RIEMANN SURFACES

3. WEEK 3. TOPOLOGICAL STRUCTURE OF RS AND OF HOLOMORPHIC MAPS

3.1. Nonramified covering. A map of topological spaces f : X — Y is called
a nonramified covering if for each y € Y there exists a neighborhood U of y in Y
and an isomorphism

1) UxF

(1) b

U
where F' is a discrete space, f is the restriction of the original map f and p; is
the projection to the first component.

Note that any nonramified covering is automatically a local isomorphism: for
any = € X there exists a neighborhood V' of  and a neighborhood U of f(x) so
that f induces a homeomorphism between V' and U (see Exercise 2).

Note that, according to the definition, if f is a nonramified covering, the func-
tion

yeY = |yl
is locally constant. Therefore, since Y is connected, it is constant. Its value
(finite or infinite) is called the degree of f.

3.1.1. Lemma. Let f : X — Y be a local homeomorphism. Then, if Y is a
Riemann surface, there is a unique structure of Riemann surface on X such that
f 1s holomorphic.

Proof. Let x € X and let V' be a neighborhood of x homeomorphic via f to a
neighborhood f(V) = U of y = f(x). Choose a chart of Y containing y and
contained in U. Its preimage under f defines a chart of X containing x.

If U; and U, are two charts of X constructed in the above way, the intersection
Uy N U, is mapped by f into the intersection of the images (it may be strictly
less than the intersection of the images).

Therefore, since the images of U; are compatible in Y, the charts U; are com-
patible in X. O

We are willing to formulate conditions which would allow to get a riemann
surface structure on Y from a Riemann surface X and a nonramified covering
f: X =Y.

1



We say that a covering f : X — Y is compatible with the complex structure
on X if for any diagram (1) the homeomorphism between any pair of components
of f~1(U) defined by f, is holomorphic.

3.1.2. Lemma. Let X be a Riemann surface and let f : X —— Y be a nonrami-
fied covering compatible with the complex structure of X. Then there is a unique
complex structure on 'Y such that f is holomorphic.

Proof. For any U as in (1) define the atlas of U via homoemorphism of U with
any component of f~1(U). So defined charts are automatically compatible.  [J

The following special case of Lemma 3.1.2 is especially useful.

3.1.3. Proposition. Let X be a Riemann surface and let a group G acts on X
by holomorphic isomorphisms. Assume that the action of G on X 1is free, that is
for each x € X there is a neighborhood U containing x such that for each g # 1
in GUNg(U)=10. Then the quotient map

p: X — G\X

is a covering compatible with the complex structure of X. Therefore, the quotient
G\X is Riemann surface.

3.1.4. Example. The quotient of C by the action of a lattice L = Z & Zr is
obviously free, so the quotient is a Riemann surface.

3.1.5. Lifting property

Let f: X — Y be a nonramified covering, x € X, y = f(z). Let v: [0,1] = Y
be a continuous path in Y. We claim that v can be uniquely lifted to a continuous
path I' : [0, 1] — X satisfying the condition I'(0) = .

This is fairly standard: the set of points ¢ € [0, 1] such that the path |4 can
be uniquely lifted, is open and closed in [0, 1].

A generalization of this: Let Z be simply connected. Then any map~vy: Z — Y
sending a point z € Z to y € Y can be uniquely lifted to amap I' : 7 — X
satisfying I'(z) = «.

3.1.6. Proper maps

A continuous map f : X — Y of locally compact spaces is called proper if for
any complact C' C Y the preimage f~1(C) is compact.

A covering is proper if and only if the preimage f~'(y) is a finite set (all
preimages have the same cardinality since Y is connected).

If X is compact, any map f: X — Y is proper.

Lemma. Let f : X — Y be a proper local isomorphism. Then f is a covering.
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Proof. Let y € Y and let f~'(y) = {x1,...,2,}. Since f is a local isomorphism,
there exist open neighborhoods U; of x; such that fy, : U; — f(U;) is a homeo-
morphism. Let V = Nf(U;). We can replace U; with U; N f~1(V') so that for the
new U; we have f(U;) = V.
Let us make a few reductions. First of all, we may assume V has a compact
closure V. Next, replace Y with V and X with f~1(V).
Then X is compact. We can cover X by the following open sets:
L4 Ui,izl,...,n.
o /(Y — Z) where Z runs through the set of compact neighborhoods of
Y.
Since X is compact,

i=1 i=1 i=1

where Z = NZ; is also a compact neighborhood of y. Thus, replacing V' by
an open neighborhood of y inside Z, we get f~1(V) = U ,U; N f~1(V). The
neighborhood V satisfies the required property. 0

3.1.7. Corollary. Let f: X —— Y be a nonconstant holomorphic map of Rie-
mann surfaces. Assume that X is compact. Then (Y is as well compact and)
the number of preimages of each pointy € Y (counted with multiplicity) does not
depend on y.

The number of preimages is called the degree of f.

Proof. The set of critical points of f in X is discrete, therefore, finite. Let C' be
its image under f in Y. X is compact, thus f is proper, therefore the restriction

f:X-fYC)—Y-C

is proper as well. It is a local isomorphism, therefore, a nonramified covering.
Therefore, the number of preimages is constant for y € Y — C.

Let us make sure that the same number of preimages (counting with multi-
plicities) has a point y € C. Let x € f~!'(y). We know that there are local
coordinates z near x and w near y so that f is written by the formula w = 2. In
the punctured neighborhood of y there are n preimages belonging to the neigh-
borhood of x; the point y has one preimage = of multiplicity n. Thus, the number
of preimages counting multiplicities is preserved. O

3.2. Fundamental group. The following definition makes sense for quite gen-
eral topological spaces. Here is the requirement (definitely satisfied by manifolds):

We assume that the topological space X is locally simply connected. That
means that any neighborhood of X contains a simply connected subneighbor-
hood. Recall that a pathwise connected space X is called simply connected if
for each pair of points x,y € X any two paths connecting them are homotopic:
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for ¢, : [0,1] — X with ¢(0) = ¥(0) = z, ¢(1) = (1) = Y, there exists a
continuous map F' : [0, 1] x [0,1] — X such that

F,t)=z, F(,t)=y, F(s,0)=0(s), F(s,1)=1(s).

We will now assign to a locally simply connected topological space X (and to a
point x € X) a group (X, z) which will be trivial once X is simply connected.

3.2.1. Loops. Product of loops

A continuous map ¢ : [0,1] — X satisfying ¢(0) = ¢(1) = x is called a loop
centered at x. Given two loops ¢, centered at x, one defines their product ¢
by the formula

_ [ o(2t), t €0, 3]
2) ov(t) _{ Y2t—1), telk ]
A nuisance: the product so defined is not associative: the product (¢1))y passes
the first two loops ¢, ¢ with the velocity 4, and the third loop x with the velocity
2, whereas the product ¢(¢x) passes the first loop with the double velocity, and
the loops v, x with the velocity 4.
At least, the two products are homotopic.

3.2.2. Theorem. The product of loops defined a meaningful operation on the
homotopy classes of loops. The set of homotopy classes of loops is a group with
respect to this operation.

The group of homotopy classes of loops based at © € X is called the funda-
mental group of X and is denoted (X, x).

Proof. First of all, it is useful to check that two loops differing by a reparametriza-
tion, are homotopic.

In a more detail, let u : [0, 1] — [0, 1] be a monotone continuous map satisfying
the condition u(0) = 0, u(1) = 1. We claim that any path ¢ : [0,1] — X
is homotopy equivalent to the composition ¢u (note that both paths have the
same edges). In fact, the family of paths ¢ — ¢u; connects ¢ with ¢u, where
u(s) = tu(s) + (1 —t)s.

This, in particular, imply that ¢(ix) and (¢1))x are homotopic — since they
differ only by a reparametrization.

Next we have to check (this is really easy and left as a homework) that the
product of loops preserves homotopy of loops. Thus, an associative operation is
defined on the set m; (X, z) of homotopy classes of loops.

The constant loop i(s) = z is the unit of this operation, since the product i¢
differs from ¢ by a reparametrization; finally, for any loop ¢ the loop 1 (s) :=
¢(1—s) is the (homotopy) inverse of ¢ since the composition ¢ can be connected



with ¢ by the family

P(2st), s
F(s,t) _{ ¢>Ez(1)— ), s

3.2.3. Examples: X = C, C

The fundamental group of a simply connected space is trivial. The space C is
clearly simply-connected. The Riemann sphere is also simply-connected: given
two paths with common ends, throw out one point of C not belonging to the
paths - and we will get a complex plane which is clearly simply-connected.

3.2.4. The circle and C* The circle is the first example of a non-simply-
connected space. For a continuous map ¢ : [0,1] — S! satisfying ¢(0) = ¢(0) =
1 € S can be described as a continuous map ¢ : [0,1] — R such that ag(0) =
0, gzNS(l) = 27tk for some k € Z. 1t is easy to see that homotopic paths correspond
to the same value of k.

This allows one to identify 71 (.S) with the group Z.

The Riemann surface C* = C — {0} has the same fundamental group as S*.

3.3. Universal covering. There is a very intimate connection between the fun-
damental group and the nonramified coverings.
Let X be a connected locally simply connected space.

3.3.1. Definition. A map f : X — X is called a universal covering if f is a
nonramified covering and X is simply connected.

As we will see soon, a universal covering exist and is “almost unique”. We will
explain later the meaning of the term “universal”.

Let P(z,y) be the set of homotopy classes of paths from x to y. Thus,
m (X, z) = P(x,x).

3.3.2. Construction

Fixrx e X. _ _

We define X as Uyex P(x,y). The projection p : X — X carries P(z,y) to y.
The fiber p~!(y) identifies with P(z,y).

Let us define a topology on X. Let y € X and let U be a simply connected
neighborhood of y. Let a point of p~!(y) be represented by a path ¢ : [0,1] — X
connecting x with y. Since U is simply-connected, any point z € U is connected
by a path ¢ with y, unique up to homotopy. Thus the homotopy class of the
product ¢ is uniquely defined; the collection of points of X so defined is denoted
Us.



The sets U, form a basis of the topology of X.

Let us prove X satisfies the required properties. First of all, the map p : X —
X is obviously a covering. Let us check X is connected.

Let ¢ be a path connecting x to y. If U is a simply connected neighborhood of
y, p: Uy — U is a homeomorphism. If now z is a point of the path ¢ belonging
to U, the segment of ¢ between z and y lifts to Us. Compactness of [0, 1] allows
one to lift ¢ to a path connecting the class of the constant path with the class of
¢ in a finite number of steps.

Let us finally prove that X is simply connected. Since p is a covering and X
is connected, any path connecting x with y in X can be uniquely lifted to a path
in X starting at ¢ € X.

This yields a one-to-one correspondence between the set P(z,y) and the set of
homotopy classes of paths in X connecting 7 € X with a point over y € X. Since
the set of points over y also identifies with P(x,y), any two paths in X from i to
¢ € P(x,y), are homotopic. This proves that X is simply connected.

3.3.3. Universal property

Let z € X and let p : X — X be defined as above. Let ¢ : X' — X
be a covering. Fix a point #/ € X’ over x. There are canonical one-to-one
correspondences between:

1. Paths from z to y in X and paths from ¢ to a point over y in X.
2. Paths from = to y in X and paths from x’ to a point over y in X".

Comparing the above, we get the following

Proposition. There is a unique map r : X — X satisfying the conditions

ep=gqor.
o (1) =1

Note that the map r : X — X' is automatically a covering. It is necessarily
surjective if X’ is connected.

Note as well that if X "is simply connected, r has to be an isomorphism.
Therefore, X explicitly constructed above is (noncanonically) isomorphic to any
universal covering.

3.3.4. Action of 7 (X,z) on X

Choose any point ' € m(X,x). By the proposition above, there exists a
unique map X — X over X carrying ¢ to a’. This defines an action of the
fundamental group (X, x) on X. The action is clearly free and the quotient
X /m (X, z) identifies with X



3.3.5. Classification of coverings: “Galois theory” N

Let ¢ : Y — X be a covering (and X and Y connected). Let p: X — X be
a universal covering. According to the above there exists a covering r : XY
such that p = g o r. This covering is uniquely defined by a choice of y € ¢! ().

By definition, r : X — Y is also a universal covering, so there is an action of
m(Y,y) on X. Actually, m(Y,y) is just a subgroup of 7 (X, z) and the action is
the restriction of the action of m (X, x) on (X).

We have thus described a correspondence between (connected) coverings of X
and subgroups of m (X, z).

This correspondence is a close relative of the correspondence between field
extensions and subgroups of Galois group in Galois theory.

Home assignment.

1. Let ¢ and ¢’ be two homotopic paths. Prove that the products ¢ and ¢'v
are homotopic. B

2. Prove that the action of 7 (X, x) on X is given by the product of paths.

3. Prove that the fundamental groups (X, x) and (X, y) are isomorphic
for connected X.

4. Prove that m (X x Y) is isomorphic to m(X) x m(Y). In particular, the
fundamental group of an elliptic curve is Z @ Z.



