
RIEMANN SURFACES

8. Week 9: Harmonic forms, meromorphic forms, meromorphic
functions

8.1. Existence of harmonic differentials.

8.1.1. Theorem. Let X have a closed differential ω ∈ L2(X) which is not exact.
Then H 6= 0. The converse is true if X is compact.

Proof. If ω is closed, ω = α + h where α ∈ E and h ∈ H. If ω is not exact,
there exists a closed curve γ such that

∫
γ
ω 6= 0. Note that α = ω − h is C1, so∫

γ
α = (α, ∗ηγ) = 0. Therefore,

∫
γ
h 6= 0 which implies that h 6= 0.

If X is compact and h 6= 0 then h itself is closed and not exact. �

Let now γ be a simple closed curve in X such that X − γ is connected. Then
there exists another simple closed curve γ∗ intersecting γ in exactly one point
P ∈ X.

One has

(1)

∫
γ∗
ηγ = lim

Q→P−
f(Q)− lim

Q→P+
f(Q) = 1.

This yields the following

8.1.2. Theorem. Let a Riemann surface X admits a closed curve γ such that
X − γ is connected. Then X admits a nonzero harmonic one-form.

8.2. Decomposition of smooth forms. Let ω ∈ L2(X). We have an orthog-
onal decomposition

ω = α + β + h

where α ∈ E, β ∈ E∗ and h ∈ H. We also know that if ω ∈ C1 ∩ E then ω
is exact and if ω ∈ E∗ ∩ C1 then it is coexact. However, we can not deduce
smoothness of α and β from the smoothneww of ω. We intend to fix this.

In this subsection we will prove the existence of a decomposition

(2) ω = df + ∗dg + h,

for ω ∈ L2 ∩ C3 where h ∈ H and f, g are function of class C2.
As a first step we will look for a function g such that the difference ω − ∗dg is

closed.
The latter is equivalent to saying that dω − d ∗ dg = 0 that is

(3) ∆g = dω.
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8.2.1. Proposition. Let f be a C2 function with a compact support on C. Then
the Poisson equation

∂2g

∂x2
+
∂2g

∂y2
= f

has a solution g ∈ C2.

Proof. We will prove that the formula

(4) g(z) = − i

4π

∫
C

log |z − ζ|f(ζ)dζ ∧ dζ̄

gives a C2 solution.
Passing to the polar coordinates ζ − z = r(cosφ+ i sinφ), one gets dζ ∧ dζ̄ =

−2irdr ∧ dφ. This ensures that the integral (4) converges since log(r)r → 0 for
r → 0.

In order to apply a differential operator to the function given by (4), it suffices
to apply it to the function f . Thus, the Laplace operator of g is given by the
formula

(5) ∆g = − 1

2π

∫ 2π

0

(∫ ∞
0

log r

[
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2

∂2f

∂φ2

]
rdr

)
dφ.

Recall that f has a compact support, so the limits of integration along r can be
talen as [0, R]. Then

(6) ∆g = − 1

2π
lim
ε→0

∫ 2π

0

(∫ R

ε

{
∂

∂r

[
r log r

∂f

∂r
− f

]
+

∂

∂φ

(
log r

r

∂f

∂φ

)}
dr

)
dφ.

We can now use Stokes formula. The first summand will disappear, so we get

(7) ∆g = − 1

2π
lim
ε→0

∫ 2π

0

[
ε log ε

∂f

∂r
|r=ε − f |r=ε

]
dφ.

The expression ε log ε→ 0 when ε→ 0 and the absolute value of ∂f
∂r

is bounded, so
the first summand tends to zero; the second summand yields what we need. �

Using Proposition 8.2.1 we can get a decomposition for smooth forms. The
first result below is a local claim; the second one is what we really intended to
get.

8.2.2. Lemma. Any form ω ∈ C3 can be locally decomposed as

ω = df + ∗dg

where f, g are functions of class C2.
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Proof. Let x ∈ X. Choose a coordinate chart around x so that z = 0 corresponds
to the point x. Choose a smooth function s(z) in D which is 1 for |z| < 1

3
and 0

for |z| > 2
3
. The product sω is a C3 one-form with compact support; therefore,

by Proposition 8.2.1 ensures there exists a function g in D such that sω−∗dg is
closed and, therefore, exact. �

8.2.3. Theorem. Let ω ∈ L2(X) be of type C3. Then in the orthogonal decom-
position

ω = h+ α + β

with h ∈ H, α ∈ E and β ∈ E∗ the forms α and β are of class C1.

Note that the theorem implies that α = df, β = ∗dg for f, g of class C2.

Proof. Let ω = h+ α + β with h ∈ H, α ∈ E and β ∈ E∗.
Let x ∈ X. Choose a local coordinate around x so that the unit disc D =
{z||z| < 1} identifies with an open neighborhood of x.

By Lemma 8.2.2 the restriction of ω to D can be presented as df + ∗dg. Note
that df is closed and therefore belongs to E(D) ⊕ H(D); similarly ∗dg belongs
to E∗(D) ⊕ H(D). At the same time h|D + α|D belongs to E(D) ⊕ H(D) and
β|D belongs to E∗(D)⊕H(D).

Thus, the element h|D + α|D − df = ∗dg− β|D is harmonic in D. This implies
that α|D and β|D are of class C1.

�

8.3. Harmonic differentials with poles. Harmonic differentials on a compact
Riemann surface X can not be exact: otherwise they would belong to the inter-
section E ∩H.

We will construct now harmonic differentials having a pole .
Let X be any Riemann surface and x ∈ X. Choose a chart in a neighborhood

of x with a local coordinate so that the neighborhood identifies with the unit disc
D and x corresponds to z = 0.

Fix n ≥ 1.
We denote δ = d

(
1
zn

)
. This is an exact differential on D − {x}.

8.3.1. Theorem. There exists a unique differential ω on X − {x} satisfying the
following properties.

(a) ω is harmonic and exact on X − {x}.
(b) ω − δ is harmonic in a neighborhood N of x.
(c) ||ωX−N || <∞.
(d) For any function φ on X of class C2 such that ||dφ|| < ∞ and φ = 0 at

a neighborhood of x, one has (ω, dφ) = 0.

Proof. Let us start with uniqueness. Assume two differentials, ω1 and ω2 satisfy
the conditions of the theorem. Their difference is harmonic since its restriction
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to X − {x} and to N is harmonic. It is exact, therefore,

ω1 − ω2 = dh

where h is a harmonic function on X.
Choose a smooth function ρ on [0, 1] so that ρ(t) = 1 for t < 1

3
and ρ(t) = 0

for t > 2
3
.

Define a new function g on X by the formula

(8) g =

{
ρ(|z|)h(z), z ∈ D
0, in X −D.

Then g has a compact support and g = h at N := {z||z| < 1
3
. Then

||d(h− g)|| ≤ ||dh||X−N + ||dg||X−N ≤ ||ω1||X−N + ||ω1||X−N + ||dg|| <∞,

so by the property (4) applied to φ = g − h we get

||ω1 − ω2||2 = (ω1 − ω2, dh) = (ω1 − ω2, d(h− g)) + (ω1 − ω2, dg) = 0

since dg ∈ E and ω1 − ω2 ∈ H.
Let us now prove the existence.
Define

θ =

{
d
(
ρ(|z|)
zn

)
, z ∈ D

0, in X −D.
We will define ω be the formula

ω = θ − df

where the function f ∈ C2 will be determined later on.
The form ω so defined is automatically exact since θ and df are exact. Har-

monicity of ω in X − {x} is equivalent therefore to the condition

(9) 0 = d ∗ θ − d ∗ df.

Since θ and δ coincide in N , the property (b) is satisfied automatically if f is as
in (9): ω−δ = df in N and f satisfying (9) is harmonic in N since d∗θ = d∗δ = 0
in N .

The property (c) is satisfied automatically if df ∈ L2 since ||ω||X−N̄ ≤ ||θ||X−N̄+
||df ||X−N̄ .

The formula (9) defines f uniquely up to a harmonic function. The easiest
way would be to decompose θ into h+ α+ β with α ∈ E and β ∈ E∗; we do not
do this literally since θ has a pole. However, the difference θ − i ∗ θ vanishes in
N since it coincides there with δ − i ∗ δ = 0 since δ is holomorphic in D − {x}.

Thus, θ − i ∗ θ = 0 in N as well as in X −D. Therefore, θ − i ∗ θ ∈ Λ1
fin(X).

In particular, it can be decomposed as in Theorem 8.2.3 as

(10) θ − i ∗ θ = h+ α + β
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where h ∈ H, α ∈ E, β ∈ E∗, and α = du, β = ∗dv for some u, v ∈ Λ0(X). Note
that α and β belong to Λ1

fin(X) by the construction.
Applying d∗ to (10) we get

d ∗ θ = d ∗ du
which is a possible solution for f . That is we will have to choose f different from
u by a harmonic function χ, so that now ω = θ− du− dχ = i ∗ θ+ h− dχ+ ∗dv.
The only requirement is that we have to satisfy property (d).

Let φ be a function as in (d). We have

(ω, dφ) = i(∗θ, dφ) + (h− dχ, dφ)

since (∗dv, dφ) = 0 (any exact form is orthogonal to E∗). Since φ vanishes in a
neighborhood of x,

(∗θ, dφ) =

∫
A

θ ∧ dφ =

∫
A

φdθ +

∫
∂A

φθ = 0

where A is the annulus ε < |z| < 1.
Thus, we have to find a harmonic function χ such that h− dχ is orthogonal to

all exact forms in L2(X). This is left as an exercise. �

Note that we were unable to construct a harmonic one-form with a first order
pole (compare to our discussion of elliptic functions).

The following variation of the above theorem allows one to construct a har-
monic form with two simple poles.

8.3.2. Proposition. Let x ∈ X be as in Theorem 8.3.1 and let y ∈ N where N
is defined as above. Let now

δ = (
1

z − x
− 1

z − y
)dz.

There exists a unique form ω on X − {x, y} such that

(a) ω is harmonic in X − {x, y} and exact in X − N̄ .
(b) ω − δ is harmonic in N ; ω and δ have the same periods in N .
(c) ||ωX−N || <∞.
(d) For any function φ on X of class C2 such that ||dφ|| < ∞ and φ = 0 in

N , one has (ω, dφ) = 0.

Proof. One that δ = d(log z−x
z−y ). Since the resudues at x and at y cancel, the

function log z−x
z−y ) is single-valued outside N . Thus, δ is exact outside N .

The construction goes as in the previous case, but with a new form θ defined
by the formula

θ =

{
d
(
ρ(|z|) log z−x

z−y

)
, z ∈ D

0, in X −D.
�
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8.4. Meromorphic differentials and meromorphic functions. Recall that
one of our declared aims has been to construct a nonconstant meromorphic func-
tion on any Riemann surface. We are now very close to fulfilling the promise.

8.4.1. Meromorphic one-forms
A meromorphic differential on X can be defined as a holomorphic one-form on

X − S where S is a discrete subset of “singular points”, with an extra condition
that near each singular point it looks in the local coordinates as f(z)dz where
f(z) has a pole at 0.

Another way of defining a meromorphic one-form is to mimic the definition of
a one-form, using meromorphic functions as coefficients.

In any case, if ω is the harmonic form constructed in Theorem 8.3.1, the
expression 1

2
(ω + i ∗ ω) is holomorphic outside X and coincides with δ = d( 1

zn )
inside N . Thus, it is meromorphic, with a pole of degree n+ 1 at x.

Similarly, we can construct a meromorphic differential having two order 1 poles
at close points x, y with residues differing by signs.

8.4.2. Meromorphic one-forms versus meromorphic functions
If ω is a meromorphic one-form and f is a meromorphic function on X, the

product fω is a meromorphic one-form. It turns out that, vice versa, any two
(non-zero) meromorphic differentials can be obtained one from another by mul-
tiplying to a meromorphic function.

Lemma. Let ω1 and ω2 be two non-zero meromorphic differentials. There exists
a unique meromorphic function f on X such that ω2 = fω1.

Proof. In any coordinate chart we have ωi = gidz where gi are nonzero mero-
morphic functions. We define f = g2

g1
. This gives a meromorphic function in a

chart. Now it is enough to prove that this collection of meromorpihc functions is
compatible with the coordinate change.

If z = z(w) is the transition function, we have

ωi = gi(z)dz = gi(z(w))z′wdw,

so that the fraction g2(z(w))z−w

g1(z(w))z−w
is equal to g2(z(w))

g1(z(w))
. This proves the assertion. �

Corollary. Any Riemann surface admits a nonconstant meromorphic function.

Proof. We know there exists a meromorphic differential with a pole at a given
point x. Divide it to a meromorphic differential with a pole at another point.
The meromorphic function we get cannot be constant. �

8.4.3. Residues
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If ω is a meromorphic one-form and x ∈ X, we define the residue

Resx(ω) =
1

2πi

∫
γ

ω

where γ is a small circle around x (properly oriented). As we know, Resx(ω) = a−1

where ω = f(z)dz and f(z) =
∑
aiz

i is the Laurent expansion near z.

Proposition. Let X be compact and let ω be a meromorphic one-form. Then∑
x∈X

Resx(ω) = 0.

Proof. We can triangulate X so that all poles of ω are in the interiors of the
triangles. Let ∆1, . . . ,∆n are the triangles of our triangulation. Then∑

x∈X

Resx(ω) =
n∑
i=1

1

2πi

∫
∂∆i

ω.

The right-hand side of the equation vanishes since each edge of the triangulation
appears in it twice with the opposite signs. �

8.4.4. Triangulability
We can now deduce that the compact Riemann surfaces admit a triangulation.
We can interpret a meromorphic function f on X as a holomorphic map

f : X → Ĉ.
If f is non-comstant and X is compact, it defines a ramified covering of Ĉ. Recall
that there is a finite set S of ramification points and f is a nonramified covering
outside S.

Choose a triangulation of the Riemann sphere Ĉ so that the points of S are (a
part of ) the vertices of the triangulation. The inverse image of his triangulation

yields a triangulation of X: its vertices are preimages of the vertices of Ĉ, its
edges and triangles are closures of the connected components of the preimages of
(the interiors of) the edges and the trianges downstairs.

8.5. Riemann-Hurwitz formula. Riemann-Hurwitz formula calculates the genus
of a compact Riemann surface X in terms of the ramification data corresponding
to a nonconstant meromorphic function

f : X - Ĉ.
Let S ⊂ Ĉ be the ramification locus and let R = f−1(S). For each point x ∈ R
we define its branch number b(x) to be n − 1 if n is the order of zero of the

function f(z) − f(x) at x (the dafinition has to be adjusted if f(x) = ∞ ∈ C̃,
see Exercise 6).

Then we have
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8.5.1. Theorem. One has the equality

g(X) = 1− n+
B

2
where n is the degree of f and B =

∑
x∈R b(x).

The proof is easy one one knows the notion of Euler characterstic.

8.5.2. Euler characteristic Let X be a finite simplicial complex of dimension
n, so that Xi denotes the set of i-simplices. Its Euler characteristic χ(X) is
defined by the formula

χ(X) =
n∑
i=0

(−1)i|Xi|.

The notion of Euler characteristic would have no sense of it depended on a tri-
angulation. Fortunately, this is not so.

Proposition. Let X be a finite simplicial complex and let hi = rkHi(X,Q) (it
is called i-th Betti number of X). Then one has

χ(X) =
n∑
i=0

(−1)ihi.

Proof. Recall that the homology of X is defined as the homology of a certain
chain complex C∗(X). This means that Hi = Zi/Bi where Zi = {z ∈ Ci|dz = 0}
and Bi = d(Ci+1). In our case we are interested in homology with rational
coefficiens, which means that Ci is the Q-vector space generated by Xi (rather
than the free abelian group).

Thus, C∗ is a finite complex of finite dimensional vector spaces over Q. By
definition of Ci, Zi, Bi and Hi we have the equalities

hi = dimHi = dimZi − dimBi.

dimBi = dimCi+1 − dimZi+1.

Taking the alternating sum of these equalities we finally get∑
(−1)i dimCi =

∑
(−1)ihi.

This proves Proposition. �

Note that we have not proven the independence of H i(X) of a triangulation.
However, in our spacial case of compact Riemann surfaces, we know the answer:

h0(X) = h2(X) = 1, h1(X) = 2g

where g is the genus of X. Thus, χ(X) = 2− 2g.

8.5.3. Proof of Theorem 8.5.1
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Choose a triangulation of Ĉ so that the ramification points are its vertices. Let
V, E, F are the number of vertices, edges and faces in this triangulation.

We have 2 = χ(Ĉ) = V − E + N . Lift the triangulation to X; The number

of edges and faces in it will be nE and nF where n is the degree of f : X → Ĉ.
However, the number of vertices VX can be calculated by the formula

nV =
∑

(b(x) + 1) = B + VX

. Thus, we get

2− 2g = VX − EX + FX = n(VE + F )−B = 2n−B.
This proves the theorem.

Home assignment.
1. Check the equality (1).

2. Let Ẽ be the closure in L2(X) of the space of differentials df with f ∈ C2

and ||df || <∞. Check that E ⊂ Ẽ ⊂ E ⊕H. Define H̃ = Ẽ⊥ ∩ (E ⊕H). Prove

E ⊕H = Ẽ ⊕ H̃ and H̃ ⊂ H.
3. Complete the proof of Theorem 8.3.1.


