
RIEMANN SURFACES

3.4. Uniformization theorem: Advertisement. The following very impor-
tant theorem firstly formulated by Riemann has a tremendous impact on the
theory. We will not prove it in this course.

3.4.1. Theorem. Let X be a simply connected Riemann surface. Then either

X = Ĉ (the only compact case), or X = C, or X = H (the upper half-plane).

The three simply-connected RS listed above are obviously non-isomorphic. In
fact, the first one is compact while the two others are not; the third one admits
a (global) holomorphic bounded nonconstant function, while C does not admit.

Taking into account the existence of universal covering and the passage of RS
structure to a covering, one immediately gets the following

3.4.2. Corollary. Any Riemann surface is isomorphic to a quotient of X, one
of the listed above simply connected RS, modulo a subgroup G ⊂ Aut(X) of the
holomorphic authomorphism group of X acting freely on X.

Thus, it seems that the task of classification of all Riemann surfaces is not really
difficult. One has to describe the authomorphism groups of the simply-connected
Riemann surfaces, and then to describe discrete subgroups acting freely on it.

The group Aut(X) can be easily described in all three cases.

3.4.3. X = Ĉ Authomorphisms of the Riemann sphere are always given by

Möbius transformations z 7→ az+b
cz+d

where

(
a b
c d

)
∈ GL(2, C). Since the scalar

matrices define the identity transformation, the authomorphism group of Ĉ is
PGL(2, C) = GL(2, C)/C∗.

3.4.4. X = C

The authomorphisms are Möbius transformations preserving ∞. These are
transformations of tyle z 7→ az + b with a 6= 0.

3.4.5. X = H

The authomorphisms are Möbius transformations with real coefficients. They
form the group PGL(2, R) = GL(2, R)/R∗.

The task is easy for X = Ĉ and X = C.
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3.4.6. Subgroups In the first two cases the problem of describing discrete
subgroups of Aut(X) acting freely on X is easy.

If X = Ĉ there are no nontrivial subgroups with this property.
If X = C, there are subgroups of shifts z 7→ z+b with one or two non-collinear

generators. In the first case we get cyliner as a quotient, in the second case we get
an elliplic curve (as we remember, different elliptic curves correspond to different
choices of the lattice).

The case X = H is much more difficult. Most Riemann surfaces have H as a
universal covering space.

4. Week 4-5. Topological structure of RS. Continuation

We wish to find a simple combinatorial description of compact two-dimensional
manifolds.

4.1. Simplicial complexes.

4.1.1. An abstract simplicial complex is a purely combinatorial notion. It
consists of

• A set V (called the set of vertices).
• A collection S of finite subsets of V (called the set of simplices)

satisfying the following properties

• {x} ∈ S for all x ∈ V .
• σ ∈ S, τ ⊂ σ implies τ ∈ S.

Let (V, S) be a simplicial complex. Dimension of a simplex σ ∈ S is dim σ =
|σ| − 1 (so that vertices are 0-simplices). A simplex of dimension n is also called
an n-simplex.

4.1.2. Geometric realization and triangulation

Let (V, S) be an abstract simplex. We can construct a topological space called
the geometric realization of (V, S) as follows.

First of all, we assign to each n-simplex σ = (x0, . . . , xn) the geometric simplex

|σ| = {(t0, . . . , tn) ∈ R
n+1|ti ≥ 0,

∑
ti = 1}.

Such geometric simplex has n + 1 vertices given by the coordinate units of
Rn+1. We number them by the vertices xi of σ.

Once more, a geometric realization of an abstract simplex σ is the topological
space |σ| with the vertices identified with xi.

Note that if τ ⊂ σ, we can identify |τ | with |σ| taking care that the vertices of
|τ | are identified with the corresponding vertices of |σ|.

Finally, to define the geometric realization of (V, S) we construct geometric
realizations of each simplex from S, and identify them along subsimplices. We
get as a result a topological space glued from geometric simplices.
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4.1.3. Example. Assume V = {x, y, z} and S consists of all subsets of cardinality
≤ 2. The realization will have three vertices and three edges. As a topological
space this is a circle. If V consists of four tpoints and S of all subsets of cardinality
≤ 3, we will get a sphere.

4.1.4. Definition. A triangulation of a topological space X is a homeomorphism
between X and a realization of a simplicial complex. X is called trangulated if
it admits a triangulation.

“Good” topological spaces are triangulated. We will use in this section that all
two-dimensional manifolds are triangulated. This fact is not absolutely obvious.
For Riemann surfaces we will be able to deduce it later from the existence of
meromorphic functions.

4.2. Triangulation of oriented two-dimensional manifolds. We assume
without proof that any Riemann surface can be triangulated. Our aim is to
find the simplest possible triangulation.

Let X be a simplicial complex homeomorphic to a compact oriented two-
dimensional manifold. X is finite. It has simplices of dimensions 0, 1, 2. We
will call them vertices, edges and triangles respectively.

Some obvious properties of X:

• Any edge belongs to two triangles.
• Any two triangles a, b can be connected by a sequence a = a0, . . . , an = b

such that ai−1 and ai have a common edge.

Some less obvious properties will be formulated later.
Let us construct a graph G whose vertices are the triangles of X and an edge

between vertices exists if the corresponding triangles have a common edge. G is
a degree three graph.

Choose a maximal subtree in G. It contains all vertices of G, that is all
triangles. It describes a process of constructing a simplicial complex, each time
guluing a new triangle along an edge. As a result we will have a simplicial complex
Y satisfying the following properties:

• It contains all the triangles of X.
• Y is a polygon.
• X is obtained from Y by identification of some of its edges.

Since the resulting simplicial complex has no boundary, all edges of the polygon
Y are glued pairwise. Thus, Y is a 2n-gon for some n. All 2n edges of Y are
divided into pairs and X is obtained by identification of these pairs.

Let us try to find out a way of keeping all necessary information. We know
which pairs of edges have to be glued. There are, however, two different ways of
gluing a pair of edges, identifying them in different directions.

Let us choose an orientation of each edge so that the edges to be glued have
the same orientation. Choose n letters to denote 2n edges so that the edges to
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Figure 1. The rectangle PQPQ makes up Möbius band after pasting

be glued get the same letter. Let us move along the boundary of the polygon
Y ; when we pass an edge, write its letter if the orientation of the edge coincides
with that of the movement, and its inverse in the opposite case. We get finally a
word in the alphabet x1, . . . , xn so that each letter xi, i = 1, . . . , n (or its inverse)
appears twice.

We claim that, since X is oriented, each letter a appears twice in the char-
acteristic word, once as a, and once as a−1. In fact, if two edges marked by a
contribute the same sign into the characteristic word, the surface X contains a
Möbius band (see Figure 1), and, therefore, cannot be oriented.

The word obtained as above will be called a characteristic word. This word
defines uniquely the way X is glued out of Y . There are, however, different ways
to glue up homeomorphic surfaces. We wish to find a “canonical” presentation.

4.3. Canonical presentation of a surface. Even though this will not contain
a new information, we will mark the vertices of Y so that the vertices get the
same marking if and only if they correspond to the same vertex of X.

4.3.1. Step 1 If two consecutive letters of the characteristic word are x and
x−1, and these are not the only letters appearing in the word, one can erase them
without changing the topological type of the polygon. Topologically this means
that we glue together the edges a and a−1 of Y , and obtain a new polygon whose
edges do not contain the letter a. Note that the vertex P lying between the edges
x and x−1 is the only vertex marked by P — otherwise gluing would not produce
a manifold, see 2.
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Figure 2. Gluing a with a−1

4.3.2. Step 2 The next reduction with leave only one equivalent class (=mark-
ing) of vertices.

For if there are two vertex markings, P 6= Q on an edge x, the following
procedure diminishes by one the number of appearances of Q. We cut off the
triangle RQP on the top of the picture below and paste it to the other appearance
of the edge y as in Figure 3. In this way we get another polygon which would
give the same X after gluing; the number of appearances of the vertex Y is now
less that before.

We assume now that all vertices of Y are covered by the same color (that
means that X has only one vertex).

A pair of letters x, y is linked if the appear in the order x, . . . , y, . . . , x−1, . . . , y−1.

4.3.3. Step 3 This step produces a linked pair of letters going together, so
that the corresponding segment of the characteristic word becomes

x, y, x−1, y−1.

We proceed similarly to Step 2. Each our move will consist of a choice of a
pair of vertices, say, P and Q; cutting Y along a diagonal connecting P with
Q; pasting two halves along a common edge to get a new polygon. The new
polygon so obtained corresponds to a homeomorphic surface. We need two such
transformations to put the edges x, y, x−1, y−1 together, see Figure 4. Let P and
Q be initial vertices of x and x−1 (see Picture 4 below). Our first transformation
is to cut Y along the diagonal PQ (call the new edges thus obtained z and z−1)
and paste along the edges y, y−1. The second transformation make another cut
connecting the ends of two edges marked z, and pastes the two halves along x.
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Figure 3. Reducing the vertices

We get a new polygon with no edges marked x, y, and with new edges marked
z, w linked together forming a segment of characteristic word of form zwz−1w−1.
We are done.

We have therefore proven the following important theorem.

4.3.4. Theorem. Any compact oriented two-dimensional surface can be presented
by pasting pairs of edges in a polygon with a characteristic word which is either

xx−1

or
x1y1x

−1
1 y−1

1 · · ·xgygx
−1
g y−1

g .

In the first case the surface is called genus 0 surface, and in the second case it
is a genus g > 0 surface.

Of course, genus 0 surface is just a sphere, genus one surface is a torus.

4.4. Van Kampen theorem. The following result is extremely efficient if you
want to calculate the fundamental group of your topological space. We will first
formulate the result, then explain its meaning, and only after that will prove it.

Theorem. (Van Kampen theorem, imprecise form) Let A �

f
C

g
- B be a

diagram of connected topological spaces and let X be obtained by gluing A and B
along C. Then the fundamental group π1(X) is isomorphic to the amalgam of
the diagram π1(A) � π1(C) - π1(B).
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First of all, let us explain what is gluing. By definition, X is the quotient of
the disjoint union A ⊔ B by the equivalence relation generated by the condition
f(c) ∼ g(c).

Here are some nice examples.
If C is a point, X is a wedge of A and B, denoted X = A∨B. For instance, any

one-dimensional simplicial complex is homotopy equivalent to a wedge of circles
(prove that!).

If A and B are discs, and C is the circle mapping as the boundary into both
A and B, X will be a two-sphere.

In some cases the result of gluing can be a nasty topological space. Note that
the theorem formulated above is not completely correct (see below a possible
correction).

Let us explain the notion of amalgam (=colimit) of a diagram of groups. First
of all, if G and H are groups, one defines their free product G⊔H as the collection
of (finite) words x1 · · ·xn such that xi belong to G or to H , xi 6= 1 and no two
consecutive letters belong to the same group. The empty word (n = 0) is the unit
of the new group; one multiplies words by concatenation followed by, if required,
multiplication of the neighboring letters belonging to the same group.

Fir example, free product of n copies of Z yields the free group on n generators.
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Now, given a diagram G �

f
K

g
- H of groups, their amalgam is defined

as the quotient of the free product G ⊔ H by the normal subgroup generated by
the elements f(x)g(x)−1, x ∈ K.

Let us show how the above theorem allows one to calculate fundamental groups.
First of all, recall that π1(S

1) = Z. This can be explained, for example, by
the existence of an isomorphism S1 = R/Z. Using the theorem we deduce that
π1(S

1∨S1) = Z⊔Z, and more generally, π1(S
1∨ . . .∨S1) (the wedge of n circles)

is the free group in n generators.

4.4.1. The fundamental group of a compact oriented surface

Let A be the wedge of 2g circles, denoted x1, . . . , xg, y1, . . . , yg. Let B be a disc,
and let C be a circle. The map g : C → B is just the embedding of the circle as
the boundary of the disc. The map f : C → A is the path in the wedge of 2g
circles described by the word x1y1x

−1
1 y−1

1 . . . y−1
g : it goes first along the circles x1

and y1 in the positive direction, then alomg x1 and y1 in the opposite direction,
then does the same with the other pairs of circles.

Looking carefully at the picture, one deduces that X = A⊔C B is precisely the
compact genus g oriented two-dimensional surface.

Applying van Kampen theorem, we get the following result

Theorem. The fundamental group of a compact genus g oriented surface is iso-
morphic to the quotient of the free group generated by x1, y1, . . . , xg, yg by the

normal subgroup generated by the element
∏d

i=1[xi, yi].

4.4.2. A variant of van Kampen theorem

One can chose different ways to make precise the theorem formulated above.
Here is one of possible ways.

4.4.3. Theorem. Under the assumptions listed below the conclusion of the van
Kampen theorem holds. Here are the assumptions.

• The map g : C → B identifies C with a closed subset of B.
• There exists an open neighborhood C ′ of g(C) in B, a map p : C ′ → C

such that pg = idC and a homotopy between idC′ and gp : C ′ → C ′.

4.4.4. Van Kampen via coverings

The best way of thinking about van Kampen type theorems is to reformulate
the claim about the fundamental groups in terms of coverings of A, B, C and
X = A ⊔C B.

Let as above X = A ⊔C B and let π : X̃ → X be a covering. Using the map

i : A → X we can define a covering Ã of A by the formula

Ã = A ×X X̃ = {(a, x̃) ∈ A × X̃|i(a) = π(x̃)}.
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Similarly to the above, we define a covering B̃ of B and a covering C̃ of C. We
have a diagram of covering spaces

(1)

C̃

Ã
�

B̃

-

X̃
�

-

and it is an easy exercise to chech that X̃ = Ã ⊔C̃ B̃.
Assume now the conditions of 4.4.3 hold.

4.4.5. Proposition. Let pA : Ã → A and pB : B̃ → B be coverings. Define

C̃A = Ã ×A C, C̃B = B̃ ×B C.

Assume an isomorphism θ : C̃A → C̃B is given. Then the space X̃ defined by
gluing of the diagram

Ã �

f̃
C̃A

g̃θ
- B̃,

gives a covering of X = A ⊔C B.

Proof. Let X̃ = Ã ⊔C̃A B̃. We have to prove that the natural map X̃ → X is a
covering.

Thus, for each x ∈ X we have to find an open neighborhood O of x in X whose

preimage Õ in X̃ is isomorphic to a product O × F where F is discrete.
By definition a subset of X is open iff its preimage in A⊓B is open that is is a

union of an open subset U of A and an open subset V of B. In other words, open
subsets of X correspond to pairs (U, V ) of open subsets in A and B respectively
satisfying the property f−1(U) = g−1(V ).

We will consider two cases for x. Note that X = A⊔ (B −C) as sets. Assume
that x ∈ B−C. Since g is a closed embedding, B−C is open in B and therefore

in X; therefore, the preimage of B − C in X̃ is the same as its preimage in B̃
and therefore there is a neighborhood in B − C with the required properties.

The case x ∈ A is more difficult. We choose an open neighborhood U of x in A

so that the restriction of Ã → A to U is a trivial covering. Let W = f−1(U). Let
W = ⊔Wi be the decomposition of W into connected components. We finally
use the existence of C ′ ⊃ C, an open subset in B, with a projection p : C ′ → C.
Define Vi = p−1(Wi) and V = ∪Vi = p−1(W ).



10

One has obviously that W = g−1(V ) so the pair (U, V ) defines an open neigh-

borhood of x in X. We will now prove that the restriction of π : X̃ → X to
(U, V ) is a trivial covering.

To simplify the notation, we may assume from the very beginning that A = U ,

C = W and B = V . Choose an isomorphism Ã = A × F for a discrete space F .

The covering C̃A of C is trivial since it is induced from the trivial covering Ã.
We claim that the covering B̃ of B = ⊔Vi is also trivial. In fact, the maps Wi →

Vi are homotopy equivalences, therefore, have isomorphic fundamental groups,
hence, the restriction oreserves triviality of a covering. Since the restriction of

B̃ → B to C is C̃B is isomorphic to C̃A, it is trivial, therefore, B̃ is trivial.
We claim that there is a way to define a trivialization wtB = B × F in such a

way that the composition

C × F = C̃A

θ
- C̃B = C × F

is identity.
This claim result from the fact that g : C → B induces a bijectiom on the

connected components (recall that actually C = ⊔Wi, B = ⊔Vi and the induces
are the same).

In fact, choose a trivialization B̃ = B × F arbitrarily. This induces a trivi-

alization of C̃B: C̃B = C × F , which in turn gives a trivialization of C̃A via θ.

Now we have a pair of trivializations on C̃A. This pair differs by a collection of
automorphisms αi of F , each one for each connected component Wi. But since
there is a bijection between the connected components of C and the connected

components of B, we can use αi to correct the trivialization of B̃ → B. This
yields the claim.

Finally, we immediately observe that the gluing the trivialized diagram of
coverings (1) we get a trivial covering of X. �

4.4.6. From coverings to fundamental groups

We know from Week 3 that if X is a connected (good) topological space, it
(not necessarily connected) coverings corresponds to sets with the action of the
fundamental group π1(X, x).

Let now a diagram of cpnnected topological spaces A � C - B be given.
Choose a base point x ∈ C, put X = A ⊔C B and consider the diagram of the
fundamental groups
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(2)

π1(C, x)

π1(A, x)
�

π1(B, x)

-

π1(X, x)
�

-

which yields a group homorphism

π1(A, x) ⊔π1(C,x) π1(B, x) - π1(X, x).

We wish to prove this is an isomorphism.
Proposition 4.4.5 asserts that this homomorphism induces a bijection between

isomorphism classes of sets F endowed with the action of the corresponding
groups, π1(X, x) and π1(A, x)⊔π1(C,x) π1(B, x). The following elementary lemma
shows that this implies the homomorphism is a bijection.

Lemma. Let f : G → H be a group homomorphism. For any H-set Y we denote
f ∗(Y ) the same set considered as a G-set via f . Assume that any G-set X is
isomorphic to f ∗(Y ) for some Y and that a map Y1 → Y2 is a map of H-sets iff
it is a map of G-sets. Then f is an isomorphism.

Remark. The assumptions of the lemma say precisely that f defines an equiv-
alence between the categories of H-sets and of G-sets.

Proof. The group H considered as an H-set with the action given by the left
multiplication, satisfies the remarkable property

HomH(H, Y ) = Y.

therefore, by the assumption, f ∗(H) satisfies the similar remarkable property for
G-sets. Thus, f ∗(H) = G. This means that the action of G on H defined by
f (the left action by f(x), x ∈ G), is transitive and with the trivial stabilizer.
Thus, f is a bijection.

�

Home assignment.

1. Prove that the quotient of C by the group generated by one transformation

z 7→ z + a

is isomorphic as a Riemann surface to C
∗.
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2. Prove that the universal covering of the punctured disc cannot be C.
3. Let Π be the fundamental group of a Riemann surface X having the upper

half-plane as the universal covering space. Then, as we know, X is isomorphic
to Π\H. Prove that two Riemann surfaces X1 = Π1\H and X2 = Π1\H are
isomorphic iff the subgroups Π1 and Π2 in PGL(2, R) are conjugate.(Hint: use
the lifting property of coverings)

5. Week 6: Homology

Even though the new algebraic invariants of topological spaces, the homology,
will not give a really new information in case of compact Riemann surfaces, it is
worthwhile to know something about it.

5.1. Homology of a simplicial complex. Let (V, S) be a simplicial complex

with the set of vertices V and the collection of n-simplices Sn ⊂

(
V

n + 1

)
.

We will explain now how to assign to (V, S) a collection of abelian groups
Hn(S) called the homology of S. These groups will not depend on the choice of
triangulation of a topological space (and are even isomorphic for homotopically
equivalent spaces). We will not prove the invariance of the homology groups
in general for two reasons. First of all, this is not a simple task. And, what
is probably more important, the only interesting homology group for Riemann
surfaces, H1, can be easily expressed via the fundamental group.

5.1.1. Orientation

Orientation of a simplex is given by a choice of an order of its vertices. Two
orderings of vertices define the same orientation if they differ by an even permu-
tation.

In order to define the homology groups of S one has to, first of all, choose an
orientation of each simplex.

By definition, an n-chain is an expression
∑

aiσi where ai ∈ Z, σi ∈ Sn, and
only finite number of ai is nonzero.

The collection of n-simplices form an abelial group (the free abelian group
spanned by Sn). We denote it Cn or Cn(S).

We will now construct a collection of maps d : Cn → Cn−1 called differentials,
so that the crucial property

d ◦ d = 0

is satisfied.

5.1.2. The differential
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In order to define the map d : Cn → Cn−1 (called the differential) it is enough
to determine

d(σ) =
∑

τ∈Sn−1

i(σ, τ)τ

for each σ ∈ Sn. Thus, we have just to determine the coefficients i(σ, τ) ∈ Z

(called the incidence coefficients).
Here is the prescription. If σ 6⊃ τ as subsets of V , the incidence coefficient is

zero.
Assume now that σ = {x0, . . . , xn} and τ = σ − {xi}. Assume that the

numbering of xi corresponds to the orientation of σ. Then, if the orientation of τ
corresponds to the ordering {x0, . . . , x̂i, . . . , xn}, we define i(σ, τ) = (−1)i; if the
orientation of τ is opposite to the ordering {x0, . . . , x̂i, . . . , xn}, then i(σ, τ) =
−(−1)i.

For example, if σ = {x, y, z} then

d(σ) = {y, z} − {x, z} + {x, y}.

5.1.3. Lemma. One has d2 = 0.

Proof. It is enough to check that d2(σ) = 0 for any σ ∈ Sn. Since dσ is a sum of
simplices od dimension n−1, d2σ is a linear combination of simplices of dimension
n− 2. Each simplex obtained from σ by erasing two its vertices appears twice in
d2σ; one has to check only that it appears with different signs.

iIf τ is obtained from σ by erasing the vertices i and j so that i < j, then
τ appears once in the decomposition of d2σ as (−1)i(−1)jτ , and for the second
time as (−1)j−1(−1)iτ . The signs are, obviously, different. �

5.1.4. Complex of abelian groups and its homology

A sequence of abelian groups Ci and homomorphisms d : Cn → Cn−1 satisfying
a condition d2 = 0 is called a complex (of abelian group).

The notion of complex is one of the very basic notions of algebraic topology
and homological algebra. Very often the following thing happens: one can assign
to an interesting mathematical object (a topological space, a manifold, a compli-
cated algebraic structure) a complex which is not unique but depends on various
choices made (for instance, on a triangulation). However, one can extract from
the complex a part which does not depend on the choices, and this part really
characterized the object. This part is the homology.

Definition. Let

C• : . . . - Cn+1
d
- Cn

d
- Cn−1

- . . .

be a complex of abelian groups. Its n-th homology, denoted Hn(C•), is the factor
group Zn/Bn where

Zn = {x ∈ Cn|d(x) = 0}
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and Bn = d(Cn+1) ⊆ Cn}.

Note that Bn ⊂ Zn because of the property d2 = 0.

5.2. First calculations. Let us calculate H0(S). A 0-chain is a (finite) linear
combination of the vertices with integral coefficients. One has Z0 = C0 since
there is no C−1. Thus, we have to determine B0 = d(C1). For any one-simplex
σ = {x, y} one has dσ = {y}−{x}. Thus, in H0 we idetify the vertices connected
by an edge. This proves the following

5.2.1. Proposition. For any simplicial complex S its zeroth homology is the free
abelian group spanned by the connected components of S. In particular, if S is
connected, H0(S) = Z.

We wish to say more in the connected case. The homology H0(S) is obtained
as the quotient of the vector space Z0 = C0 spanned by the vertices modulo the
subgroup generated by the expressions x − y, x, y ∈ V . Thus means that the
0-cycle

∑
aivi, vi ∈ V is a boundary iff

∑
ai = 0.

In general H0 is the only obviously calculated homology. One can also add
that if S is an n-dimensional simplicial complex, one has Hi(S) = 0 for i > n.

It is a good (and not absolutely trivial) exercise to directly prove that Hi(∆
n) =

0 for i > 0 when ∆n is the stardard n-simplex consisting, by definition, of all
nonempty subsets of the set of vertices V = {0, . . . , n}.

We suggest to make this exercise at least for n = 2.
Another good exercise is (the simplicial model of) the circle: this is the complex

consisting of three vertices and three edges.
Its first homology is easily seen to be Z, generated by the one-cycle

{x, y} + {y, z} + {z, x}.

5.3. Homology of 1-dimensional complex. Comparison to the funda-

mental group. A one-dimensional simplicial complex is just what computer
scientists call a graph: a set of vertices and a subset of pairs of vertices.

We assume that our one-dimensional complex is connected.
Let us first of all study the case our graph is a (finite) tree. We know that a

tree can be defined recursively as a graph obtained from a tree (or a single point
which is the smallest possible tree) by gluing an edge along a single vertex. Thus
allows one to easily check the following

5.3.1. Lemma. Any tree has a trivial first homology.

Proof. The claim is obvious for a point, so we have the base for induction. Assume
a tree T os obtained from a tree S adding an edge σ = {x, y} with x ∈ S (and
y 6= S). If z =

∑
aiσi is a one-cycle, the edge σ cannot appear in the expression

with a nonzero coefficient a since otherwize dz will have ay as a summand.
Then z is a cycle for S, so by the induction hypothesis z = 0. �
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Note that the fundamental group of a tree is as well trivial. We can suggest
two ways of proving this.

1. Any tree is contractible, that is is homotopy equivalent to a point. The

fundamental groups of homotopy equivalent spaces are isomorphic —
this very basic fact about fundamental groups we have not proven, so we have to
leave it as an exercise. This implies π1(T ) is trivial.

2. Using von Kampen theorem and the induction as for the homology.
Let us now compare the fundamental group and the homology group of a

uconnected one-dimensional complex. Let S be such a comlplex. Choose a
maximal subtree T in S. It contains all vertices of S and some of its edges.

Let e1, . . . , en be the edges not in T . We will identify not the fundamental
group π(S) with the free group generated by ei, whereas the homology H1(S)
will be identified with the free abelian group generated by ei.

Choose any vertex x as a base point. Choose for each vertex y ∈ S a path py

connecting x with y. Note that this path can be represented by a one-chain in
C1(S).

Any edge ei with the ends y and z gives rise to a closed path starting at
x, moving along py then ei and then along −pz back to x. This closed path
represents an element of the fundamental group π1(S) and it is easy to see that
they are free generators of this group.

We can copy the above reasoning to calculate H1(S). The group of one-chains
in T has no cycles. However, each edge ei gives rize to a cycle ei + py − pz. Since
C2(S) = 0, there are no one-boundaries, and we get the following conclusion.

5.3.2. Theorem. Let S be a one-dimensional simplicial complex. The group
π1(S) is free, with free generators ei (edges not in a chosen maximal subtree).
The group H1(S) is the free abelian group generated by ei.

We see that for one-dimansional complex H1(S) = Π/[Π, Π] where Π = π1(X),
X being the geometric realization of S.

5.3.3. Remark. It is very inconvenient that the homology of a topological space
is defined in this course as a collection of groups assigned to a triangulation of
X. This does not allow us to define a canonical isomorphism between H1 and
Π/[Π, Π]. It is worthwhile to define H1 as the quotient of the fundamental group
by the commutant, and present sthe definition via triangulation as a calculational
tool.

5.4. Adding simplices of dimension > 1. Let S be a simplicial complet and
let S(n) be the subcomplex consistion of simplices of dimension ≤ n. We can
think of S(2) as the complex obtained from S(1) by attaching two-simplices
σ ∈ S2. Let us see what is happening to π1 and to H1 under this operation.
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Van Kampen theorem gives an answer for the fundamental group. The funda-
mental group of S ∪σ is the quotient of π1(S) by the normal subgroup generated
by the class of the boundary of σ.

The similar formula for H1 is obtained immediately by definition: attaching a
two-simplex we do not change the group of one-cycles, but adding a new element
dσ to the boundary.

It is easy to see that attaching an n-simplex for n > 2 changes neither π1 not
H1.

5.4.1. Homology of oriented surfaces

Recall that if X is a compact oriented surface of genus g, the group π1(X) is
generated by x1, y1, . . . , xg, yg, subject to the relation

∏g

i=1[xi, yi] = 1.
The commutator subgroup of the free group is generated by all commutators

[xi, xj ], [xi, yj], [yi, yj]. In particular, it contains the product of [xi, yi]. Thus, we
get

Proposition. The first homology of the compact oriented surface of genus g is
isomorphic to Z2g. As a free basis of this group one can take the classes of the
edges xi, yi, i = 1, . . . , g.

5.4.2. The second homology

Recall that we use (without proof at the moment) the fact that any Riemann
surface admits a triangulation.

Let S be the corresponding two-dimensional simplicial complex. We know that
every edge belongs to precisely two triangles. It is easy to see that if one choose
orientation of all two-simplices so that it corresponds to the orientation of the
surface, the incidence coefficients of these two triangles at their common edge
have different signs.

Therefore, a two chain
∑

aiσi is a cycle iff all its coefficients ai are proportional.
Here one has to distinguish two cases.

• X is compact and therefore S is finite. Then the sum of all two-simplices
is a cycle and it generates H2(X). In this case H2(X) = Z.

• X is not compact. Then S has an infinite number of two-simplices and
there are no nonzero two-cycles. In this case H2(X) = 0.

Home assignment.

1. Prove that the fundamental groups of homotopy equivalent spaces are iso-
morphic.

2. Using van Kampen theorem calculate π1(RP2) where RP2 is the (real)
projective plane which can be presented as the disc whose opposite points on the
boundary are identified.

3. Calculate H2(RP2).


