RIEMANN SURFACES

7. WEEK 8: SQUARE INTEGRABLE ONE-FORMS.

The conjugation operation * allows one to define square-integrable one-forms,
an inner product and L? space of one-forms. The latter has a remarkable decom-
position.

In a more detail, for wi,ws € AY(X) we define

(w1, w2) = /le A x(w2),

where the right-hand side can be finite or infinite.

A form w € A'(X) is called square-integrable if (w,w) < co. We have an inner
product on the vector space of square-integrable forms; its completion (see details
below) is denoted L?(X).

We define some important subspace of L?(X):

e F is the closure of the space of differentials df where f is smooth with a
compact support.
o F*={we *X)|*we E}.
The main result of this section will assert that L?(X) = E ® E* @ H where H is
the space of harmonic forms. This, in particular, will imply that any de Rham
cohomology class in H},,(X) has a unique harmonic representative.

7.1. Basics of Hilbert space theory.

7.1.1. Definition. A complex vector space H with a Hermitian inner product is
called a Hilbert space if it is complete with respect to the metric x,y — ||z — yl|.

Any finite-dimensional vector space admits an inner product. This inner
product is unique up to an isomorphism. Completeness is automatic in finite-
dimensional case. The most interesting Hilbert spaces are infinite-dimensional.

A typical example is ¢, — the space of infinite sequences * = (1,2, ...)
satisfying the condition Y |x;|* < cc.

The inner product is given by the formula

The standard Cauchy-Schwarz inequality proves that the inner product so de-
fined is always finite.

7.1.2. Subspaces The meaningful notion of subspace of H is the following.
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Definition. A subspace V' C H is a vector subspace which is closed in the
topology defined by the metric.

Example. The vector subspace of {5 generated by the “basic” sequences which
are zero everywhere except for one place, is not closed. On the contrary, it is
dense in ¢s.

Below some basic properties of Hilbert spaces are listed.
7.1.3. Lemma. (Cauchy inequality)
(2, y)I* < (2, 2)(y, y)-

7.1.4. Lemma. A subspace of a Hilbert space is itself Hilbert (that is, complete)
with respect to the induced inner product.

7.1.5. Lemma. Let V be a subspace of H. Denote V+ = {x € HVy € V(z,y) =
0}. Then V-t is also a subspace and H =V @& V.

7.1.6. Lemma. IfV, W are subspaces of H then V + W 1is also a subspace.

7.1.7. Proposition. (Riesz theorem) The map H — H* given by the formula
T (z, )

is a (norm preserving) isomorphism.

Proof. Injectivity is obvious since (z,z) = 0 implies x = 0. Let us prove sur-
jectivity. Let ¢ € H*. The kernel K is a subspace of H, therefore it has an
orthogonal complement. Obviously, dim K+ = 1. Choose z € K+ \ 0. Both ¢
and (z, ) have the same kernel. Their linear combination

(z, )

E R

vanishes at x. Therefore, it vanishes everywhere. The preservation of norms
follows from Cauchy inequality. OJ

7.1.8. Completion Our ultimate aim is to construct the space of square-
integrable forms L?. The easiest way to do this is via completion of the space of
smooth forms. Here is the general recipe.

Let V' be a complex vector space endowed with a Hermitian form

v,w— (v,w) € C.

We present below an easy construction of a completion V of V with respect to
the norm defined by the Hermitian form. The main property of V' is the following

7.1.9. Theorem. V is a Hilbert space, that is a vector space endowed with a
Hermatian form and complete with respect to the corresponding norm.



The proof is obvious. We recall below the definitions.

7.1.10. Definition. 1. A sequence {z;} in V is a Cauchy sequence if for any
¢ > 0 there exists N such that Vm,n > N one has ||z, — x| <.
2. Two Cauchy sequences are equivalent if their mixture is also a Cauchy
sequence.

The collection of Cauchy sequences forms a vector space denoted V.
Let us check V' has a Hilbert space structure. First of all, we have to define a
Hermitian form on it.

7.1.11. Lemma. Let {z;} and {y;} be Cauchy sequences. Then the sequence
(Tn, Yn) s Cauchy, and, therefore, it has a finite limit.

OJ
We define the inner product on 1% by the formula

({xn}’ {yn}> = lim(‘rm yn)‘

It is an easy exercise to check that Vis complete with respect to the norm defined
by the above inner product.

7.2. Space of L? one-forms. We apply the general completion construction to
the space of one-forms on a Riemann surface.

First of all, let us explain in a more detail how to integrate a two-form along
X. This is indispensable for the definition of inner product on one-forms.

We explained earlier how to integrate a two-form along a smooth singular
simplex 7 : A2 —— X. In order to integrate over the whole X we have to fix an
orientation of X and to choose its triangulation.

We have no problems with the orientation: since X is a Riemann surface, it
has an atlas with holomorphic transition functions. Such functions, as we have
already seen, have a positive Jacobian, which means that the complex-analytic
atlas defines an orientation of X.

It is easy to define the integral over X using a triangulation: the integral is
just the sum (finite or infinite) of the integrals over all simplices.

One has to take into account that if X is compact then the triangulation has a
finite number of simplices and the sum is always finite. In the noncompact case
the existence of a triangulation is less obvious, so one may be willing to define
the integral in a way which does not rely upon a triangulation.

A standard way of doing this is via partition of unity.

Recall a few basic notions.

7.2.1. Definition. A cover X = UV; is called locally finite if for any x € X there
exists a small neighborhood U of x having nonempty intersection with only finite
number of Vj.
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7.2.2. Definition. An open cover X = UV; is subordinate to a cover {U;} if for
each j there exist 7 so that V; C U;.

7.2.3. Definition. Let X = UV} be a locally finite covering of a manifold X. A
partition of unity corresponding to {V;} is a collection of smooth functions o
satisfying the following properties

e Suppa; C V.

e a;(z) > 0.

e For any z € X one has 3 a;(z) = 1.

7.2.4. Theorem. Let X be a manifold (note: it is assumed to be countable at
infinity). Then

1. Any covering X = UU; admits a locally finite subordinate covering {V;}.

2. Any locally finite covering {V;} admits a partition of unity.

7.2.5. Integration via partition of unity

Let now X be a smooth oriented manifold of dimension n (in our case n = 2)
and let w € A™(X).

Choose an oriented locally finite atlas {V}, ¢; : V; — R"} for X and a partition
of unity j — «;. We define the integral of w by the formula

/Xw = Z/}Rn o5 (o).

7.2.6. Some consequences of Stokes theorem

Proposition. Let D be a compact region in X bounded by a piecewise smooth
curve OD. Then for a C'-function f and a C*-one-form w one has

| po= [ anno+ [ rao

Proof. Apply Stokes theorem to fw. O

In particular, if w is closed, one has

/ w=0.
aD

Corollary. Let f or w have a compact support. Then

/dewz/xw/\df.

7.2.7. Construction of L?(X)
Recall that for a Riemann surface X one has two operations on A'(X):



1. Star-operation w = udz +vdz +— *w = —iudz + ivdz.
2. Complex conjugation w = udz + vdz +— @ = udz+ vdz.

One can easily check that the two operations commute. We define

(w,w') = /Xw A *w.

Let A}m be the set of all one-forms with finite norm. By the Cauchy inequality,
A}, is a vector subspace of A'.

We define L*(X) as the completion of A}, with respect to the norm defined
above.

7.3. Decomposition. Define E C L?(X) as the closure of the space of df where
f e AYX) (AYX) is the space of smooth functions with compact support).

Define £* = {w| *w € E}.

Thus, any element w € F is presented by a sequence w = lim df; where f; are
smooth functions with compact support.

By the general theory one has

I*(X)=E®E+=FE"®FE~+.
By definition,
Et={we L?(w,df)=0 VfeA(X)}
and
Bt ={we L?|(w,*df) =0 Vf e A2AX)}.
We will deduce now that E and E* are orthogonal to each other.

7.3.1. Proposition. Let o € L*(X) be of class C*. Then o € E** iff a is closed
and o € E* iff o is coclosed.

Proof. Assume « is closed and f € A% have support at a compact domain D.

Then
(a,*df):—/Da/\W:—/Dd(af):—/aDaf:O.

Thus, a € E**+. Conversely, if « € E**, one has

oz(a,*df):—/QAW:—/D(d(a‘)—daf):/Dfda.

D

The latter vanishes for all f € A%(X) only if dw = 0.
The second claim of the proposition follows from the first one, together with
Exercise 1 (see below). O

The above proposition immediately implies that the spaces F and E* are
orthogonal. This implies the following
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7.3.2. Lemma. There is an orthogonal decomposition
I*X)=E®oEoH

where
H=E*nE**.

Our next task will be to prove that H is the space of harmonic one-forms.
Note that any harmonic form belongs to H and that any form in H of class C! is
harmonic — by the above proposition. Thus, the only problem is to prove that
any element of H is automatically of class C*.

This will be done using the following important Weyl lemma which will be
proven later on.

7.3.3. Theorem (Weyl’'s Lemma). Let D be the unit disc. Let w € L*(D) be a
square-integrable one-form on D. Then w is harmonic iff

(1) (wa df)D = (w7 *df) =0

for any C*-function n with compact support.
We are now ready to prove the following
7.3.4. Theorem. H consists of harmonic one-forms.

Proof. If w is harmonic, it is smooth, closed and coclosed. Then by Proposi-
tion 7.3.1 w € H. Conversely, let w € H. We have to prove that w is smooth.
Then it will be smooth, closed and coclosed, therefore, harmonic. The inverse
image to D of the restriction w|y satisfies the conditions of Weyl’'s Lemma, so
that w|p is harminic. This implies that w is smooth which is enough for us. O

7.4. Weyl’s Lemma. We will now prove Theorem 7.3.3.

First of all, the “only if” part is obvious: a harmonic form is orthogonal to
both E and E*.

The converse is much more difficult. The idea is to “smoothen” and arbitrary
L2-differential so that some important properties are preserved.

7.4.1. Smoothing operators: properties Recall that we live on the disc
D ={z€eC| |z < 1}.

For each number p € (0,1) an operator M, : L?*(D) — L*(D) will be defined.
It will satisfy the following properties
(SM1) For w € L*(D) one has M,(w) € C*(D,), where D, = {z € C| |z| < 1—p}.
(SM2) If w is harmonic, M,(w) = w in D,,.
(SM3) For w € L*(D), lim,_ ||w — M,(w)||p, = 0.
(SM4) If Supp v C D, then Supp M,(y) C D and one has

(Mp(w)a V)Dp = (wa Mp(V))D-



7.4.2. Construction of smoothing operators
The smoothing operators M, will be first of all defined for L?-functions, and
then extended to L2-forms by the formula

M,(w) = M,(f)dx + M,(g)dy

for w = fdx + gdy.
We define a function s, on C by the formula

R = 12, 2l <p
sol2) = { 0, 2> p

where the normalizing constant k& is chosen so that

/ sp(2)dz NdzZ = 1.
D

1—p

and for any complex-valued L?-function f we define
M) = [ £Q)s(e = Ode e
D

The operator M, defined above assigns to each point z (at least for z € D,)
the average value of a function f in a disc of radius p around z.
This explains especially good properties of M,(f) in D,,.

7.4.3. Proof of the properties
See G. Springer, Introduction to Riemann surfaces, p. 190-195.

7.4.4. Weyl Lemma: end of the proof
Let w L?(D) satisfy the properties (w,df) = (w,*df) = 0 for all f € A%D).
Then for all f € A%(D,) one has

(Mp(w), df )b, = (w, M,(df))p = (w,dM,(f))p =0
and
(Mp(w), #df)p, = (w, My(xdf))p = (w, *dM,(f))p = 0.
since M, commutes with * and with d. Then Proposition 7.3.1 implies that
M,(w) is harmonic in D,,.

We are almost done since M,(w) approximate w; but this is not enough. We
will actually prove that M,(w) and M, (w) coincide in D, , and his will be enough
to deduce equality w = M,(w) from the estimate of ||w — M,(w)]|.

By (SM2) one has that M,M,(w) coincides with M,(w) in Dy, since M,(w)
is harmonic in D,. Similarly, M,M,(w) coincides with M,(w) in D,,,. Thus, it
is enough to check that M,M, = M,M,, and we get the required coincindence
of M,(w) and M,(w) insode D,,.



The property M,M, = M,M, is a direct result of Fubini theorem.
And now comes the last step. Property (SM3) says that lim, o ||M,(w) —
w||p, = 0. One has an obvious inequality

||a||Dd+p S ||a||Dp
just because Dy, C D,. Therefore,

i{r(l) ||Mp(w> - w||Do'+p - O

Since M,(w) and M, (w) coincide in D, ,, the latter can be rewriten as

lim 1M, (@) = wllb,, =0

Note that we are talking about th elimit of a function which increases while
p — 0. Thus, it is constantly zero.
We have deduced that

1M, () = wllp,,, =0
for all p > 0. Thus, M,(w) = w and the theorem is proven.

7.4.5. Corollary. E ® H is the closure in L*(X) of the space of closed (square
integrable) one-forms. Similarly, E* ® H is the closure of the space of coclosed
one-forms.

Proof. Any closed one-form belongs to E*t = E @ H, so the latter contains the
closure of the former. Conversely, if « € F & H then its harmonic component is
closed and any element of £ is by definition a limit of closed (even exact) forms.
The claim for coclosed forms is similar. 0J

7.4.6. Restriction
Let U be an open subset of X. Restriction of forms defines a map

A(X) — AY(D)

so that ||w|| > ||w|v]]-
Thus, a map L*(X) — L*(U) is defined. We call it restriction.

The restriction of a closed form is closed, so the restriction preserves the spaces
E® H and E*® H.

7.5. One-forms defined by closed curves. Let 7 be a simple closed curve

in X. Choose an open neighborhood € of v so that Q@ — v = QT U Q™ is a

disjoint union of two annuli. Choose a smaller neighborhood €y and its two

parts QF = Qg N OF. Choose an orientation of v so that Q~ is to the left of .
Choose a real-valued function f smooth on X — = such that

f‘ﬂa = 17 f’X—Q*-



We define a one-form 7, by the formula

Mla— = df;nlyla, = 0.
The form 7, is obviously closed and smooth.
It is called “the one-form associated to v”. Note that it depends on the choice
of the function f; however, the difference is an exact form, so the cohomology
class is uniquely defined.

7.5.1. Proposition. Let o € L*(X) be a closed form of class C*. Then

/a = (a, *n,).
g
Proof. One has

(a,*nv):—/xa/\m:—/a/\df: Q7al(f04)—fdo<:

:/d(fa): 8Qfa=/7a.

O

7.5.2. Proposition. Let a € L*(X) be a form of class C'. Then « is exact
(resp., coezact) iff (o, 3) = 0 for any coclosed (resp., closed) f € AL(X).

Proof. If « is exact, a = df with f € C?. Let d* 3 = 0, Supp 8 C D for a
compact domain D. Then

(a,ﬁ)Z/Ddf/\*ﬁz/Dd(f*ﬁ—fd*ﬁ): [ jei=0

Conversely, if («, 3) = 0 for all coclosed compactly supported 3, we can apply
this to 8 = 7, and deduce that
/ a=0
”

for all v. This implies that « is exact (see Exercise 2).
The claim about coexactness of o now follows from the fact that * is an isom-
etry.
O

7.5.3. Corollary. Any formw € ENC! is exact. Any form in E*NC* is coezact.

Proof. To prove w is exact one has to check by 7.5.2 that (w,) = 0 for any
coclosed 3 with compact support. But we know this since E+ = H @ E* contains
all coclosed L? forms. O

7.5.4. Corollary. Let X be a compact Riemann surface. The first de Rham
cohomology of X s isomorphic to the space of harmonic one-forms.



10

Proof. Any harmonic form is closed and, therefore, defines a class of H}x(X).
Since H € E*, a nonzero harmonic form on a compact Riemann surface cannot
be exact. Therefore, the map H — H},,(X) is injective. The surjectivity is
Exercise 3 below. O

7.5.5. Exact forms

The space E is defined as the closure of the space of compactly supported
exact forms. Therefore, if X is compact, E contains all exact forms.

This is not true if X is not compact.

Here is a typical example. Let f be a harmonic function in a neighborhood of
the closure of the unit disc D. Then (by definition) df is a harmonic differential
on D, and therefore cannot belong to E.

Home assignment.

1. Check that the star operation is isometry on L*(X).

2. Let w be a closed one-form such that fvw = 0 for any piecewise smooth
closed curve ~. Deduce that w is exact.

3. Prove that the map H — H},(X) is surjective.



