
RIEMANN SURFACES

3. Week 3. Topological structure of RS and of holomorphic maps

3.1. Nonramified covering. A map of topological spaces f : X → Y is called
a nonramified covering if for each y ∈ Y there exists a neighborhood U of y in Y
and an isomorphism

(1)

f−1(U) - U × F

U
�

p 1

f

-

where F is a discrete space, f is the restriction of the original map f and p1 is
the projection to the first component.

Note that any nonramified covering is automatically a local isomorphism: for
any x ∈ X there exists a neighborhood V of x and a neighborhood U of f(x) so
that f induces a homeomorphism between V and U (see Exercise 2).

Note that, according to the definition, if f is a nonramified covering, the func-
tion

y ∈ Y 7→ |f−1(y)|
is locally constant. Therefore, since Y is connected, it is constant. Its value
(finite or infinite) is called the degree of f .

3.1.1. Lemma. Let f : X → Y be a local homeomorphism. Then, if Y is a
Riemann surface, there is a unique structure of Riemann surface on X such that
f is holomorphic.

Proof. Let x ∈ X and let V be a neighborhood of x homeomorphic via f to a
neighborhood f(V ) = U of y = f(x). Choose a chart of Y containing y and
contained in U . Its preimage under f defines a chart of X containing x.

If U1 and U2 are two charts of X constructed in the above way, the intersection
U1 ∩ U2 is mapped by f into the intersection of the images (it may be strictly
less than the intersection of the images).

Therefore, since the images of Ui are compatible in Y , the charts Ui are com-
patible in X. �

We are willing to formulate conditions which would allow to get a riemann
surface structure on Y from a Riemann surface X and a nonramified covering
f : X → Y .
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We say that a covering f : X → Y is compatible with the complex structure
on X if for any diagram (1) the homeomorphism between any pair of components
of f−1(U) defined by f , is holomorphic.

3.1.2. Lemma. Let X be a Riemann surface and let f : X - Y be a nonrami-
fied covering compatible with the complex structure of X. Then there is a unique
complex structure on Y such that f is holomorphic.

Proof. For any U as in (1) define the atlas of U via homoemorphism of U with
any component of f−1(U). So defined charts are automatically compatible. �

The following special case of Lemma 3.1.2 is especially useful.

3.1.3. Proposition. Let X be a Riemann surface and let a group G acts on X
by holomorphic isomorphisms. Assume that the action of G on X is free, that is
for each x ∈ X there is a neighborhood U containing x such that for each g 6= 1
in G U ∩ g(U) = ∅. Then the quotient map

p : X - G\X

is a covering compatible with the complex structure of X. Therefore, the quotient
G\X is Riemann surface.

3.1.4. Example. The quotient of C by the action of a lattice L = Z ⊕ Zτ is
obviously free, so the quotient is a Riemann surface.

3.1.5. Lifting property
Let f : X → Y be a nonramified covering, x ∈ X, y = f(x). Let γ : [0, 1] → Y

be a continuous path in Y . We claim that γ can be uniquely lifted to a continuous
path Γ : [0, 1] → X satisfying the condition Γ(0) = x.

This is fairly standard: the set of points t ∈ [0, 1] such that the path γ|[0,t] can
be uniquely lifted, is open and closed in [0, 1].

A generalization of this: Let Z be simply connected. Then any map γ : Z → Y
sending a point z ∈ Z to y ∈ Y can be uniquely lifted to a map Γ : Z → X
satisfying Γ(z) = x.

3.1.6. Proper maps
A continuous map f : X → Y of locally compact spaces is called proper if for

any complact C ⊂ Y the preimage f−1(C) is compact.
A covering is proper if and only if the preimage f−1(y) is a finite set (all

preimages have the same cardinality since Y is connected).
If X is compact, any map f : X → Y is proper.

Lemma. Let f : X → Y be a proper local isomorphism. Then f is a covering.
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Proof. Let y ∈ Y and let f−1(y) = {x1, . . . , xn}. Since f is a local isomorphism,
there exist open neighborhoods Ui of xi such that fUi

: Ui → f(Ui) is a homeo-
morphism. Let V = ∩f(Ui). We can replace Ui with Ui ∩ f−1(V ) so that for the
new Ui we have f(Ui) = V .

Let us make a few reductions. First of all, we may assume V has a compact
closure V̄ . Next, replace Y with V̄ and X with f−1(V̄ ).

Then X is compact. We can cover X by the following open sets:

• Ui, i = 1, . . . , n.
• f−1(Y − Z) where Z runs through the set of compact neighborhoods of
y.

Since X is compact,

X =
n⋃

i=1

Ui ∪
m⋃

i=1

f−1(Y − Zi) =
n⋃

i=1

Ui ∪ f−1(Y − Z)

where Z = ∩Zi is also a compact neighborhood of y. Thus, replacing V by
an open neighborhood of y inside Z, we get f−1(V ) = ∪n

i=1Ui ∩ f−1(V ). The
neighborhood V satisfies the required property. �

3.1.7. Corollary. Let f : X - Y be a nonconstant holomorphic map of Rie-
mann surfaces. Assume that X is compact. Then (Y is as well compact and)
the number of preimages of each point y ∈ Y (counted with multiplicity) does not
depend on y.

The number of preimages is called the degree of f .

Proof. The set of critical points of f in X is discrete, therefore, finite. Let C be
its image under f in Y . X is compact, thus f is proper, therefore the restriction

f : X − f−1(C) - Y − C

is proper as well. It is a local isomorphism, therefore, a nonramified covering.
Therefore, the number of preimages is constant for y ∈ Y − C.

Let us make sure that the same number of preimages (counting with multi-
plicities) has a point y ∈ C. Let x ∈ f−1(y). We know that there are local
coordinates z near x and w near y so that f is written by the formula w = zn. In
the punctured neighborhood of y there are n preimages belonging to the neigh-
borhood of x; the point y has one preimage x of multiplicity n. Thus, the number
of preimages counting multiplicities is preserved. �

3.2. Fundamental group. The following definition makes sense for quite gen-
eral topological spaces. Here is the requirement (definitely satisfied by manifolds):

We assume that the topological space X is locally simply connected. That
means that any neighborhood of X contains a simply connected subneighbor-
hood. Recall that a pathwise connected space X is called simply connected if
for each pair of points x, y ∈ X any two paths connecting them are homotopic:
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for φ, ψ : [0, 1] → X with φ(0) = ψ(0) = x, φ(1) = ψ(1) = Y , there exists a
continuous map F : [0, 1]× [0, 1] → X such that

F (0, t) = x, F (1, t) = y, F (s, 0) = φ(s), F (s, 1) = ψ(s).

We will now assign to a locally simply connected topological space X (and to a
point x ∈ X) a group π1(X, x) which will be trivial once X is simply connected.

3.2.1. Loops. Product of loops
A continuous map φ : [0, 1] → X satisfying φ(0) = φ(1) = x is called a loop

centered at x. Given two loops φ, ψ centered at x, one defines their product φψ
by the formula

(2) φψ(t) =

{
φ(2t), t ∈ [0, 1

2
]

ψ(2t− 1), t ∈ [1
2
, 1].

A nuisance: the product so defined is not associative: the product (φψ)χ passes
the first two loops φ, ψ with the velocity 4, and the third loop χ with the velocity
2, whereas the product φ(ψχ) passes the first loop with the double velocity, and
the loops ψ, χ with the velocity 4.

At least, the two products are homotopic.

3.2.2. Theorem. The product of loops defined a meaningful operation on the
homotopy classes of loops. The set of homotopy classes of loops is a group with
respect to this operation.

The group of homotopy classes of loops based at x ∈ X is called the funda-
mental group of X and is denoted π1(X, x).

Proof. First of all, it is useful to check that two loops differing by a reparametriza-
tion, are homotopic.

In a more detail, let u : [0, 1] → [0, 1] be a monotone continuous map satisfying
the condition u(0) = 0, u(1) = 1. We claim that any path φ : [0, 1] → X
is homotopy equivalent to the composition φu (note that both paths have the
same edges). In fact, the family of paths t 7→ φut connects φ with φu, where
ut(s) = tu(s) + (1− t)s.

This, in particular, imply that φ(ψχ) and (φψ)χ are homotopic — since they
differ only by a reparametrization.

Next we have to check (this is really easy and left as a homework) that the
product of loops preserves homotopy of loops. Thus, an associative operation is
defined on the set π1(X, x) of homotopy classes of loops.

The constant loop i(s) = x is the unit of this operation, since the product iφ
differs from φ by a reparametrization; finally, for any loop φ the loop ψ(s) :=
φ(1−s) is the (homotopy) inverse of φ since the composition φψ can be connected
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with i by the family

F (s, t) =

{
φ(2st), s ≤ 1

2
,

φ(2(1− s)t), s ≥ 1
2
.

�

3.2.3. Examples: X = C, Ĉ
The fundamental group of a simply connected space is trivial. The space C is

clearly simply-connected. The Riemann sphere is also simply-connected: given

two paths with common ends, throw out one point of Ĉ not belonging to the
paths - and we will get a complex plane which is clearly simply-connected.

3.2.4. The circle and C∗ The circle is the first example of a non-simply-
connected space. For a continuous map φ : [0, 1] → S1 satisfying φ(0) = φ(0) =

1 ∈ S1 can be described as a continuous map φ̃ : [0, 1] → R such that aφ̃(0) =

0, φ̃(1) = 2πk for some k ∈ Z. It is easy to see that homotopic paths correspond
to the same value of k.

This allows one to identify π1(S) with the group Z.
The Riemann surface C∗ = C− {0} has the same fundamental group as S1.

3.3. Universal covering. There is a very intimate connection between the fun-
damental group and the nonramified coverings.

Let X be a connected locally simply connected space.

3.3.1. Definition. A map f : X̃ → X is called a universal covering if f is a

nonramified covering and X̃ is simply connected.

As we will see soon, a universal covering exist and is “almost unique”. We will
explain later the meaning of the term “universal”.

Let P (x, y) be the set of homotopy classes of paths from x to y. Thus,
π1(X, x) = P (x, x).

3.3.2. Construction
Fix x ∈ X.
We define X̃ as ∪y∈XP (x, y). The projection p : X̃ → X carries P (x, y) to y.

The fiber p−1(y) identifies with P (x, y).

Let us define a topology on X̃. Let y ∈ X and let U be a simply connected
neighborhood of y. Let a point of p−1(y) be represented by a path φ : [0, 1] → X
connecting x with y. Since U is simply-connected, any point z ∈ U is connected
by a path ψ with y, unique up to homotopy. Thus the homotopy class of the

product φψ is uniquely defined; the collection of points of X̃ so defined is denoted
Uφ.
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The sets Uφ form a basis of the topology of X̃.

Let us prove X̃ satisfies the required properties. First of all, the map p : X̃ →
X is obviously a covering. Let us check X̃ is connected.

Let φ be a path connecting x to y. If U is a simply connected neighborhood of
y, p : Uφ → U is a homeomorphism. If now z is a point of the path φ belonging
to U , the segment of φ between z and y lifts to Uφ. Compactness of [0, 1] allows
one to lift φ to a path connecting the class of the constant path with the class of
φ in a finite number of steps.

Let us finally prove that X̃ is simply connected. Since p is a covering and X̃
is connected, any path connecting x with y in X can be uniquely lifted to a path

in X̃ starting at i ∈ X̃.
This yields a one-to-one correspondence between the set P (x, y) and the set of

homotopy classes of paths in X̃ connecting i ∈ X̃ with a point over y ∈ X. Since

the set of points over y also identifies with P (x, y), any two paths in X̃ from i to

φ ∈ P (x, y), are homotopic. This proves that X̃ is simply connected.

3.3.3. Universal property

Let x ∈ X and let p : X̃ → X be defined as above. Let q : X ′ → X
be a covering. Fix a point x′ ∈ X ′ over x. There are canonical one-to-one
correspondences between:

1. Paths from x to y in X and paths from i to a point over y in X̃.
2. Paths from x to y in X and paths from x′ to a point over y in X ′.

Comparing the above, we get the following

Proposition. There is a unique map r : X̃ - X ′ satisfying the conditions

• p = q ◦ r.
• r(i) = x′.

Note that the map r : X̃ → X ′ is automatically a covering. It is necessarily
surjective if X ′ is connected.

Note as well that if X ′ is simply connected, r has to be an isomorphism.

Therefore, X̃ explicitly constructed above is (noncanonically) isomorphic to any
universal covering.

3.3.4. Action of π1(X, x) on X̃
Choose any point x′ ∈ π1(X, x). By the proposition above, there exists a

unique map X̃ → X̃ over X carrying i to x′. This defines an action of the

fundamental group π1(X, x) on X̃. The action is clearly free and the quotient

X̃/π1(X, x) identifies with X.
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3.3.5. Classification of coverings: “Galois theory”

Let q : Y → X be a covering (and X and Y connected). Let p : X̃ → X be

a universal covering. According to the above there exists a covering r : X̃ → Y
such that p = q ◦ r. This covering is uniquely defined by a choice of y ∈ q−1(x).

By definition, r : X̃ → Y is also a universal covering, so there is an action of

π1(Y, y) on X̃. Actually, π1(Y, y) is just a subgroup of π1(X, x) and the action is

the restriction of the action of π1(X, x) on (̃X).
We have thus described a correspondence between (connected) coverings of X

and subgroups of π1(X, x).
This correspondence is a close relative of the correspondence between field

extensions and subgroups of Galois group in Galois theory.
Home assignment.
1. Let φ and φ′ be two homotopic paths. Prove that the products φψ and φ′ψ

are homotopic.

2. Prove that the action of π1(X, x) on X̃ is given by the product of paths.
3. Prove that the fundamental groups π1(X, x) and π1(X, y) are isomorphic

for connected X.
4. Prove that π1(X × Y ) is isomorphic to π1(X) × π1(Y ). In particular, the

fundamental group of an elliptic curve is Z⊕ Z.


