
RIEMANN SURFACES

7. Week 8: Square integrable one-forms.

The conjugation operation ∗ allows one to define square-integrable one-forms,
an inner product and L2 space of one-forms. The latter has a remarkable decom-
position.

In a more detail, for ω1, ω2 ∈ Λ1(X) we define

(ω1, ω2) =

∫
X

ω1 ∧ ∗(ω̄2),

where the right-hand side can be finite or infinite.
A form ω ∈ Λ1(X) is called square-integrable if (ω, ω) <∞. We have an inner

product on the vector space of square-integrable forms; its completion (see details
below) is denoted L2(X).

We define some important subspace of L2(X):

• E is the closure of the space of differentials df where f is smooth with a
compact support.
• E∗ = {ω ∈ L2(X)| ∗ ω ∈ E}.

The main result of this section will assert that L2(X) = E ⊕E∗⊕H where H is
the space of harmonic forms. This, in particular, will imply that any de Rham
cohomology class in H1

DR(X) has a unique harmonic representative.

7.1. Basics of Hilbert space theory.

7.1.1. Definition. A complex vector space H with a Hermitian inner product is
called a Hilbert space if it is complete with respect to the metric x, y 7→ ||x− y||.

Any finite-dimensional vector space admits an inner product. This inner
product is unique up to an isomorphism. Completeness is automatic in finite-
dimensional case. The most interesting Hilbert spaces are infinite-dimensional.

A typical example is `2 — the space of infinite sequences x = (x1, x2, . . .)
satisfying the condition

∑
|xi|2 <∞.

The inner product is given by the formula

(x, y) =
∑

xiȳi.

The standard Cauchy-Schwarz inequality proves that the inner product so de-
fined is always finite.

7.1.2. Subspaces The meaningful notion of subspace of H is the following.
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Definition. A subspace V ⊂ H is a vector subspace which is closed in the
topology defined by the metric.

Example. The vector subspace of `2 generated by the “basic” sequences which
are zero everywhere except for one place, is not closed. On the contrary, it is
dense in `2.

Below some basic properties of Hilbert spaces are listed.

7.1.3. Lemma. (Cauchy inequality)

|(x, y)|2 ≤ (x, x)(y, y).

7.1.4. Lemma. A subspace of a Hilbert space is itself Hilbert (that is, complete)
with respect to the induced inner product.

7.1.5. Lemma. Let V be a subspace of H. Denote V ⊥ = {x ∈ H|∀y ∈ V (x, y) =
0}. Then V ⊥ is also a subspace and H = V ⊕ V ⊥.

7.1.6. Lemma. If V, W are subspaces of H then V +W is also a subspace.

7.1.7. Proposition. (Riesz theorem) The map H → H∗ given by the formula

x 7→ (x, )

is a (norm preserving) isomorphism.

Proof. Injectivity is obvious since (x, x) = 0 implies x = 0. Let us prove sur-
jectivity. Let φ ∈ H∗. The kernel K is a subspace of H, therefore it has an
orthogonal complement. Obviously, dimK⊥ = 1. Choose x ∈ K⊥ \ 0. Both φ
and (x, ) have the same kernel. Their linear combination

φ− (x, x)

φ(x)
(x, )

vanishes at x. Therefore, it vanishes everywhere. The preservation of norms
follows from Cauchy inequality. �

7.1.8. Completion Our ultimate aim is to construct the space of square-
integrable forms L2. The easiest way to do this is via completion of the space of
smooth forms. Here is the general recipe.

Let V be a complex vector space endowed with a Hermitian form

v, w 7→ (v, w) ∈ C.

We present below an easy construction of a completion V̂ of V with respect to

the norm defined by the Hermitian form. The main property of V̂ is the following

7.1.9. Theorem. V̂ is a Hilbert space, that is a vector space endowed with a
Hermitian form and complete with respect to the corresponding norm.
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The proof is obvious. We recall below the definitions.

7.1.10. Definition. 1. A sequence {xi} in V is a Cauchy sequence if for any
ε > 0 there exists N such that ∀m,n > N one has ||xn − xm|| < ε.

2. Two Cauchy sequences are equivalent if their mixture is also a Cauchy
sequence.

The collection of Cauchy sequences forms a vector space denoted V̂ .

Let us check V̂ has a Hilbert space structure. First of all, we have to define a
Hermitian form on it.

7.1.11. Lemma. Let {xi} and {yi} be Cauchy sequences. Then the sequence
(xn, yn) is Cauchy, and, therefore, it has a finite limit.

�
We define the inner product on V̂ by the formula

({xn}, {yn}) := lim(xn, yn).

It is an easy exercise to check that V̂ is complete with respect to the norm defined
by the above inner product.

7.2. Space of L2 one-forms. We apply the general completion construction to
the space of one-forms on a Riemann surface.

First of all, let us explain in a more detail how to integrate a two-form along
X. This is indispensable for the definition of inner product on one-forms.

We explained earlier how to integrate a two-form along a smooth singular
simplex γ : ∆2 - X. In order to integrate over the whole X we have to fix an
orientation of X and to choose its triangulation.

We have no problems with the orientation: since X is a Riemann surface, it
has an atlas with holomorphic transition functions. Such functions, as we have
already seen, have a positive Jacobian, which means that the complex-analytic
atlas defines an orientation of X.

It is easy to define the integral over X using a triangulation: the integral is
just the sum (finite or infinite) of the integrals over all simplices.

One has to take into account that if X is compact then the triangulation has a
finite number of simplices and the sum is always finite. In the noncompact case
the existence of a triangulation is less obvious, so one may be willing to define
the integral in a way which does not rely upon a triangulation.

A standard way of doing this is via partition of unity.
Recall a few basic notions.

7.2.1. Definition. A cover X = ∪Vi is called locally finite if for any x ∈ X there
exists a small neighborhood U of x having nonempty intersection with only finite
number of Vi.
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7.2.2. Definition. An open cover X = ∪Vj is subordinate to a cover {Ui} if for
each j there exist i so that Vj ⊂ Ui.

7.2.3. Definition. Let X = ∪Vj be a locally finite covering of a manifold X. A
partition of unity corresponding to {Vj} is a collection of smooth functions αi
satisfying the following properties

• Suppαj ⊂ Vj.
• αi(x) ≥ 0.
• For any x ∈ X one has

∑
j αj(x) = 1.

7.2.4. Theorem. Let X be a manifold (note: it is assumed to be countable at
infinity). Then

1. Any covering X = ∪Ui admits a locally finite subordinate covering {Vj}.
2. Any locally finite covering {Vj} admits a partition of unity.

7.2.5. Integration via partition of unity
Let now X be a smooth oriented manifold of dimension n (in our case n = 2)

and let ω ∈ Λn(X).
Choose an oriented locally finite atlas {Vj, φj : Vj → Rn} for X and a partition

of unity j 7→ αj. We define the integral of ω by the formula∫
X

ω =
∑
j

∫
Rn
φ−1∗
j (αjω).

7.2.6. Some consequences of Stokes theorem

Proposition. Let D be a compact region in X bounded by a piecewise smooth
curve ∂D. Then for a C1-function f and a C1-one-form ω one has∫

∂D

fω =

∫
D

d(f) ∧ ω +

∫
D

fdω.

Proof. Apply Stokes theorem to fω. �

In particular, if ω is closed, one has∫
∂D

ω = 0.

Corollary. Let f or ω have a compact support. Then∫
X

fdω =

∫
X

ω ∧ df.

7.2.7. Construction of L2(X)
Recall that for a Riemann surface X one has two operations on Λ1(X):
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1. Star-operation ω = udz + vdz̄ 7→ ∗ω = −iudz + ivdz̄.
2. Complex conjugation ω = udz + vdz̄ 7→ ω̄ = ūdz̄ + v̄dz.

One can easily check that the two operations commute. We define

(ω, ω′) =

∫
X

ω ∧ ∗ω̄′.

Let Λ1
fin be the set of all one-forms with finite norm. By the Cauchy inequality,

Λ1
fin is a vector subspace of Λ1.

We define L2(X) as the completion of Λ1
fin with respect to the norm defined

above.

7.3. Decomposition. Define E ⊂ L2(X) as the closure of the space of df where
f ∈ Λ0

c(X) (Λ0
c(X) is the space of smooth functions with compact support).

Define E∗ = {ω| ∗ ω ∈ E}.
Thus, any element ω ∈ E is presented by a sequence ω = lim dfi where fi are

smooth functions with compact support.
By the general theory one has

L2(X) = E ⊕ E⊥ = E∗ ⊕ E∗⊥.

By definition,

E⊥ = {ω ∈ L2|(ω, df) = 0 ∀f ∈ Λ0
c(X)}

and

E∗⊥ = {ω ∈ L2|(ω, ∗df) = 0 ∀f ∈ Λ0
c(X)}.

We will deduce now that E and E∗ are orthogonal to each other.

7.3.1. Proposition. Let α ∈ L2(X) be of class C1. Then α ∈ E∗⊥ iff α is closed
and α ∈ E⊥ iff α is coclosed.

Proof. Assume α is closed and f ∈ Λ0
c have support at a compact domain D.

Then

(α, ∗df) = −
∫
D

α ∧ df = −
∫
D

d(αf̄) = −
∫
∂D

αf̄ = 0.

Thus, α ∈ E∗⊥. Conversely, if α ∈ E∗⊥, one has

0 = (α, ∗df) = −
∫
D

α ∧ df = −
∫
D

(d(αf̄)− dαf̄) =

∫
D

f̄dα.

The latter vanishes for all f ∈ Λ0
c(X) only if dω = 0.

The second claim of the proposition follows from the first one, together with
Exercise 1 (see below). �

The above proposition immediately implies that the spaces E and E∗ are
orthogonal. This implies the following



6

7.3.2. Lemma. There is an orthogonal decomposition

L2(X) = E ⊕ E∗ ⊕H
where

H = E⊥ ∩ E∗⊥.

Our next task will be to prove that H is the space of harmonic one-forms.
Note that any harmonic form belongs to H and that any form in H of class C1 is
harmonic — by the above proposition. Thus, the only problem is to prove that
any element of H is automatically of class C1.

This will be done using the following important Weyl lemma which will be
proven later on.

7.3.3. Theorem (Weyl’s Lemma). Let D be the unit disc. Let ω ∈ L2(D) be a
square-integrable one-form on D. Then ω is harmonic iff

(1) (ω, df)D = (ω, ∗df) = 0

for any C∞-function η with compact support.

We are now ready to prove the following

7.3.4. Theorem. H consists of harmonic one-forms.

Proof. If ω is harmonic, it is smooth, closed and coclosed. Then by Proposi-
tion 7.3.1 ω ∈ H. Conversely, let ω ∈ H. We have to prove that ω is smooth.
Then it will be smooth, closed and coclosed, therefore, harmonic. The inverse
image to D of the restriction ω|U satisfies the conditions of Weyl’s Lemma, so
that ω|D is harminic. This implies that ω is smooth which is enough for us. �

7.4. Weyl’s Lemma. We will now prove Theorem 7.3.3.
First of all, the “only if” part is obvious: a harmonic form is orthogonal to

both E and E∗.
The converse is much more difficult. The idea is to “smoothen” and arbitrary

L2-differential so that some important properties are preserved.

7.4.1. Smoothing operators: properties Recall that we live on the disc
D = {z ∈ C| |z| < 1}.

For each number ρ ∈ (0, 1) an operator Mρ : L2(D) → L2(D) will be defined.
It will satisfy the following properties

(SM1) For ω ∈ L2(D) one has Mρ(ω) ∈ C1(Dρ), where Dρ = {z ∈ C| |z| < 1−ρ}.
(SM2) If ω is harmonic, Mρ(ω) = ω in Dρ.
(SM3) For ω ∈ L2(D), limρ→0 ||ω −Mρ(ω)||Dρ = 0.
(SM4) If Supp γ ⊂ Dρ then Supp Mρ(γ) ⊂ D and one has

(Mρ(ω), γ)Dρ = (ω,Mρ(γ))D.
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7.4.2. Construction of smoothing operators
The smoothing operators Mρ will be first of all defined for L2-functions, and

then extended to L2-forms by the formula

Mρ(ω) = Mρ(f)dx+Mρ(g)dy

for ω = fdx+ gdy.
We define a function sρ on C by the formula

sρ(z) =

{
k(ρ2 − |z|2), |z| < ρ
0, |z| ≥ ρ

,

where the normalizing constant k is chosen so that∫
D1−ρ

sρ(z)dz ∧ dz̄ = 1.

and for any complex-valued L2-function f we define

Mρ(f)(z) =

∫
D

f(ζ)sρ(z − ζ)dζ ∧ dζ̄.

The operator Mρ defined above assigns to each point z (at least for z ∈ Dρ)
the average value of a function f in a disc of radius ρ around z.

This explains especially good properties of Mρ(f) in Dρ.

7.4.3. Proof of the properties
See G. Springer, Introduction to Riemann surfaces, p. 190–195.

7.4.4. Weyl Lemma: end of the proof
Let ω L2(D) satisfy the properties (ω, df) = (ω, ∗df) = 0 for all f ∈ Λ0

c(D).
Then for all f ∈ Λ0

c(Dρ) one has

(Mρ(ω), df)Dρ = (ω,Mρ(df))D = (ω, dMρ(f))D = 0

and
(Mρ(ω), ∗df)Dρ = (ω,Mρ(∗df))D = (ω, ∗dMρ(f))D = 0.

since Mρ commutes with ∗ and with d. Then Proposition 7.3.1 implies that
Mρ(ω) is harmonic in Dρ.

We are almost done since Mρ(ω) approximate ω; but this is not enough. We
will actually prove that Mρ(ω) and Mσ(ω) coincide in Dρ+σ and his will be enough
to deduce equality ω = Mρ(ω) from the estimate of ||ω −Mρ(ω)||.

By (SM2) one has that MσMρ(ω) coincides with Mρ(ω) in Dσ+ρ since Mρ(ω)
is harmonic in Dρ. Similarly, MρMσ(ω) coincides with Mσ(ω) in Dσ+ρ. Thus, it
is enough to check that MσMρ = MρMσ, and we get the required coincindence
of Mρ(ω) and Mσ(ω) insode Dσ+ρ.
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The property MσMρ = MρMσ is a direct result of Fubini theorem.
And now comes the last step. Property (SM3) says that limρ→0 ||Mρ(ω) −

ω||Dρ = 0. One has an obvious inequality

||α||Dσ+ρ ≤ ||α||Dρ
just because Dσ+ρ ⊂ Dρ. Therefore,

lim
ρ→0
||Mρ(ω)− ω||Dσ+ρ = 0.

Since Mρ(ω) and Mσ(ω) coincide in Dσ+ρ, the latter can be rewriten as

lim
ρ→0
||Mσ(ω)− ω||Dσ+ρ = 0.

Note that we are talking about th elimit of a function which increases while
ρ→ 0. Thus, it is constantly zero.

We have deduced that

||Mρ(ω)− ω||Dσ+ρ = 0

for all ρ > 0. Thus, Mρ(ω) = ω and the theorem is proven.

7.4.5. Corollary. E ⊕ H is the closure in L2(X) of the space of closed (square
integrable) one-forms. Similarly, E∗ ⊕ H is the closure of the space of coclosed
one-forms.

Proof. Any closed one-form belongs to E∗⊥ = E ⊕H, so the latter contains the
closure of the former. Conversely, if α ∈ E ⊕H then its harmonic component is
closed and any element of E is by definition a limit of closed (even exact) forms.
The claim for coclosed forms is similar. �

7.4.6. Restriction
Let U be an open subset of X. Restriction of forms defines a map

Λ1(X) - Λ1(U)

so that ||ω|| ≥ ||ω|U ||.
Thus, a map L2(X)→ L2(U) is defined. We call it restriction.
The restriction of a closed form is closed, so the restriction preserves the spaces

E ⊕H and E∗ ⊕H.

7.5. One-forms defined by closed curves. Let γ be a simple closed curve
in X. Choose an open neighborhood Ω of γ so that Ω − γ = Ω+ ∪ Ω− is a
disjoint union of two annuli. Choose a smaller neighborhood Ω0 and its two
parts Ω±o = Ω0 ∩ Ω±. Choose an orientation of γ so that Ω− is to the left of γ.

Choose a real-valued function f smooth on X − γ such that

f |Ω−0 = 1, f |X−Ω− .
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We define a one-form ηγ by the formula

ηγ|Ω−γ = df ; η|γ|Ω0 = 0.

The form ηγ is obviously closed and smooth.
It is called “the one-form associated to γ”. Note that it depends on the choice

of the function f ; however, the difference is an exact form, so the cohomology
class is uniquely defined.

7.5.1. Proposition. Let α ∈ L2(X) be a closed form of class C1. Then∫
γ

α = (α, ∗ηγ).

Proof. One has

(α, ∗ηγ) = −
∫
X

α ∧ ηγ = −
∫

Ω−
α ∧ df =

∫
Ω−
d(fα)− fdα =

=

∫
Ω−
d(fα) =

∫
∂Ω−

fα =

∫
γ

α.

�

7.5.2. Proposition. Let α ∈ L2(X) be a form of class C1. Then α is exact
(resp., coexact) iff (α, β) = 0 for any coclosed (resp., closed) β ∈ Λ1

c(X).

Proof. If α is exact, α = df with f ∈ C2. Let d ∗ β = 0, Supp β ⊂ D for a
compact domain D. Then

(α, β) =

∫
D

df ∧ ∗β̄ =

∫
D

d(f ∗ β̄ − fd ∗ β̄) =

∫
∂D

f ∗ β̄ = 0.

Conversely, if (α, β) = 0 for all coclosed compactly supported β, we can apply
this to β = ηγ and deduce that ∫

γ

α = 0

for all γ. This implies that α is exact (see Exercise 2).
The claim about coexactness of α now follows from the fact that ∗ is an isom-

etry.
�

7.5.3. Corollary. Any form ω ∈ E∩C1 is exact. Any form in E∗∩C1 is coexact.

Proof. To prove ω is exact one has to check by 7.5.2 that (ω, β) = 0 for any
coclosed β with compact support. But we know this since E⊥ = H⊕E∗ contains
all coclosed L2 forms. �

7.5.4. Corollary. Let X be a compact Riemann surface. The first de Rham
cohomology of X is isomorphic to the space of harmonic one-forms.
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Proof. Any harmonic form is closed and, therefore, defines a class of H1
DR(X).

Since H ∈ E⊥, a nonzero harmonic form on a compact Riemann surface cannot
be exact. Therefore, the map H → H1

DR(X) is injective. The surjectivity is
Exercise 3 below. �

7.5.5. Exact forms
The space E is defined as the closure of the space of compactly supported

exact forms. Therefore, if X is compact, E contains all exact forms.
This is not true if X is not compact.
Here is a typical example. Let f be a harmonic function in a neighborhood of

the closure of the unit disc D. Then (by definition) df is a harmonic differential
on D, and therefore cannot belong to E.

Home assignment.
1. Check that the star operation is isometry on L2(X).
2. Let ω be a closed one-form such that

∫
γ
ω = 0 for any piecewise smooth

closed curve γ. Deduce that ω is exact.
3. Prove that the map H → H1

DR(X) is surjective.


