
We denote $\delta=d\left(\frac{1}{z^{n}}\right)$. This is an exact differential on $D-\{x\}$.
8.3.1. Theorem. There exists a unique differential ω on $X-\{x\}$ satisfying the following properties.
(a) ω is harmonic and exact on $X-\{x\}$.
(b) $\omega-\delta$ is harmonic in a neighborhood N of x.
(c) $\left\|\omega_{X-N}\right\|<\infty$.
(d) For any function ϕ on X of class C^{2} such that $\|d \phi\|<\infty$ and $\phi=0$ at a neighborhood of x, one has $(\omega, d \phi)=0$.

Proof. Let us start with uniqueness. Assume two differentials, ω_{1} and ω_{2} satisfy the conditions of the theorem. Their difference is harmonic since its restriction
to $X-\{x\}$ and to N is harmonic. It is exact, therefore,

$$
\omega_{1}-\omega_{2}=d h
$$

where h is a harmonic function on X.
Choose a smooth function ρ on $[0,1]$ so that $\rho(t)=1$ for $t<\frac{1}{3}$ and $\rho(t)=0$ for $t>\frac{2}{3}$.

Define a new function g on X by the formula

$$
g= \begin{cases}\rho(|z|) h(z), & z \in D \tag{8}\\ 0, & \text { in } X-D .\end{cases}
$$

Then g has a compact support and $g=h$ at $N:=\left\{z \| z \left\lvert\,<\frac{1}{3}\right.\right.$. Then

$$
\|d(h-g)\| \leq\|d h\|_{X-N}+\|d g\|_{X-N} \leq\left\|\omega_{1}\right\|_{X-N}+\left\|\omega_{1}\right\|_{X-N}+\|d g\|<\infty,
$$

so by the property (4) applied to $\phi=g-h$ we get

$$
\left\|\omega_{1}-\omega_{2}\right\|^{2}=\left(\omega_{1}-\omega_{2}, d h\right)=\left(\omega_{1}-\omega_{2}, d(h-g)\right)+\left(\omega_{1}-\omega_{2}, d g\right)=0
$$

since $d g \in E$ and $\omega_{1}-\omega_{2} \in H$.
Let us now prove the existence.
Define

$$
\theta= \begin{cases}d\left(\frac{\rho(|z|)}{z^{n}}\right), & z \in D \\ 0, & \text { in } X-D\end{cases}
$$

We will define ω be the formula

$$
\omega=\theta-d f
$$

where the function $f \in C^{2}$ will be determined later on.
The form ω so defined is automatically exact since θ and $d f$ are exact. Harmonicity of ω in $X-\{x\}$ is equivalent therefore to the condition

$$
\begin{equation*}
0=d * \theta-d * d f \tag{9}
\end{equation*}
$$

Since θ and δ coincide in N, the property (b) is satisfied automatically if f is as in (9): $\omega-\delta=d f$ in N and f satisfying (9) is harmonic in N since $d * \theta=d * \delta=0$ in N.

The property (c) is satisfied automatically if $d f \in L^{2}$ since $\|\omega\|_{X-\bar{N}} \leq\|\theta\|_{X-\bar{N}}+$ $\|d f\|_{X-\bar{N}}$.

The formula (9) defines f uniquely up to a harmonic function. The easiest way would be to decompose θ into $h+\alpha+\beta$ with $\alpha \in E$ and $\beta \in E^{*}$; we do not do this literally since θ has a pole. However, the difference $\theta-i * \theta$ vanishes in N since it coincides there with $\delta-i * \delta=0$ since δ is holomorphic in $D-\{x\}$.

Thus, $\theta-i * \theta=0$ in N as well as in $X-D$. Therefore, $\theta-i * \theta \in \Lambda_{f i n}^{1}(X)$. In particular, it can be decomposed as in Theorem 8.2.3 as

$$
\begin{equation*}
\theta-i * \theta=h+\alpha+\beta \tag{10}
\end{equation*}
$$

where $h \in H, \alpha \in E, \beta \in E^{*}$, and $\alpha=d u, \beta=* d v$ for some $u, v \in \Lambda^{0}(X)$. Note that α and β belong to $\Lambda_{\text {fin }}^{1}(X)$ by the construction.

Applying $d *$ to (10) we get

$$
d * \theta=d * d u
$$

which is a possible solution for f. That is we will have to choose f different from u by a harmonic function χ, so that now $\omega=\theta-d u-d \chi=i * \theta+h-d \chi+* d v$. The only requirement is that we have to satisfy property (d).

Let ϕ be a function as in (d). We have

$$
(\omega, d \phi)=i(* \theta, d \phi)+(h-d \chi, d \phi)
$$

since $(* d v, d \phi)=0$ (any exact form is orthogonal to E^{*}). Since ϕ vanishes in a neighborhood of x,

$$
(* \theta, d \phi)=\int_{A} \theta \wedge d \phi=\int_{A} \phi d \theta+\int_{\partial A} \phi \theta=0
$$

where A is the annulus $\epsilon<|z|<1$.
Thus, we have to find a harmonic function χ such that $h-d \chi$ is orthogonal to all exact forms in $L^{2}(X)$. This is left as an exercise.

Note that we were unable to construct a harmonic one-form with a first order pole (compare to our discussion of elliptic functions).

The following variation of the above theorem allows one to construct a harmonic form with two simple poles.
8.3.2. Proposition. Let $x \in X$ be as in Theorem 8.3.1 and let $y \in N$ where N is defined as above. Let now

$$
\delta=\left(\frac{1}{z-x}-\frac{1}{z-y}\right) d z .
$$

There exists a unique form ω on $X-\{x, y\}$ such that
(a) ω is harmonic in $X-\{x, y\}$ and exact in $X-\bar{N}$.
(b) $\omega-\delta$ is harmonic in N; ω and δ have the same periods in N.
(c) $\left\|\omega_{X-N}\right\|<\infty$.
(d) For any function ϕ on X of class C^{2} such that $\|d \phi\|<\infty$ and $\phi=0$ in N, one has $(\omega, d \phi)=0$.
Proof. One that $\delta=d\left(\log \frac{z-x}{z-y}\right)$. Since the resudues at x and at y cancel, the function $\left.\log \frac{z-x}{z-y}\right)$ is single-valued outside N. Thus, δ is exact outside N.

The construction goes as in the previous case, but with a new form θ defined by the formula

$$
\theta= \begin{cases}d\left(\rho(|z|) \log \frac{z-x}{z-y}\right), & z \in D \\ 0, & \text { in } X-D\end{cases}
$$

8.4. Meromorphic differentials and meromorphic functions. Recall that one of our declared aims has been to construct a nonconstant meromorphic function on any Riemann surface. We are now very close to fulfilling the promise.

8.4.1. Meromorphic one-forms

A meromorphic differential on X can be defined as a holomorphic one-form on $X-S$ where S is a discrete subset of "singular points", with an extra condition that near each singular point it looks in the local coordinates as $f(z) d z$ where $f(z)$ has a pole at 0 .

Another way of defining a meromorphic one-form is to mimic the definition of a one-form, using meromorphic functions as coefficients.

In any case, if ω is the harmonic form constructed in Theorem 8.3.1, the expression $\frac{1}{2}(\omega+i * \omega)$ is holomorphic outside X and coincides with $\delta=d\left(\frac{1}{z^{n}}\right)$ inside N. Thus, it is meromorphic, with a pole of degree $n+1$ at x.

Similarly, we can construct a meromorphic differential having two order 1 poles at close points x, y with residues differing by signs.

8.4.2. Meromorphic one-forms versus meromorphic functions

If ω is a meromorphic one-form and f is a meromorphic function on X, the product $f \omega$ is a meromorphic one-form. It turns out that, vice versa, any two (non-zero) meromorphic differentials can be obtained one from another by multiplying to a meromorphic function.

Lemma. Let ω_{1} and ω_{2} be two non-zero meromorphic differentials. There exists a unique meromorphic function f on X such that $\omega_{2}=f \omega 1$.

Proof. In any coordinate chart we have $\omega_{i}=g_{i} d z$ where g_{i} are nonzero meromorphic functions. We define $f=\frac{g_{2}}{g_{1}}$. This gives a meromorphic function in a chart. Now it is enough to prove that this collection of meromorpihc functions is compatible with the coordinate change.

If $z=z(w)$ is the transition function, we have

$$
\omega_{i}=g_{i}(z) d z=g_{i}(z(w)) z_{w}^{\prime} d w,
$$

so that the fraction $\frac{g_{2}(z(w)) z-w}{g_{1}(z(w)) z-w}$ is equal to $\frac{g_{2}(z(w))}{g_{1}(z(w))}$. This proves the assertion.
Corollary. Any Riemann surface admits a nonconstant meromorphic function.
Proof. We know there exists a meromorphic differential with a pole at a given point x. Divide it to a meromorphic differential with a pole at another point. The meromorphic function we get cannot be constant.

8.4.3. Residues

If ω is a meromorphic one-form and $x \in X$, we define the residue

$$
\operatorname{Res}_{x}(\omega)=\frac{1}{2 \pi i} \int_{\gamma} \omega
$$

where γ is a small circle around x (properly oriented). As we know, $\operatorname{Res}_{x}(\omega)=a_{-1}$ where $\omega=f(z) d z$ and $f(z)=\sum a_{i} z^{i}$ is the Laurent expansion near z.
Proposition. Let X be compact and let ω be a meromorphic one-form. Then

$$
\sum_{x \in X} \operatorname{Res}_{x}(\omega)=0 .
$$

Proof. We can triangulate X so that all poles of ω are in the interiors of the triangles. Let $\Delta_{1}, \ldots, \Delta_{n}$ are the triangles of our triangulation. Then

$$
\sum_{x \in X} \operatorname{Res}_{x}(\omega)=\sum_{i=1}^{n} \frac{1}{2 \pi i} \int_{\partial \Delta_{i}} \omega
$$

The right-hand side of the equation vanishes since each edge of the triangulation appears in it twice with the opposite signs.

8.4.4. Triangulability

We can now deduce that the compact Riemann surfaces admit a triangulation. We can interpret a meromorphic function f on X as a holomorphic map

$$
f: X \rightarrow \widehat{\mathbb{C}}
$$

If f is non-comstant and X is compact, it defines a ramified covering of $\widehat{\mathbb{C}}$. Recall that there is a finite set S of ramification points and f is a nonramified covering outside S.

Choose a triangulation of the Riemann sphere $\widehat{\mathbb{C}}$ so that the points of S are (a part of) the vertices of the triangulation. The inverse image of his triangulation yields a triangulation of X : its vertices are preimages of the vertices of $\widehat{\mathbb{C}}$, its edges and triangles are closures of the connected components of the preimages of (the interiors of) the edges and the trianges downstairs.
8.5. Riemann-Hurwitz formula. Riemann-Hurwitz formula calculates the genus of a compact Riemann surface X in terms of the ramification data corresponding to a nonconstant meromorphic function

$$
f: X \longrightarrow \widehat{\mathbb{C}}
$$

Let $S \subset \widehat{\mathbb{C}}$ be the ramification locus and let $R=f^{-1}(S)$. For each point $x \in R$ we define its branch number $b(x)$ to be $n-1$ if n is the order of zero of the function $f(z)-f(x)$ at x (the dafinition has to be adjusted if $f(x)=\infty \in \widetilde{\mathbb{C}}$, see Exercise 6).

Then we have
8.5.1. Theorem. One has the equality

$$
g(X)=1-n+\frac{B}{2}
$$

where n is the degree of f and $B=\sum_{x \in R} b(x)$.
The proof is easy one one knows the notion of Euler characterstic.
8.5.2. Euler characteristic Let X be a finite simplicial complex of dimension n, so that X_{i} denotes the set of i-simplices. Its Euler characteristic $\chi(X)$ is defined by the formula

$$
\chi(X)=\sum_{i=0}^{n}(-1)^{i}\left|X_{i}\right|
$$

The notion of Euler characteristic would have no sense of it depended on a triangulation. Fortunately, this is not so.

Proposition. Let X be a finite simplicial complex and let $h_{i}=r k H_{i}(X, \mathbb{Q})$ (it is called i-th Betti number of X). Then one has

$$
\chi(X)=\sum_{i=0}^{n}(-1)^{i} h_{i}
$$

Proof. Recall that the homology of X is defined as the homology of a certain chain complex $C_{*}(X)$. This means that $H_{i}=Z_{i} / B_{i}$ where $Z_{i}=\left\{z \in C_{i} \mid d z=0\right\}$ and $B_{i}=d\left(C_{i+1}\right)$. In our case we are interested in homology with rational coefficiens, which means that C_{i} is the \mathbb{Q}-vector space generated by X_{i} (rather than the free abelian group).

Thus, C_{*} is a finite complex of finite dimensional vector spaces over \mathbb{Q}. By definition of C_{i}, Z_{i}, B_{i} and H_{i} we have the equalities

$$
\begin{gathered}
h_{i}=\operatorname{dim} H_{i}=\operatorname{dim} Z_{i}-\operatorname{dim} B_{i} . \\
\operatorname{dim} B_{i}=\operatorname{dim} C_{i+1}-\operatorname{dim} Z_{i+1} .
\end{gathered}
$$

Taking the alternating sum of these equalities we finally get

$$
\sum(-1)^{i} \operatorname{dim} C_{i}=\sum(-1)^{i} h_{i}
$$

This proves Proposition.
Note that we have not proven the independence of $H^{i}(X)$ of a triangulation. However, in our spacial case of compact Riemann surfaces, we know the answer:

$$
h_{0}(X)=h_{2}(X)=1, h_{1}(X)=2 g
$$

where g is the genus of X. Thus, $\chi(X)=2-2 g$.

8.5.3. Proof of Theorem 8.5.1

Choose a triangulation of $\widehat{\mathbb{C}}$ so that the ramification points are its vertices. Let V, E, F are the number of vertices, edges and faces in this triangulation.

We have $2=\chi(\widehat{\mathbb{C}})=V-E+N$. Lift the triangulation to X; The number of edges and faces in it will be $n E$ and $n F$ where n is the degree of $f: X \rightarrow \widehat{\mathbb{C}}$. However, the number of vertices V_{X} can be calculated by the formula

$$
n V=\sum(b(x)+1)=B+V_{X}
$$

Thus, we get

$$
2-2 g=V_{X}-E_{X}+F_{X}=n\left(V_{E}+F\right)-B=2 n-B
$$

This proves the theorem.

Home assignment.

1. Check the equality (1).
2. Let \widetilde{E} be the closure in $L^{2}(X)$ of the space of differentials $d f$ with $f \in C^{2}$ and $\|d f\|<\infty$. Check that $E \subset \widetilde{E} \subset E \oplus H$. Define $\widetilde{H}=\widetilde{E}^{\perp} \cap(E \oplus H)$. Prove $E \oplus H=\widetilde{E} \oplus \widetilde{H}$ and $\widetilde{H} \subset H$.
3. Complete the proof of Theorem 8.3.1.
