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6. Week 7: Differential forms. De Rham complex

6.1. Introduction. The notion of differential form is important for us for various
reasons. First of all, one can integrate a k-form along a (smooth) k-chain. This,
together with the Stokes theorem, allows one to present by differential forms
spaces dual to homology. This leads to the notion of de Rham cohomology.

Later on we will find out that de Rham cohomology can be represented by
harmonic differentials. This allows one to describe the space of holomorphic dif-
ferentials in the compact case. Thus, we will see that if X is a compact Riemann
surface of genus g, the dimension of the space of holomorphic differentials is pre-
cisely g. This theory allows to prove the existence of non-constant homolorphic
differentials even in non-compact case. AS a result, we will deduce the existence
of non-constant meromorphic functions.

6.2. One-forms. Informally, a differential form is what can be integrated along
a path. In local coordinates, a (smooth) one-form on an open subset U of Rn is
given by an expression

ω =

n∑
i=1

fidxi

where fi ∈ C∞(U). If γ : [a, b] → U is a smooth (or piecewise smooth) path
γ(t) = (γ1(t), . . . , γn(t)), one defines

∫
γ
ω by the formula

∫
γ

ω =

∫ b

a

(
n∑

i=1

fi(γ(t))γ′

i(t))dt.

Let us find out how an expression for a one-form should behave under a coor-
dinate change. The main (and only) property is, of course, that the value of an
intergral

∫
γ
ω should be invariant under a coordinate change. Thus, if y1, . . . , yn

is another coordinate system so that x = F (y) (in vector notation), then

ω =
∑

i

fi(x)dxi =
∑
i,j

fi(F (y))
∂Fi

∂yj

dyj.

Now we are ready to give a general definition.

6.2.1. Definition. A one-form ω on a smooth manifold X is a collection of ex-
pressions

ωφ =
∑

i

fi(x)dxi
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for each local coordinate system φ : U - Rn such that the expressions are
compatible on the intersections in the sense described above.

In order to define a one-form it suffices to define a collection of one-forms ωi

on a collection of charts φi : Ui
- Rn such that the charts Ui cover the whole

manifold and the forms ωi are compatible on the intersections.
Let us give a typical example.

6.2.2. Example. Let X = R/Z be the circle. It can be covered by two charts,
with the coordinates different by a constant. Thus, any expression of form f(x)dx
is a one-form, where f is a smooth function having period 1.

6.2.3. Example. Let X = C/L be an elliptic curve, L = Z⊕Z ·τ . The one-forms
dx and dy make sense on X.

6.2.4. Differential of a function

If f is a smooth function on X, one defines a one-form df by the formula in
local coordinates

df =
∑ ∂f

∂xi

dxi.

We will extend later on this formula to all differential forms.
Note that the local formula above gives automatically a compatible family of

forms on each local chart:∑ ∂f

∂xi

dxi =
∑ ∂f

∂xi

∂xi

∂yj

dyj =
∑ ∂f

∂yj

dyj.

Sometimes any one-form is a differential of a function. This is so, for example,
for X = R (existence of integration). Sometimes this is not true.

For instance, one can prove (see Exercise) that f(x)dx is a differential of a

function iff
∫ 1

0
f(x)dx = 0.

6.2.5. Restriction

A one-form on a manifold X defines automatically a one-form on any its open
subset. All meaningful operations with the differential forms will be compatible
with this restriction operation. For instance, if f is a function on X, one can
construct a one-form on U ⊂ X in two seemingly different ways: the one is to
restrict the differential form df from X to U , and the second is to restrict the
function f to U , and after that to take the differential. It is clear that the two
ways give the same result. This means that the operation f 7→ df commutes with
restrictions.

Restriction is a special case of a more general operation of inverse image, see
below.
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6.2.6. Inverse image of a one-form

Let f : X → Y be a smooth map and let ω be a one-form on Y . We will now
define a form f ∗(ω) on X called the inverse image of ω.

It is enough to write down formulas in local coordinates. Let f : U → V be a
map from an open subset of Rm with coordinates x1, . . . , xm, to an open subset
of Rn with coordinates y1, . . . , yn. Let a form ω be given by the local expression

ω =
∑

ai(y)dyi.

Then f ∗(ω) is given by the formula

(1) f ∗(ω) =
∑
i,j

ai(f(x))
∂fi

∂xj

dxj.

In order to make sure that the formulas above define a one-form on X, one has
to check that the local expressions of f ∗(ω) are compatible at the intersections
of the charts. This easily follows from the Chain rule.

6.3. Higher forms. In order to integrate along higher-dimensional simplices,
we need higher degree forms.

Locally (that is, in a coordinate chart) a degree k form is just a product of k
one-forms. One has, however, take into account that the product of one-form is
not commutative, but rather anticommutative!

In local coordinates any k-form is an expression of type

ω =
∑

i1<...<ik

ai1,...,ikdxi1 ∧ . . . ∧ dxik ,

where ai1,...,ik are functions of x1, . . . , xn.
The collection of k-forms on an open subset U of R

n will be denoted Λk(U).
It makes sense to look at functions on U as 0-forms.

Remark. We do not specify at the moment what types of functions are allowed
to be coefficients of differential forms. Different choices make sense.

The collection of differential forms on U has a rich structure.

6.3.1. Product

One can multiply a k-form ω to an l-form ω′ to get a k + l-form ω ∧ ω′. The
formulas can be uniquely reproduced once we know that 0-forms multiply as the
functions, 0-forms commute with 1-forms, and two 1-forms anticommute.

One easily deduces from the above that

ω′ ∧ ω = (−1)klω ∧ ω′.

6.3.2. Change of coordinates
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In order to be able to define k-forms on a manifold, we have to explain what
happens to k-forms under the change of coordinates.

Let x = f(y) define another coordinate system (that is y = (y1, . . . , yn) and f
consists of n functions of the variables y1, . . . , yn.

We know what happens under the coordinate change to 0-forms (nothing,
ω(x) becomes ω(f(y))), and what happens to 1-forms (ω =

∑
ai(x)dxi becomes∑

i,j ai(f(y)) ∂fi

∂yj
dyj). Thus, it is enough to add that the product of differential

forms is preserved under the base change, and the rest of the formulas can be
reconstructed.

Remark. We omit some important details here. The last phrase should be un-
derstood as follows. If we wish that our coordinate change formulas be compatible
with the product, we have no choice: any k-form is a product of k one-forms, and
so to rewrite it in another coordinate system one has to rewrite the factors and to
multiply the results. However, the existence of coordinate change formulas should
be checked.

It is worthwhile to mention separately the coordinate change formula for high-
est degree forms.

If X is a manifold of dimension n, there are no forms of degree > n. The
n-forms write in local coordinates as

ω = a(x)dx1 ∧ . . . ∧ dxn.

If now x = f(y) is a coordinate change, we have in new coordinates

ω = a(f(y))J(f)dy1 ∧ . . . ∧ dyn,

where J(f) is the jacobian (=the determinant ofthe Jacobi matrix) of f .
Note that Riemann surfaces are manifolds of dimension 2, so we need nothing

except for 0, 1 and 2-forms.

6.3.3. De Rham differential

The map d : Λ0(U) → Λ1(U) has been already defined. We claim it extends
uniquely to a commection of maps Λk(U) → Λk+1(U) if one requires the following
properties

• d(dxi) = 0.
• (Leibniz rule) d(ω1 ∧ ω2) = d(ω1) ∧ ω2 + (−1)kω1 ∧ d(ω2) for ω1 ∈ Λk(U).

Uniqueness of the differential satisfying the above properties is clear: if ω =
a(x)dxi1 ∧ . . . ∧ dxik then necessarily

(2) dω = d(a) ∧ dxi1 ∧ . . . ∧ dxik .

The existence of the map d satisfying the above properties is less obvious.
Here is the list of properties one has to check.

• That if one defines dω by the formula (2), the Leibniz rule is satisfied.
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• That the differential of a differential form on U defined as above, is com-
patible with the coordinate change.

6.4. De Rham complex. De Rham cohomology. We have constructed
above a collection of vector spaces Λk(X) and a collection of linear maps

d : Λk(X) → Λk+1(X).

Leu us check that d ◦ d = 0.

6.4.1. Lemma. For any k ≥ 0 the composition

d2 : Λk → Λk+1 → Λk+2

vanishes.

Proof. It is sufficient to check the claim in local coordinates. Moreover, for ω =
adxi1 ∧ . . . ∧ dxik we have by Leibniz rule and by ddxi = 0 that

ddω = ddadxi1 ∧ . . . ∧ dxik .

Thus, we have to check only that dda = 0. Here we have

dda = d(
∑ ∂a

∂xi

dxi) =
∑
i,j

∂2a

∂xi∂xj

dxi ∧ dxj .

The latter expression vanishes since dxi ∧ dxj = −dxi ∧ dxi.
�

6.4.2. Definition. Let X be a manifold. De Rham cohomology of X is a collection
of groups Hk

DR(X) := Ker(d : Λk → Λk+1)/ Im(d : Λk−1 → Λk), k = 0, . . . , n

6.4.3. 0th cohomology

It is easy to calculate the 0th cohomology. This is the vector space of functions
f on X satisfying the condition df = 0. This means that all partial derivatives
of f vanish, that is f is constant (at least, at each connected component).

We have got the following result.
H0

DR(X) is R for a connected manifold X.
The following Poincaré lemma is very important.

6.4.4. Proposition. Let U be an open disc in Rn. Then H i
DR(U) = 0 for i > 0.

6.5. Inverse image. If f : X → Y is a smooth map and ω ∈ Λk(Y ), one can
define f ∗(ω) ∈ Λk(X) satisfying the following properties.

• f ∗ is compatible with restrictions on open subsets.
• For ω ∈ Λ0(Y ) f ∗(ω) = ω ◦ f .
• f ∗(dω) = d(f ∗(ω)).
• f ∗(ω1 ∧ ω2) = f ∗(ω1) ∧ f ∗(ω2).
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As everything in this section, it is much easier to prove uniqueness of f ∗ sat-
isfying the above property that to check the existence.

We have already f ∗ on Λ0. By the third property, f ∗(dyi) =
∑

∂fi

∂xj
dxj . This

basically yields the formula (1). Then, since f ∗ preserves the product, we can
write down a general formula.

The above reasoning proves the uniqueness. As usual, an effort is needed to
prove the existence of f ∗.

6.6. Integration. Recall that a standard n-simplex is the collection of points
(t0, . . . , tn) ∈ Rn+1 satisfying the equation

∑
ti = 1 and the inequalities ti ≥ 0.

A smooth singular k-simplex in X is a smooth map of a (neighborhood of) the
standard simplex ∆k to X1. A k-chain in X is an integral linear combination of
singular k-simplices.

Let γ =
∑

aiγi be a (smooth singular) k-chain in X. We define the integral∫
γ

ω ∈ R

as follows. First of all, the integral will be linear in γ, so one can assume that γ
is a k-simplex in X. Consider γ : ∆k → X. The inverse image γ∗(ω) is a k-form
on ∆k (more precisely, on an open neighborhood of ∆k in Rk). Thus, one can
integrate γ∗(ω) along ∆k. Thus, we define∫

γ

ω =

∫
∆k

γ∗(ω).

6.6.1. Remarks

1. Even though we defined integration along parametrized simplices γ:∆k →
X, there is nothing special in the triangular form of ∆k which forces the
definition to work. We could have used any meaningful compact subset
of Rk instead fit for multiple integration; a cube, for instance.

2. Note that the definition of integration is cooked up so that the result
does not depend on reparametrization of a singular simplex: if γ′ = γ ◦Φ
for a diffeomorphism Φ : ∆k → ∆k then

∫
γ′

ω =
∫

γ
ω. This is a fact we

have already known before (integral along a curve is independent of the
parametrization of the curve).

3. Taking into account the above remarks we will allow ourselves to talk
about “integrals over a region” without specifying how to parametrize
the region and/or how to divide it into simplices.

6.6.2. Stokes We are now ready to formulate Stokes theorem which claims that

1A neighborhhod of ∆n is described by the equation
∑

ti = 1 together with the inequalities

ti > −ǫ for some ǫ > 0
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the de Rham differential on forms is compatible with passage to the boundary of
a simplex.

Define for a k-simplex γ : ∆k → X its boundary ∂γ by the formula

∂γ =
k∑

i=0

(−1)kγ ◦ ∂i

where ∂i : ∆k−1 → ∆k is given by the formula

∂i(t0, . . . , tk−1) = (t0, . . . , ti−1, 0, ti, . . . , tk−1).

The map γ 7→ ∂γ extends by linearity to a map

∂ : Ck(X) - Ck−1(X)

where in this section we denote by Ck(X) the abelian group of smooth singular
k-chains in X.

6.6.3. Theorem (Stokes theorem). For any γ ∈ Ck(X) and ω ∈ Λk−1(X) one
has ∫

γ

dω =

∫
∂γ

ω.

6.6.4. Complex-valued functions and forms A complex-valued function
f : X → C can be uniquely expressed as f = u + iv where u, v are real-valued
functions. This allows one to extend everything said above to complex-valued
functions allowing, of course, differential forms

∑
fidxi where fi are complex-

valued functions.
Similarly to the above, one defines complex-valued forms by pairs of real-valued

forms. We extend the notion of a differential of a complex-valued function by the
formula d(u + iv) = du + idv and the rest of the theory extends immediately.

The space of complex-valued k-forms admits an operation of complex conju-
gation: one defines ω + iω′ = ω − iω′ where ω, ω′ are real k-forms. Complex
conjugation commutes with the de Rham differential.

6.7. Riemann surface peculiarities.

6.7.1. dz and dz̄.
If X is a Riemann surface, we use the standard notation Λk(X) for complex-

valued k-forms. X is two-dimensional, so we have Λi(X) = 0 for i > 2. Note
that in local coordinates

dz = dx + idy and dz̄ = dx − idy.

This allows one to rewrite any one-form as a linear combination of dz and dz̄:

fdx + gdy =
1

2
(f(dz + dz̄) − ig(dz − dz̄)) =

f − ig

2
dz +

f + ig

2
dz̄.
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Similarly for two-forms

dx ∧ dy = −
i

4
(dz + dz̄)(dz − dz̄) =

i

2
dz ∧ dz̄.

6.7.2. Operators ∂ and ∂̄
Define the operators ∂

∂z
and ∂

∂z̄
by the formulas

f ′

z =
1

2
(f ′

x − if ′

y), f ′

z̄ =
1

2
(f ′

x + if ′

y).

Then one has

df = f ′

zdz + f ′

z̄dz̄.

Define the operators ∂, ∂̄ : Λ0(U) → Λ1(U) by the formulas

∂f = f ′

zdz, ∂̄f = f ′

z̄dz̄.

We will see in a while that these formulas are compatible with the holomorphic
change of coordinates, and so define meaningful operators for functions on a
Riemann surface.

Note that df = ∂f + ∂̄f and that

∂2 = ∂̄2 = ∂ ◦ ∂̄ + ∂̄ ◦ ∂ = 0.

First of all let us mention that by Cauchy-Riemann equations a function f =
u + iv is holomorphic iff

f ′

z̄ =
1

2
(f ′

x + if ′

y) =
1

2
(u′

x − v′

y + i(u′

y + v′

x)) = 0.

Let now z(w) be a holomorphic coordinate change. Then

f ′

zdz = f ′

z(z
′

wdw + z′w̄dw̄) = f ′

wdw.

This means that the operator ∂ is compatible with the coordinate change; there-
fore, it is an operator on the functions on the whole Riemann surface.

Note that a function f ∈ C∞(X) is holomorphic iff ∂̄(f) = 0.

6.7.3. Two-forms

A two-form is written locally as ω = fdz∧dz̄. If not z = z(w) is a holomorphic
coordinate change, ω is rewritten in the new coordinates as

ω = fdz ∧ dz̄ = f |z′w|
2dw ∧ dw̄.

6.7.4. Star operation We will now define a new operation on one-forms.
Note that in general this operation assigns to a k-form an n− k-form where n is
the dimensin of the manifold X. In our special case n = 2 and k = 1 so that we
get an operation on smooth 1-forms.
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We define an operator
∗ : Λ1(X) → Λ1(X)

by the following formula.
Let ω = udz + vdz̄ in local coordinates, for smooth functions u, v. Then

∗ω = −iudz + ivdz̄.
One can easily check that the formula is compatible with the holomorphic

coordinate change (See Exercise 2), so the operator ∗ is defined on one-forms.
Note that ∗∗ = −1.

6.7.5. Closed forms, coclosed forms etc.

A form ω ∈ Λ1(X) is closed if dω = 0; it is exact if ω = df .
A form ω is coexact or coclosed if ∗ω is exact or closed respectively.
Since d2 = 0, any exact form is closed, as well as any coexact form is coclosed.
Let us define a linear map (the Laplace map)

∆ : Λ0(X) - Λ2(X)

by the formula
∆(f) = d ∗ d(f).

Let us make a calculation in local coordinates.

∆(f) = d ∗ d(f) = d ∗ (f ′zdz + f ′

z̄dz̄) = d(−if ′

zdz + if ′

z̄dz̄) = 2if ′′

zz̄dz ∧ dz̄.

As shows Exercise 3, one has a well-known formula

∆(f) = (f ′′

xx + f ′′

yy)dx ∧ dy.

A function f is called harmonic if ∆(f) = 0.

6.7.6. Harmonic and holomorphic differentials

A one-form ω is harmonic if for any point x ∈ X there exists a neighborhood
U containing x and a function f on U such that ω|U = df .

We will now give another characterisation of harmonic one-forms.

Proposition. A one-form ω is harmonic iff it is closed and coclosed simultane-
ously.

Proof. If ω is harmonic, it is df locally, so dω = ddf = 0 locally, and therefore,
globally. Thus, harmonic forms are closed. Let us calculate d ∗ ω. Once more,
locally one has d ∗ ω = d ∗ d(f) = 0 since f is harmonic. Therefore, harmonic
forms are coclosed.

Finally, let dω = 0. By Poincaré lemma this implies that in any open disc U
ω = df . Then d ∗ df = d ∗ ω = 0 if ω is coclosed, so f is harmonic. �

Definition. A one-form is holomorphic if it is presented locally as df where f is
a holomorphic function.
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Lemma. A form ω = udz +vdz̄ is holomorphic iff v = 0 and u is a holomorphic
function. If f is a harmonic function, ∂f is a holomorphic differential.

Proof. These are very elementary claims. If ω = df with f holomorphic, ω = f ′

zdz
and f ′

z is as well holomorphic. Moreover, any holomorphic function on a disc is
a derivative of another holomorphic function, so the converse is also true. Now,
if f is harmonic, f ′

z is holomorphic since f ′′

zz̄ = 0. This proves the last claim. �

And finally

Theorem. A one-form ω is holomorphic iff ω = α + i ∗ α for some harmonic
one-form α.

Proof. Let ω = fdz + gdz̄. We have

dω = (−f ′

z̄ + g′

z)dz ∧ dz̄

and
d ∗ ω = (if ′

z̄ + ig′

z)dz ∧ dz̄.

Thus, ω is harmonic iff f is holomorphic and g is anti-holomorpihc (that is, ḡ is
holomorphic).

Now we can easily deduce the claim of the theorem. If ω is holomorphic, it
is harmonic and ∗ω = −iω, so that for instance α = 1

2
ω furnishes the required

presentation for ω. Vice versa, if ω = α + i ∗ α with harmonic α, we have locally

α = fdz + gdz̄, i ∗ α = fdz − gdz̄

with holomorphic f , so ω = 2fdz and we are done.
�

Home assignment.

1. Prove that a one-form f(x)dx on S1 = R/Z is a differential of a function iff∫ 1

0
f(x)dx = 0. Deduce from this that H1(S1) = R.
2. Prove that the ∗-operation on one-forms commutes with holomorphic coor-

dinate change.
3. Check the formula

∆(f) = (f ′′

xx + f ′′

yy)dx ∧ dy.

4. Prove that if ∗ω = −iω and ω is closed then ω is holomorphic.


