RIEMANN SURFACES

7. Week 8: Square integrable one-forms.

The conjugation operation $*$ allows one to define square-integrable one-forms, an inner product and L^{2} space of one-forms. The latter has a remarkable decomposition.

In a more detail, for $\omega_{1}, \omega_{2} \in \Lambda^{1}(X)$ we define

$$
\left(\omega_{1}, \omega_{2}\right)=\int_{X} \omega_{1} \wedge *\left(\bar{\omega}_{2}\right)
$$

where the right-hand side can be finite or infinite.
A form $\omega \in \Lambda^{1}(X)$ is called square-integrable if $(\omega, \omega)<\infty$. We have an inner product on the vector space of square-integrable forms; its completion (see details below) is denoted $L^{2}(X)$.

We define some important subspace of $L^{2}(X)$:

- E is the closure of the space of differentials $d f$ where f is smooth with a compact support.
- $E^{*}=\left\{\omega \in L^{2}(X) \mid * \omega \in E\right\}$.

The main result of this section will assert that $L^{2}(X)=E \oplus E^{*} \oplus H$ where H is the space of harmonic forms. This, in particular, will imply that any de Rham cohomology class in $H_{D R}^{1}(X)$ has a unique harmonic representative.

7.1. Basics of Hilbert space theory.

7.1.1. Definition. A complex vector space H with a Hermitian inner product is called a Hilbert space if it is complete with respect to the metric $x, y \mapsto\|x-y\|$.

Any finite-dimensional vector space admits an inner product. This inner product is unique up to an isomorphism. Completeness is automatic in finitedimensional case. The most interesting Hilbert spaces are infinite-dimensional.

A typical example is ℓ_{2} - the space of infinite sequences $x=\left(x_{1}, x_{2}, \ldots\right)$ satisfying the condition $\sum\left|x_{i}\right|^{2}<\infty$.

The inner product is given by the formula

$$
(x, y)=\sum x_{i} \bar{y}_{i}
$$

The standard Cauchy-Schwarz inequality proves that the inner product so defined is always finite.
7.1.2. Subspaces The meaningful notion of subspace of H is the following.

Definition. A subspace $V \subset H$ is a vector subspace which is closed in the topology defined by the metric.

Example. The vector subspace of ℓ_{2} generated by the "basic" sequences which are zero everywhere except for one place, is not closed. On the contrary, it is dense in ℓ_{2}.

Below some basic properties of Hilbert spaces are listed.
7.1.3. Lemma. (Cauchy inequality)

$$
|(x, y)|^{2} \leq(x, x)(y, y)
$$

7.1.4. Lemma. A subspace of a Hilbert space is itself Hilbert (that is, complete) with respect to the induced inner product.
7.1.5. Lemma. Let V be a subspace of H. Denote $V^{\perp}=\{x \in H \mid \forall y \in V(x, y)=$ $0\}$. Then V^{\perp} is also a subspace and $H=V \oplus V^{\perp}$.
7.1.6. Lemma. If V, W are subspaces of H then $V+W$ is also a subspace.
7.1.7. Proposition. (Riesz theorem) The map $H \rightarrow H^{*}$ given by the formula

$$
x \mapsto(x, \quad)
$$

is a (norm preserving) isomorphism.
Proof. Injectivity is obvious since $(x, x)=0$ implies $x=0$. Let us prove surjectivity. Let $\phi \in H^{*}$. The kernel K is a subspace of H, therefore it has an orthogonal complement. Obviously, $\operatorname{dim} K^{\perp}=1$. Choose $x \in K^{\perp} \backslash 0$. Both ϕ and (x, \quad) have the same kernel. Their linear combination

$$
\phi-\frac{(x, x)}{\phi(x)}(x, \quad)
$$

vanishes at x. Therefore, it vanishes everywhere. The preservation of norms follows from Cauchy inequality.
7.1.8. Completion Our ultimate aim is to construct the space of squareintegrable forms L^{2}. The easiest way to do this is via completion of the space of smooth forms. Here is the general recipe.

Let V be a complex vector space endowed with a Hermitian form

$$
v, w \mapsto(v, w) \in \mathbb{C}
$$

We present below an easy construction of a completion \widehat{V} of V with respect to the norm defined by the Hermitian form. The main property of \widehat{V} is the following 7.1.9. Theorem. \widehat{V} is a Hilbert space, that is a vector space endowed with a Hermitian form and complete with respect to the corresponding norm.

The proof is obvious. We recall below the definitions.
7.1.10. Definition. 1. A sequence $\left\{x_{i}\right\}$ in V is a Cauchy sequence if for any $\epsilon>0$ there exists N such that $\forall m, n>N$ one has $\left\|x_{n}-x_{m}\right\|<\epsilon$.
2. Two Cauchy sequences are equivalent if their mixture is also a Cauchy sequence.

The collection of Cauchy sequences forms a vector space denoted \widehat{V}.
Let us check \widehat{V} has a Hilbert space structure. First of all, we have to define a Hermitian form on it.
7.1.11. Lemma. Let $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ be Cauchy sequences. Then the sequence $\left(x_{n}, y_{n}\right)$ is Cauchy, and, therefore, it has a finite limit.

We define the inner product on \widehat{V} by the formula

$$
\left(\left\{x_{n}\right\},\left\{y_{n}\right\}\right):=\lim \left(x_{n}, y_{n}\right) .
$$

It is an easy exercise to check that \widehat{V} is complete with respect to the norm defined by the above inner product.
7.2. Space of L^{2} one-forms. We apply the general completion construction to the space of one-forms on a Riemann surface.

First of all, let us explain in a more detail how to integrate a two-form along X. This is indispensable for the definition of inner product on one-forms.

We explained earlier how to integrate a two-form along a smooth singular simplex $\gamma: \Delta^{2} \longrightarrow X$. In order to integrate over the whole X we have to fix an orientation of X and to choose its triangulation.

We have no problems with the orientation: since X is a Riemann surface, it has an atlas with holomorphic transition functions. Such functions, as we have already seen, have a positive Jacobian, which means that the complex-analytic atlas defines an orientation of X.

It is easy to define the integral over X using a triangulation: the integral is just the sum (finite or infinite) of the integrals over all simplices.

One has to take into account that if X is compact then the triangulation has a finite number of simplices and the sum is always finite. In the noncompact case the existence of a triangulation is less obvious, so one may be willing to define the integral in a way which does not rely upon a triangulation.

A standard way of doing this is via partition of unity.
Recall a few basic notions.
7.2.1. Definition. A cover $X=\cup V_{i}$ is called locally finite if for any $x \in X$ there exists a small neighborhood U of x having nonempty intersection with only finite number of V_{i}.
7.2.2. Definition. An open cover $X=\cup V_{j}$ is subordinate to a cover $\left\{U_{i}\right\}$ if for each j there exist i so that $V_{j} \subset U_{i}$.
7.2.3. Definition. Let $X=\cup V_{j}$ be a locally finite covering of a manifold X. A partition of unity corresponding to $\left\{V_{j}\right\}$ is a collection of smooth functions α_{i} satisfying the following properties

- $\operatorname{Supp} \alpha_{j} \subset V_{j}$.
- $\alpha_{i}(x) \geq 0$.
- For any $x \in X$ one has $\sum_{j} \alpha_{j}(x)=1$.
7.2.4. Theorem. Let X be a manifold (note: it is assumed to be countable at infinity). Then

1. Any covering $X=\cup U_{i}$ admits a locally finite subordinate covering $\left\{V_{j}\right\}$.
2. Any locally finite covering $\left\{V_{j}\right\}$ admits a partition of unity.

7.2.5. Integration via partition of unity

Let now X be a smooth oriented manifold of dimension n (in our case $n=2$) and let $\omega \in \Lambda^{n}(X)$.

Choose an oriented locally finite atlas $\left\{V_{j}, \phi_{j}: V_{j} \rightarrow \mathbb{R}^{n}\right\}$ for X and a partition of unity $j \mapsto \alpha_{j}$. We define the integral of ω by the formula

$$
\int_{X} \omega=\sum_{j} \int_{\mathbb{R}^{n}} \phi_{j}^{-1 *}\left(\alpha_{j} \omega\right) .
$$

7.2.6. Some consequences of Stokes theorem

Proposition. Let D be a compact region in X bounded by a piecewise smooth curve ∂D. Then for a C^{1}-function f and a C^{1}-one-form ω one has

$$
\int_{\partial D} f \omega=\int_{D} d(f) \wedge \omega+\int_{D} f d \omega .
$$

Proof. Apply Stokes theorem to $f \omega$.
In particular, if ω is closed, one has

$$
\int_{\partial D} \omega=0 .
$$

Corollary. Let f or ω have a compact support. Then

$$
\int_{X} f d \omega=\int_{X} \omega \wedge d f
$$

7.2.7. Construction of $L^{2}(X)$

Recall that for a Riemann surface X one has two operations on $\Lambda^{1}(X)$:

1. Star-operation $\omega=u d z+v d \bar{z} \quad \mapsto \quad * \omega=-i u d z+i v d \bar{z}$.
2. Complex conjugation $\omega=u d z+v d \bar{z} \quad \mapsto \quad \bar{\omega}=\bar{u} d \bar{z}+\bar{v} d z$.

One can easily check that the two operations commute. We define

$$
\left(\omega, \omega^{\prime}\right)=\int_{X} \omega \wedge * \overline{\omega^{\prime}}
$$

Let $\Lambda_{\text {fin }}^{1}$ be the set of all one-forms with finite norm. By the Cauchy inequality, $\Lambda_{f i n}^{1}$ is a vector subspace of Λ^{1}.

We define $L^{2}(X)$ as the completion of $\Lambda_{\text {fin }}^{1}$ with respect to the norm defined above.
7.3. Decomposition. Define $E \subset L^{2}(X)$ as the closure of the space of $d f$ where $f \in \Lambda_{c}^{0}(X)\left(\Lambda_{c}^{0}(X)\right.$ is the space of smooth functions with compact support).

Define $E^{*}=\{\omega \mid * \omega \in E\}$.
Thus, any element $\omega \in E$ is presented by a sequence $\omega=\lim d f_{i}$ where f_{i} are smooth functions with compact support.

By the general theory one has

$$
L^{2}(X)=E \oplus E^{\perp}=E^{*} \oplus E^{* \perp}
$$

By definition,

$$
E^{\perp}=\left\{\omega \in L^{2} \mid(\omega, d f)=0 \quad \forall f \in \Lambda_{c}^{0}(X)\right\}
$$

and

$$
E^{* \perp}=\left\{\omega \in L^{2} \mid(\omega, * d f)=0 \quad \forall f \in \Lambda_{c}^{0}(X)\right\}
$$

We will deduce now that E and E^{*} are orthogonal to each other.
7.3.1. Proposition. Let $\alpha \in L^{2}(X)$ be of class C^{1}. Then $\alpha \in E^{* \perp}$ iff α is closed and $\alpha \in E^{\perp}$ iff α is coclosed.

Proof. Assume α is closed and $f \in \Lambda_{c}^{0}$ have support at a compact domain D. Then

$$
(\alpha, * d f)=-\int_{D} \alpha \wedge \overline{d f}=-\int_{D} d(\alpha \bar{f})=-\int_{\partial D} \alpha \bar{f}=0
$$

Thus, $\alpha \in E^{* \perp}$. Conversely, if $\alpha \in E^{* \perp}$, one has

$$
0=(\alpha, * d f)=-\int_{D} \alpha \wedge \overline{d f}=-\int_{D}(d(\alpha \bar{f})-d \alpha \bar{f})=\int_{D} \bar{f} d \alpha
$$

The latter vanishes for all $f \in \Lambda_{c}^{0}(X)$ only if $d \omega=0$.
The second claim of the proposition follows from the first one, together with Exercise 1 (see below).

The above proposition immediately implies that the spaces E and E^{*} are orthogonal. This implies the following
7.3.2. Lemma. There is an orthogonal decomposition

$$
L^{2}(X)=E \oplus E^{*} \oplus H
$$

where

$$
H=E^{\perp} \cap E^{* \perp}
$$

Our next task will be to prove that H is the space of harmonic one-forms. Note that any harmonic form belongs to H and that any form in H of class C^{1} is harmonic - by the above proposition. Thus, the only problem is to prove that any element of H is automatically of class C^{1}.

This will be done using the following important Weyl lemma which will be proven later on.
7.3.3. Theorem (Weyl's Lemma). Let D be the unit disc. Let $\omega \in L^{2}(D)$ be a square-integrable one-form on D. Then ω is harmonic iff

$$
\begin{equation*}
(\omega, d f)_{D}=(\omega, * d f)=0 \tag{1}
\end{equation*}
$$

for any C^{∞}-function η with compact support.
We are now ready to prove the following
7.3.4. Theorem. H consists of harmonic one-forms.

Proof. If ω is harmonic, it is smooth, closed and coclosed. Then by Proposition 7.3.1 $\omega \in H$. Conversely, let $\omega \in H$. We have to prove that ω is smooth. Then it will be smooth, closed and coclosed, therefore, harmonic. The inverse image to D of the restriction $\left.\omega\right|_{U}$ satisfies the conditions of Weyl's Lemma, so that $\left.\omega\right|_{D}$ is harminic. This implies that ω is smooth which is enough for us.
7.4. Weyl's Lemma. We will now prove Theorem 7.3.3.

First of all, the "only if" part is obvious: a harmonic form is orthogonal to both E and E^{*}.

The converse is much more difficult. The idea is to "smoothen" and arbitrary L^{2}-differential so that some important properties are preserved.
7.4.1. Smoothing operators: properties Recall that we live on the disc $D=\{z \in \mathbb{C}| | z \mid<1\}$.

For each number $\rho \in(0,1)$ an operator $M_{\rho}: L^{2}(D) \rightarrow L^{2}(D)$ will be defined. It will satisfy the following properties
(SM1) For $\omega \in L^{2}(D)$ one has $M_{\rho}(\omega) \in C^{1}\left(D_{\rho}\right)$, where $D_{\rho}=\{z \in \mathbb{C}| | z \mid<1-\rho\}$.
(SM2) If ω is harmonic, $M_{\rho}(\omega)=\omega$ in D_{ρ}.
(SM3) For $\omega \in L^{2}(D), \lim _{\rho \rightarrow 0}\left\|\omega-M_{\rho}(\omega)\right\|_{D_{\rho}}=0$.
(SM4) If Supp $\gamma \subset D_{\rho}$ then Supp $M_{\rho}(\gamma) \subset D$ and one has

$$
\left(M_{\rho}(\omega), \gamma\right)_{D_{\rho}}=\left(\omega, M_{\rho}(\gamma)\right)_{D}
$$

7.4.2. Construction of smoothing operators

The smoothing operators M_{ρ} will be first of all defined for L^{2}-functions, and then extended to L^{2}-forms by the formula

$$
M_{\rho}(\omega)=M_{\rho}(f) d x+M_{\rho}(g) d y
$$

for $\omega=f d x+g d y$.
We define a function s_{ρ} on \mathbb{C} by the formula

$$
s_{\rho}(z)= \begin{cases}k\left(\rho^{2}-|z|^{2}\right), & |z|<\rho \\ 0, & |z| \geq \rho\end{cases}
$$

where the normalizing constant k is chosen so that

$$
\int_{D_{1-\rho}} s_{\rho}(z) d z \wedge d \bar{z}=1
$$

and for any complex-valued L^{2}-function f we define

$$
M_{\rho}(f)(z)=\int_{D} f(\zeta) s_{\rho}(z-\zeta) d \zeta \wedge d \bar{\zeta}
$$

The operator M_{ρ} defined above assigns to each point z (at least for $z \in D_{\rho}$) the average value of a function f in a disc of radius ρ around z.

This explains especially good properties of $M_{\rho}(f)$ in D_{ρ}.

7.4.3. Proof of the properties

See G. Springer, Introduction to Riemann surfaces, p. 190-195.

7.4.4. Weyl Lemma: end of the proof

Let $\omega L^{2}(D)$ satisfy the properties $(\omega, d f)=(\omega, * d f)=0$ for all $f \in \Lambda_{c}^{0}(D)$. Then for all $f \in \Lambda_{c}^{0}\left(D_{\rho}\right)$ one has

$$
\left(M_{\rho}(\omega), d f\right)_{D_{\rho}}=\left(\omega, M_{\rho}(d f)\right)_{D}=\left(\omega, d M_{\rho}(f)\right)_{D}=0
$$

and

$$
\left(M_{\rho}(\omega), * d f\right)_{D_{\rho}}=\left(\omega, M_{\rho}(* d f)\right)_{D}=\left(\omega, * d M_{\rho}(f)\right)_{D}=0 .
$$

since M_{ρ} commutes with $*$ and with d. Then Proposition 7.3.1 implies that $M_{\rho}(\omega)$ is harmonic in D_{ρ}.

We are almost done since $M_{\rho}(\omega)$ approximate ω; but this is not enough. We will actually prove that $M_{\rho}(\omega)$ and $M_{\sigma}(\omega)$ coincide in $D_{\rho+\sigma}$ and his will be enough to deduce equality $\omega=M_{\rho}(\omega)$ from the estimate of $\left\|\omega-M_{\rho}(\omega)\right\|$.

By (SM2) one has that $M_{\sigma} M_{\rho}(\omega)$ coincides with $M_{\rho}(\omega)$ in $D_{\sigma+\rho}$ since $M_{\rho}(\omega)$ is harmonic in D_{ρ}. Similarly, $M_{\rho} M_{\sigma}(\omega)$ coincides with $M_{\sigma}(\omega)$ in $D_{\sigma+\rho}$. Thus, it is enough to check that $M_{\sigma} M_{\rho}=M_{\rho} M_{\sigma}$, and we get the required coincindence of $M_{\rho}(\omega)$ and $M_{\sigma}(\omega)$ insode $D_{\sigma+\rho}$.

The property $M_{\sigma} M_{\rho}=M_{\rho} M_{\sigma}$ is a direct result of Fubini theorem.
And now comes the last step. Property (SM3) says that $\lim _{\rho \rightarrow 0} \| M_{\rho}(\omega)-$ $\omega \|_{D_{\rho}}=0$. One has an obvious inequality

$$
\|\alpha\|_{D_{\sigma+\rho}} \leq\|\alpha\|_{D_{\rho}}
$$

just because $D_{\sigma+\rho} \subset D_{\rho}$. Therefore,

$$
\lim _{\rho \rightarrow 0}\left\|M_{\rho}(\omega)-\omega\right\|_{D_{\sigma+\rho}}=0 .
$$

Since $M_{\rho}(\omega)$ and $M_{\sigma}(\omega)$ coincide in $D_{\sigma+\rho}$, the latter can be rewriten as

$$
\lim _{\rho \rightarrow 0}\left\|M_{\sigma}(\omega)-\omega\right\|_{D_{\sigma+\rho}}=0 .
$$

Note that we are talking about th elimit of a function which increases while $\rho \rightarrow 0$. Thus, it is constantly zero.

We have deduced that

$$
\left\|M_{\rho}(\omega)-\omega\right\|_{D_{\sigma+\rho}}=0
$$

for all $\rho>0$. Thus, $M_{\rho}(\omega)=\omega$ and the theorem is proven.
7.4.5. Corollary. $E \oplus H$ is the closure in $L^{2}(X)$ of the space of closed (square integrable) one-forms. Similarly, $E^{*} \oplus H$ is the closure of the space of coclosed one-forms.

Proof. Any closed one-form belongs to $E^{* \perp}=E \oplus H$, so the latter contains the closure of the former. Conversely, if $\alpha \in E \oplus H$ then its harmonic component is closed and any element of E is by definition a limit of closed (even exact) forms. The claim for coclosed forms is similar.

7.4.6. Restriction

Let U be an open subset of X. Restriction of forms defines a map

$$
\Lambda^{1}(X) \longrightarrow \Lambda^{1}(U)
$$

so that $\|\omega\| \geq\left\|\left.\omega\right|_{U}\right\|$.
Thus, a map $L^{2}(X) \rightarrow L^{2}(U)$ is defined. We call it restriction.
The restriction of a closed form is closed, so the restriction preserves the spaces $E \oplus H$ and $E^{*} \oplus H$.
7.5. One-forms defined by closed curves. Let γ be a simple closed curve in X. Choose an open neighborhood Ω of γ so that $\Omega-\gamma=\Omega^{+} \cup \Omega^{-}$is a disjoint union of two annuli. Choose a smaller neighborhood Ω_{0} and its two parts $\Omega_{o}^{ \pm}=\Omega_{0} \cap \Omega^{ \pm}$. Choose an orientation of γ so that Ω^{-}is to the left of γ.

Choose a real-valued function f smooth on $X-\gamma$ such that

$$
\left.f\right|_{\Omega_{0}^{-}}=1,\left.\quad f\right|_{X-\Omega^{-}} .
$$

We define a one-form η_{γ} by the formula

$$
\left.\eta_{\gamma}\right|_{\Omega-\gamma}=d f ;\left.\left.\eta\right|_{\gamma}\right|_{\Omega_{0}}=0
$$

The form η_{γ} is obviously closed and smooth.
It is called "the one-form associated to γ ". Note that it depends on the choice of the function f; however, the difference is an exact form, so the cohomology class is uniquely defined.
7.5.1. Proposition. Let $\alpha \in L^{2}(X)$ be a closed form of class C^{1}. Then

$$
\int_{\gamma} \alpha=\left(\alpha, * \eta_{\gamma}\right) .
$$

Proof. One has

$$
\left.\begin{array}{rl}
\left(\alpha, * \eta_{\gamma}\right)=-\int_{X} \alpha \wedge \eta_{\gamma}=-\int_{\Omega^{-}} \alpha \wedge d f=\int_{\Omega^{-}} & d(f \alpha)-f d \alpha
\end{array}\right)=\left\{\begin{array}{l}
=\int_{\Omega^{-}} d(f \alpha)=\int_{\partial \Omega^{-}} f \alpha=\int_{\gamma} \alpha
\end{array}\right.
$$

7.5.2. Proposition. Let $\alpha \in L^{2}(X)$ be a form of class C^{1}. Then α is exact (resp., coexact) iff $(\alpha, \beta)=0$ for any coclosed (resp., closed) $\beta \in \Lambda_{c}^{1}(X)$.
Proof. If α is exact, $\alpha=d f$ with $f \in C^{2}$. Let $d * \beta=0$, Supp $\beta \subset D$ for a compact domain D. Then

$$
(\alpha, \beta)=\int_{D} d f \wedge * \bar{\beta}=\int_{D} d(f * \bar{\beta}-f d * \bar{\beta})=\int_{\partial D} f * \bar{\beta}=0 .
$$

Conversely, if $(\alpha, \beta)=0$ for all coclosed compactly supported β, we can apply this to $\beta=\eta_{\gamma}$ and deduce that

$$
\int_{\gamma} \alpha=0
$$

for all γ. This implies that α is exact (see Exercise 2).
The claim about coexactness of α now follows from the fact that $*$ is an isometry.
7.5.3. Corollary. Any form $\omega \in E \cap C^{1}$ is exact. Any form in $E^{*} \cap C^{1}$ is coexact.

Proof. To prove ω is exact one has to check by 7.5.2 that $(\omega, \beta)=0$ for any coclosed β with compact support. But we know this since $E^{\perp}=H \oplus E^{*}$ contains all coclosed L^{2} forms.
7.5.4. Corollary. Let X be a compact Riemann surface. The first de Rham cohomology of X is isomorphic to the space of harmonic one-forms.

Proof. Any harmonic form is closed and, therefore, defines a class of $H_{D R}^{1}(X)$. Since $H \in E^{\perp}$, a nonzero harmonic form on a compact Riemann surface cannot be exact. Therefore, the map $H \rightarrow H_{D R}^{1}(X)$ is injective. The surjectivity is Exercise 3 below.

7.5.5. Exact forms

The space E is defined as the closure of the space of compactly supported exact forms. Therefore, if X is compact, E contains all exact forms.

This is not true if X is not compact.
Here is a typical example. Let f be a harmonic function in a neighborhood of the closure of the unit disc D. Then (by definition) $d f$ is a harmonic differential on D, and therefore cannot belong to E.

Home assignment.

1. Check that the star operation is isometry on $L^{2}(X)$.
2. Let ω be a closed one-form such that $\int_{\gamma} \omega=0$ for any piecewise smooth closed curve γ. Deduce that ω is exact.
3. Prove that the map $H \rightarrow H_{D R}^{1}(X)$ is surjective.
