
INTRODUCTION TO LIE GROUPS

1. Part 1: Introduction. Examples. Topological groups. GL(n,R)

1.1. Historical remarks. Lie is just a name.
Sophus Lie (1842–1899) developed the theory of continuous transformation

groups (now: Lie groups) in the end of 19 century.
The theory of finite groups has been developed approximately at the same time

(slightly earlier). Sylow was Lie’s friend that taught Galois theory at Christiania
(Oslo) university and proved foundational Sylow theorems.

1.2. Examples. A Lie group is a group that has some extra geometric / topo-
logical properties. It takes time to grasp the formal definition — we start with
some easy examples.

• (Rn,+).

• GL(n,R) is a subset of matrices, that is a subset of Rn2
. So this is not

just a group but also a topological space.
• SO(2,R) is a group of rotations of the 2-dimensional euclidean space, but

also a circle.
• SU(2), the collection of unitary matrices of determinant 1. A general

element of SU(2) has form[
a+ bi c+ di
−c+ di a− bi

]
with a, b, c, d ∈ R satisfying the condition a2 + b2 + c2 + d2 = 1. Thus,
SU(2) is a three-dimensional sphere.

1.3. Topological groups. We will start with a somewhat easier notion of a
topological group.

A topological group is a topological space G endowed with a structure of group,
that is a map m : G × G → G satisfying the following properties (describing
compatibility of two structures).

1. m is a continuous map. Recall that to understand this we should remem-
ber that G×G is also a topological space where open subsets are unions
of the subsets U × V where U, V are open in G.

2. The map G→ G carrying g to g−1 is also continuous.
1
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1.3.1. Let us show that GL(n,R) is a topological group. The multiplication is
given by matric multiplication which is given by simple formulas

∑
k aikbkj. This

is obviously a continuous function.
The passage to inverse has also an explicit formula including 1/det(A) and

the adjoint matrix A′ whose entries are the minors. Since the determinant is a
continuos function and x 7→ 1/x is continuous when x 6= 0, this proves continuity
of the inverse for GL(n,R).

1.3.2. Exercise. Prove that if G is a topological group and H is a subgroup of G
then H is a topological group in the induced topology. Prove that the closure H̄
is a subgroup in G.

1.3.3. Exercise. Let G be a topological group and U ⊂ G an open neighborhood
of 1 ∈ G. Prove that there exists an open neighborhood V of 1 such that
V · V ⊂ U .

1.3.4. The following is a very general claim for those who like abstract nonsense.
As we see, in order to define topological groups we use the notion of topological

space and continuous map (these two notions together give rise to a category, the
category of topological spaces), as well as the notion of direct product (that
can also be defined in categorical terms). So, given any category C with finite
products, one defines a group object G in C as an object G in C together with a
morphism m : G × G → G (product), e : t → G (the unit, where t is the final
object of C that exists as the product of the empty set of objects) and i : G→ G
(inverse) satisfying the following properties:

• m is associative that is two maps G × G × G → G, m ◦ (id × m) and
m ◦ (m× id), coincide.

• The compositions G → G × G
m→ G where the first arrow is id × e or

e× id, is identity. This is the unit axiom.
• The composition G→ G×G m→ G coincides with G→ t

e→ G. Here the
first arrow is either id× i or i× id.

In this way one can get many meaningful notion of groups with extra structures,
including Lie groups (C is the category of smooth manifolds), group schemes,
algebraic groups, analytic groups etc.

1.3.5. Lie groups are, by definitions, groups that are simultaneously groups
and smooth manifolds, the structures beling compatible in a way similar to the
compatibility of the structures in the notion of topological group.

For instance, GL(n) is an open subset of Mat(n,R) that is Rn2
. The maps

m : GL(n) × GL(n) → GL(n) and the inverse GL(n) → GL(n) are in fact
smooth (we know what is smoothness for a map defined at an open subset of RN

to RM). This is what makes GL(n) a Lie group. To define Lie groups in general,
we should know well what is the natural context for the notion of smooth map.
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This is the context of smooth manifold. So, we will study some smooth manifold
theory.

1.4. Smooth manifolds. A smooth manifold M is a topological space for which
one can talk about smooth functions f : U → R defined at an open set U ⊂ M .
To talk about smoothness, it is nice to have coordinates, at least local coordinates.
This leads to a definition of chart.

1.4.1. Definition. • Let U ⊂M be an open subset. A chart on U is a con-
tinuous map f : U → Rn for some n such that f defines a homeomorphism
of U with f(U) that is an open subset of Rn.
• Two charts, f : U → Rn and g : V → Rm are compatible if the bijection
g ◦ f−1 : f(U ∩ V ) → g(U ∩ V ) is a diffeomorphism (that is is given by
an invertible matrix of smooth functions, so that the inverse matrix has
also smooth entries).

Note that if U∩V = ∅ then any charts on U and V are compatible. If U∩V 6= ∅
and the charts are compatible then necessarily m = n.

1.4.2. Definition. An atlas on a topological space M is a collection of compatible
charts fα : Uα → Rn that covers M , M = ∪Uα.

1.4.3. Definition. A smooth manifold M is a Hausdorff topological space with
a countable base (of open subsets) with a chosen atlas. Two atlases on the same
space M are called compatible if their union is also an atlas.

Note that if M is connected, the charts have all the same dimension called the
dimension of M and denoted by dim(M). In general dim(M) is a locally constant
function on M (constant on each component).

1.5. Smooth maps. Product. In order to define Lie groups, we still need two
components. We have to define a smooth map between smooth manifolds. And
we have to define the direct product of two smooth manifolds.

We do not distinguish manifold structures on the same space M defined by
compatible atlases. Informally, his means that equivalent atlases determine the
same manifold. More formally, we can say this in two ways: 1) We automatically
add to the atlas all charts compatible to it. 2) After we define smooth maps
between smooth manifolds, we will see that for a topological space endowed
with two equivalent atlases, the identity map is an invertible smooth map (a
diffeomorphism).

1.5.1. Definition. A continuous map f : M → N is smooth if for any pair of
charts

a : U → Rm, b : V → Rn

with U ⊂M,V ⊂ N , the map

a(U ∩ f−1(V ))→ Rn



4

given by the composition b ◦ f ◦ a−1 is smooth.

1.5.2. Smooth functions. In particular, given a manifold M and U ⊂M an open
subset, we know what is a smooth function f : U → R. The set of smooth
functions on U is a commutative ring denoted C∞(U).

1.5.3. Exercise. A chart a : U → Rn is compatible with an atlas on M iff for
each open V ⊂ U it establishes a bijection between C∞(V ) and C∞(a(V )), that
is f : a(V )→ R is smooth iff the composition f ◦ a belongs to C∞(V ).

This means that the smooth structure on M is uniquely defined by the assign-
ment U 7→ C∞(U).

1.5.4. Exercise. A map f : X → Y between two smooth manifolds is smooth iff

for any open U ⊂ Y and any φ ∈ C∞(U) the composition f−1(U)
f→ U

φ→ R is
in C∞(f−1(U)).

1.5.5. Given two smooth manifolds M and N , their cartesian product M × N
has a structure of manifold. The charts for M × N are pairs of charts: if a :
U → Rn and b : V → Rm are charts for U ⊂ M and for V ⊂ N respectively,
a × b : U × V → Rm+n gives a chart for M × N . If M = ∪Uα and N = ∪Vβ,
M ×N = ∪Uα × Vβ. Thus, we get an atlas for M ×N .

The projections M ×N →M and M ×N → N are obviously smooth.

1.5.6. Lemma. Let M,N,K be three manifolds. A smooth map K →M ×N is
uniquely defined by the pair of it compositions with the projections.

Proof. Exercise. �

We are now ready to give the main definition of our course.

1.5.7. Definition. A Lie group is a manifold G together with a binary operation
m : G × G → G that is a smooth map converting G into a group, so that the
map G→ G carrying x ∈ G to x−1, is smooth.

Recall that all charts of a connected manifold have the same dimension. It is
called the dimension of a manifold. In general, if a manifold in not connected,
different components may have different dimensions.

1.5.8. Lemma. All components of a Lie group G have the same dimension.

Proof. Since the multiplication is a smooth map, for any g ∈ G the left multiplica-
tion by g, Lg : G→ G is a smooth map. It is invertible, so it is a diffeomorphism.
This implies that the dimension of the component of 1 is equal to the dimension
of the component of g ∈ G. �

Zero-dimensional Lie groups are just the discrete (countable) groups.
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1.5.9. Lie group homomorphism. Let G, H be Lie groups. A map f : G→ H is
a Lie group homomorphism if it is a group homomorphism and a smooth map.
It is a Lie group isomorphism if it is a group isomorphism and a diffeomorphism.

Example: f : R→ U(1) given by the formula f(x) = exp(ix).

2. Tangent space. Submanifold. Lie subgroup

2.1. Tangent space. We understand well what is a tangent vector to a curve
in Rn. Given a smooth curve γ : (−ε, ε) → Rn with γ(0) = x, a tangent vector
γ̇(0) is a vector with components (γ̇1, . . . , γ̇n).

How to define the tangent space to a manifold M at a point x? Look at an
example: S2 ⊂ R3. Tangent vectors to S2 at x belong to R3. In order to describe
which vectors of R3 belong to Tx(S

2), we can do the following: choose a smooth
curve γ : (−ε, ε)→ S2 with γ(0) = x. The composition of γ with the embedding
to R3 is a differentialble map (−ε, ε)→ R3 and the tangent vector is γ̇(0).

This leads us to the following definition of Tx(M) that does not require the
embedding of M into Rn.

2.1.1. Definition. 1. Two (smooth) curves γ, γ′ : (−ε, ε)→ M with γ(0) =
γ′(0) = x are called equivalent if in a certain chart containing x (or,
equivalently, in any chart) they define the same tangent vector at x.

2. We define Tx(M) as the set of equivalence classes of curves as above.

Note that Tx(M) is a vector space, but we do not know yet how to see this.
Here is a way. Choose a chart a : U → Rn containing x. Then the assignment

γ 7→ d
dt

(a ◦ γ)(0) defines a bijection from Tx(M) to Rn. Different charts define
different bijections, but they differ by the Jacobi matrix:

if b : U → Rn is another chart (we assume it is defined on the same open subset,
otherwise we will replace it with the intersection), the bijections from Tx(M) to
Rn differ by the Jacobi matrix at a(x) of the transformation b◦a−1 : a(U)→ b(U).

The above reasoning leads us to an alternative definition of the tangent space
Tx(M).

2.1.2. Definition. A tangent vector v ∈ Tx(M) is, by this definition, a collection,
for each chart a : U → Rn, of va ∈ Rn, compatible in the following sense:

For any pair of charts a : U → Rn, b : U → Rn one has vb = J(b◦a−1)(a(x))va,
where J denotes the Jacobi matrix.

2.1.3. Examples. Since the manifolds we care most are Lie groups, let us calculate
tangent spaces at 1 for different groups we mentioned before.

• Let G = GL(n,R). This is an open subset of the space of n×n-matrices,
so, obviously, T1(GL(n)) = Mn×n.
• Let G = SO(n,R) and let γ be a curve in G with γ(0) = 1. Then

we can write γ(s) = 1 + sA + o(s2) where A ∈ Mn×n and we want to
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describe possible values for A. Obviously γ(s)t = 1 + sAt + o(s2) so
1 = γ(s)γ(s)t = 1 + s(A + At) + o(s2) which implies that A is skew-
symmetric. In the opposite direction, if A is skew-symmetric, γ(s) = esA

is orthogonal (remember Linear algebra?) and esA = 1 + sA+ o(s2). We
have proven that T1(G) in this case is the vector space of skew-symmetric
matrices.

2.1.4. Tangent map. Let f : M → N be a smooth map, x ∈ M , y = f(x). Any
curve γ : (−ε, ε)→M with γ(0) = x gives rise to a curve f ◦ γ with f ◦ γ(0) = y.
It is easy to verify that equivalent curves are carried to equivalent curves, so this
defines a map of tangent spaces

Tf : Tx(M)→ Ty(N).

It is easy to verify that this is a linear map. In the cse M and N are open
subspaces of Rm and Rn, Tf is the linear map given by the Jacobi matrix.

One has

2.1.5. Lemma.

T (g ◦ f) = Tg ◦ Tf.

This is actually what is called in the basic Analysis course the chain rule.

2.2. Submanifold.

2.2.1. Definition. A smooth map f : M → N is called immersion if, for any
x ∈M , the tangent map Tx(f) : TxM → Tf(x)N is injective.

Note that immersion is not necessarily one-to-one. Example: a self-intersecting
smooth curve in R2.

2.2.2. Definition. A subset M of a manifold N is an immersed submanifold if
M is endowed with a structure of manifold such that the embedding M → N is
an immersion.

2.2.3. Example. Note that the topology on M does not need to be induced from
the topology on N . For example, let N = S1×S1. We define the map f : R→ N
by the formula f(x) = (x( mod Z), πx( mod Z)). The map f is one-to-one, so
its image is an immersed manifold. It is dense in N , so the preimage of any small
disc in N is the disjoint union of infinite number of open segments in R. This
means that the topology on R is not induced from that on N .

2.2.4. Definition. An immersed submanifold M of a manifold N is called an
embedded submanifold if the topology of M is induced from N .

An obvious example: an embedding of Sn into Rn+1.
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2.2.5. Implicit function theorem. Recall

Theorem. (Implicit function theorem) Let F : U ⊂ Rm+n → Rn be a smooth
map (given by a collection of n smooth functions of m+n variables). Assume that
the Jacobi matrix J = (∂Fi

∂xj
)i=1,...,n
j=m+1,...,m+n is invertible at a point (a, b) ∈ Rm+n and

f(a, b) = c ∈ Rn. Then there exist open neighborhoods Rm ⊃ V 3 a, Rn ⊃ W 3 b
and a unique smooth function f : V → W such that for (x, y) ∈ V ×W

F (x, y) = c⇔ y = f(x).

2.2.6. A smooth map f : M → N is called submersion at x ∈M if the tangent
map Txf : Tx(M)→ Tf(x)(N) is surjective.

Fix y ∈ N and define X = f−1(y) ⊂ M . assuming that f is a submersion
at any x ∈ X, the Implicit function theorem defines a structure of a closed
submanifold on X.

Step 1 A chart near x. Choose a chart a : U → Rn for M near x and a
(small) chart b : W → Rm near y. We get a map b ◦ f ◦ a−1 : a(U)→ Rm with a
surjective Jacobian at a(x). By the IFT a(U) contains an open subset of the form
V ×W where V is a neighborhood of Rn−m, W a neighborhood in Rm so that
Rn = Rn−m ⊕ Rm and there is a unique map φ : V → W such that (x, x′) ∈ X
iff x′ = φ(x). The image of the map (id, φ) : V → V ×W is therefore an open
neighborhood of x in X. Its inverse gives therefore a chart for X at x. Note that
the dimension of the chart is n−m as expected.

Step 2. We have to verify that the charts so constructed are compatible.
Step 3. The description of the charts for X given above implies that the tangent

map TxX → TxM is an embedding (as it is given as the graph of T (φ) : TV →
TW ). Since the composition TxX → TxM → TyN is the tangent of the constant
map, it is zero. Therefore TxX identifies with the kernel of Txf .

2.2.7. The converse of the above also holds. Given an embedded submanifold
X ↪→ M , for any x ∈ X there exists an open neighborhood U of x in M and a
submersion p : U → N with p(x) = y for which X ∩ U = p−1(y).

We leave this claim without proof.
In particular, any embedded submanifold X of M is locally closed in the sense

of the following lemma-definition.

2.2.8. Lemma. For a subset X of a topological space M the following conditions
are equivalent.

1. X is an intersection of an open and a closed subset of M .
2. X is open in its closure X̄.
3. For any x ∈ X there exists an open neighborhood U of x in M such that
X ∩ U is closed in U .

Proof. This is an easy exercise in general topology. �
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A subset X of a topological space M satisfying the above properties is called
locally closed.

3. Elementary properties of Lie groups

3.1. Connected component of 1. Let G be a Lie group. We denote by G0 the
connected component of 1.

3.1.1. Proposition. G0 is a normal subgroup. This is a Lie group.

Proof. A continuous image of a connected set is connected. The image of G0×G0

under the multiplication map is connected and contains 1, so it belongs to G0.
For any g ∈ G the image of G0 with respect to the map x 7→ gxg−1 is connected
and contains 1, so belongs to G0, so G0 is a normal subgroup. This is obviously
a Lie group. �

3.2. Neighborhood of 1.

3.2.1. Theorem. Let G be a connected Lie group and let U be any neighborhood
of 1. Then U generates G as an abstract group.

Proof. Denote H the abstract subgroup of G generated by U . This is an open
set as for any h ∈ H the product hU is an open neighborhood of h in G. This
implies that any coset gH is an open subset of G. Since the cosets are disjoint
and open, they are also closed:

H = G− ∪g 6∈HgH.
Thus, H is both open and closed in G. Since G is connected and H 6= ∅,
G = H. �

3.2.2. Corollary. Let f : G → H be a Lie group homomorphism for which
T1f : T1(G) → T1(H) is surjective. Assume that H is connected. Then f is
surjective.

Proof. Due to the inverse function theorem the image of f contains a neighbor-
hood of 1 ∈ H. Thus, it coincides with H. �

3.3. Lie subgroup.

3.3.1. Definition. A Lie subgroup of a Lie group G is a subgroup H that is
simultaneously an immersed submanifold.

3.3.2. Definition. A closed Lie subgroup of a Lie group G is a subgroup H that
is simultaneously an embedded submanifold.

Note that the terminology is slightly misleading: it is not clear from the defi-
nition that a closed Lie subgroup is necessarily closed as a subgroup!

Let us prove this now.
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3.3.3. Proposition. A closed Lie subgroup of a Lie group is in fact a closed
subgroup.

Proof. Let H be a closed Lie subgroup of G. Since H is an embedded submanifold
of G, it is locally closed that is open in its closure H̄. By Exercise 1.3.2, H̄ is a
(topological) subgroup of G and H is its open subgroup. Then H is also a closed
subgroup of H̄. Since H is dense in H̄, H = H̄. �

3.4. The space of cosets. Factor group. We wish to repeat some parts of
elementary group theory with Lie groups replacing discrete groups.

3.4.1. Theorem. Let G be a Lie group and H a closed Lie subgroup. Then the
set of cosets G/H = {gH|g ∈ G} acquires a unique structure of a manifold so
that the map G→ G/H is smooth.

The notion of quotient is always defined for topological spaces: if X is a topo-
logical space and R is an equivalence relation on X, X/R is defined as the topo-
logical space whose points are the equivalence classes, and the topology is defined
by the condition
U ⊂ X/R is open iff its preimage in X is open.
In particular, if G is a topological group and H is a subgroup that is not

closed, G/H cannot be Hausdorff (as it has nonclosed points). This means that
the requirement in the above theorem for H to be a closed Lie subgroup is
reasonable.

Proof. Denote ρ : G → G/H the canonical projection and let us endow G/H
with the quotient topology. For any open set U ⊂ G/H we define C∞(U) as the
set of functions f : U → R such that f ◦ ρ ∈ C∞(ρ−1(U)). There is at most
one structure of smooth manifold on G/H with so defined collection of smooth
efunctions.

To verify the existence of this smooth structure, it is enough to produce a
covering collection of charts for G/H having the indicated above set of smooth
functions. Then these charts will be automatically compatible and so they will
define an atlas.

Let dim(G) = n, dim(H) = m. In Lemma 3.4.2 below we will find a (small)
embedded connected submanifold U of G containing 1 and having dimension
n − m such that the map m : U × H → G induced by the multiplication is
an open embedding. Without loss of generality we can assume that U admits a
global chart a : U → Rn−m.

The map gU ×H → G under multiplication is also an open embedding having
g ∈ G in its image. Its image gŪ in G/H is diffeomorphic to U so we get a chart
for gŪ . �
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3.4.2. Lemma. Let H be a closed subgroup of a Lie group G. There exists a
submanifold U of G with 1 ∈ U such that the multiplication m : U ×H → G is
an open embedding.

Proof. Step 1. Choose a submanifold U0 of G containing 1 such that T1G =
T1U0 ⊕ T1H. This cal be done as follows. Choose an open neighborhood W
of 1 at G with a chart b : W → Rn. The image b(W ∩ H) is an embedded
submanifold in b(W ) that is open in Rn. Choose a vector subspace V of Rn such
that Tb(1)(b(W ∩H)) ⊕ V = Rn. We can chose a small neighborhood V0 of 0 in
V such that b(1) + V0 intersects with b(W ∩H) at one point b(1) only. Then the
submanifold U0 := b−1(b(1) + V0) satisfies the required properties.

Step 2 The map

U0 ×H → G

induced by the multiplication, induces an isomorphism of the tangent spaces at
1 (verify this!), so it induces an isomorphism of the tangent spaces at a neigh-
borhood of 1. Now IFT asserts that there exist neighborhoods of 1, V0 in H
and U0 (maybe, smaller than the original U0) such that U0 ∩ H = {1} and the
multiplication map induces an open embedding

(1) U0 × V0 → G.

We denote W0 = U0V0. This is a neighborhood of 1 and, by Exercise 1.3.3,
there exist U1 ⊂ U0 and V1 ⊂ V0 such that for W1 = U1V1 one has W1W1 ⊂
W0. Without loss of generality we can assume W1 = W−1

1 (otherwise take the
intersection).

We now claim that the map

U1 ×H → G

induced by the multiplication is an embedding. Otherwise we would have x, y ∈
U1 so that y = xh with h ∈ H. Then h = x−1y belongs to U1U1 ⊂ W0 ∩H = V0

and then y = xh contradicts the injectivity of (1).
�

3.4.3. Quotient maps. A smooth map p : X → Y is called a quotient map if the
following conditions are fulfilled.

1. U ⊂ Y is open iff p−1(U) is open in X.
2. f : U → R is smooth iff f ◦ p is a smooth function on p−1(U).

For example, a map ρ : G→ G/H constructed above is a quotient map.
Quotient maps enjoy a very special property.



11

3.4.4. Proposition. Given a commutative diagram

(2) X
f

  

p // Y

g��
Z

where f and p are smooth and p is a quotient map, g has to be smooth.

Proof. Exercise. �

3.4.5. Locally trivial fibrations. A special case of a quotient map is given by a
locally trivial fibration of smooth manifolds. Here is the definition.

Definition. 1. A map p : X → Y of smooth manifolds is called a trivial
fibration with fiber Z (also a smooth manifold) if there is a diffeomorphism
θ : X → Y × Z such that p is the composition of θ with the natural
projection Y × Z → Y .

2. A map p : X → Y is a locally trivial fibration with fiber Z if there exists
an open covering Y = ∪Ui such that p−1(Ui) → Ui is a trivial fibration
with fiber Z.

3.4.6. Exercises. 1. Any locally trivial fibration is a quotient map.
2. If pi : Xi → Yi, i = 1, 2, are locally trivial fibrations then X1×X2 → Y1×Y2

is a locally trivial fibration.
3. Verify that the canonical map G → G/H is a locally trivial fibration with

the fiber H.

3.4.7. Proposition. Let H be a normal closed Lie subgroup. Then G/H admits
a natural structure of a Lie group.

Proof. We have a manifold G/H that also has a structure of a group. Let us
verify that the structure maps

m : G/H ×G/H → G/H, i : G/H → G/H

are smooth. This can be easily proven using Proposition 3.4.7. In fact, the
map G × G → G/H × G/H is a locally trivial fibration so the composition
G×G→ G→ H factors through a smooth map G/H ×G/H → G/H. �

3.4.8. Example. The groups PGL(n,R) := GL(n,R)/Z are Lie groups. Here Z
is the group of scalar matrices.

3.5. The action of a Lie group on a manifold.

3.5.1. Definition. Let G be a Lie group and let M be a smooth manifold. An
action of G on M is a smooth map

R : G×M →M

defining an action of G on M as an abstract set-theoretical action.
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The latter means that

• R(1,m) = m.
• R(gh,m) = R(g,R(h,m)).

As for any action of a group on a set, it makes sense to talk about orbits of
the action and stabilizers.

3.5.2. Definition. • Two ponts x, y ∈ M belong to the same orbit if for
some g ∈ G y = g(x).
• For x ∈M its stabilizer is StabG(x) = {g ∈ G|g(x) = x}.

3.5.3. Lemma. A stabilizer is a closed subgroup.

Proof. This directly follows from the fact that the map G×M →M is continuous.
�

3.5.4. Homogeneous spaces. A smooth manifold on which a Lie group G acts
transitively, is called a homogeneous space. We see that a homogeneous space
can be presented as G/H where G is a Lie group and H a closed Lie subgroup.

3.5.5. Exercise.

• Identify Sn with the quotient of O(n+ 1,R) by O(n,R).
• Identify S2n+1 with the quotient of U(n+ 1) by U(n).

3.5.6. Exercise. The set of all m-dimensional vector subspaces in Rn is called
the (real) Grassmannian Gr(m,n). Prove that GL(n,R) acts transitively on
Gr(m,n). Use this to define a smooth structure on Gr(m,n). What is its di-
mension? Note that Gr(1, n) is also called the projective n− 1-space.

3.5.7. Exercise. A lattice in C is an abelian subgroup of C isomorphic to Z2 that
generates C over R (so that SpanZ(1, π) is not a lattice). Define on the space
M of lattices in C a structure of smooth manifold as follows. Define a transitive
action of GL(2,R) on M , find a stabilizer of a certain x ∈ M and verify that it
is a closed Lie subgroup. What is the dimension of M?

The following two results are more serious. We will prove them later.

3.5.8. Proposition. 1. Any stabilizer Stab(x) is a closed Lie subgroup of
G, so that the quotient G/Stab(x) has a natural structure of a smooth
manifold.

2. For any x ∈M the natural map G/Stab(x)→M is an injective immer-
sion whose image is the orbit of x (it needs not be closed).

Here is an example of an action for which an orbit is an immersed but not
embedded submanifold.



13

Take (as many times before) M = S1 × S1 = R2/Z2 and define the action of
R on M by the formula

R(x, (y, z)) = (y + αx, z + βx) mod Z2,

where α
β
6∈ Q. Each orbit of such action is dense in M .

3.5.9. Examples: left action of G on itself. Also right action and adjoint action.
The left action of G on itself is defined by the formula

` : G×G→ G, `(g, h) = gh.

Similarly, the right action is defined by the formula

r : G×G→ G, r(g, h) = hg−1.

The adjoint action is composed of the two:

Ad : G×G→ G, Ad(g, h) = ghg−1.

3.5.10. Representations. A finite dimensional representation of a Lie group G is
a Lie group homomorphism ρ : G→ GL(V ) where V is a (usually complex) finite
dimensional vector space.

In other words, a representation is given by a smooth map

R : G× V → V

such that V is endowed with an obvious structure of a manifold and R(g,−) :
V → V is C-linear for any g ∈ G.

4. Closed linear groups

4.1. Exponent and logarithm. A very big class of Lie groups appears as closed
subgroups of GL(n,R). We define a closed linear group G as a closed subgroup
of GL(n,R) (as a topological group).

Later on we will see that a closed linear group is automatically a closed Lie
subgoup of GL(n,R).

4.1.1. Exercise. Prove that GL(n,R) is a closed subgroup of GL(n,C). Prove
that GL(n,C) is a closed subgroup of GL(2n,R).

4.1.2. Example. The subgroup of diagonal invertible matrices T ⊂ GL(n,R) is a
closed linear group isomorphic to (R∗)n.

The group of upper triangular invertible matrices B ⊂ GL(n,R) is a closed
linear group.
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4.1.3. Example. Similarly, the Heisenberg group

(3) H =


1 x z

0 1 y
0 0 1

 |x, y, z ∈ R


is a closed linear group. Note that Z ⊂ H consisting of the matrices with
x = y = 0 and z ∈ Z, is a discrete subgroup of the center of H. Therefore, that
the quotient H/Z is also a Lie group. We will see later that H/Z is not a linear
group.

4.1.4. Exponent of a matrix. Recall that if X ∈Mn(R) then

exp(X) =
∑
n≥0

Xn

n!

is convergent and satisfies the following properties.

• exp(X + Y ) = exp(X) · exp(Y ) provided X and Y commute.
• exp(X) exp(−X) = 1, in particular, exp(X) ∈ GLn(R).

For A ∈Mn(R) the map

φA : R→ GLn(R)

carrying t ∈ R to exp(tA) is a homomorphism of Lie groups. Its image is called

the one-parametric subgroup defined by A. One has φ̇A(0) = A, so A is the
tangent at 1 defined by the curve φA.

4.1.5. Lemma. Let φ : R → GLn(R) be a homomorphism of Lie groups and let

A = φ̇(0). Then φ = φA.

Proof. Let us calculate φ′(t) ∈Mn(R). This is

φ′(t) = lim
s→0

φ(t+ s)/s = φ(t) lim
s→0

φ(s)/s = φ(t) · A.

The same holds for φA : R → GLn(R). Now the theorem on (existence and)
uniqueness of a solution to ODE implies the result. �

The map exp : Mn(R) → GLn(R) is smooth since it is given by a converging
power series. Its tangent map T0 exp is identity, so this is a local diffeomorphism.
The inverse map is defined in a neighborhood of 1 ∈ GLn(R). it is given by the
logarithm functor

log(X) =
∞∑
k=1

(−1)k−1 (X − 1)k

k

that converges for ||X−1|| < 1. Note: for a real argument, log can be uniquely de-
fined as a function inverse to exp. This is already wrong for a complex argument:
the function inverse to exp is not uniquely defined, as exp(z) = exp(z + 2πi).
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Maximum one can do is to choose a branch in a neighborhood of a point. A
standard choice is to choose a power expansion of log at z = 1 that gives the
value log(1) = 0:

log(z) =
∞∑
k=1

(−1)k−1 (z − 1)k

k
.

We can use the same power series expansion for the matrix argument. Similarly
to the complex argument, the series converges for X having morm < 1.

Recall that the norm of an operator is the maximal absolute value of its (com-
plex) eigenvalues.

4.1.6. Lemma. 1. One has

exp(A) = lim
n→∞

(1 + A/n)n.

2. One has
n∏
k=1

(1 + Ak/n
2) = 1 +O(

1

n
)

if ||Ak|| < C.

Proof. Standard: compare, for instance, the coefficients of the power expansion.
�

4.2. Lie algebra of a closed linear group. Let G ⊂ GLn(R) be a closed linear
group. Its Lie algebra is defined as

g = {X ∈Mn(R)| exp(tX) ∈ G ∀t ∈ R}.

4.2.1. Example. Let G = SLn(R). This is a closed subgroup of GLn(R) as it is
given inside GLn by one (continuous) equation det(A) = 1. Let us calculate the
corresponding Lie algebra. det exp(tX) = 1 is equivalent to exp tr tX = 1 that
is trX = 0. The Lie algebra of SLn(R) is denoted sln(R). This is the space of
matrices of trace 0.

The following result is very important.

4.2.2. Lemma. A ∈ g if and only if there exists a smooth curve γ : (−ε, ε) →
GLn(R) with values in G such that A = γ′(0).

Proof. The only if part is obvious. Let us assume A = γ′(0) and deduce that A ∈
g, that is, that exp(At) ∈ G for all t. We will use the condition that G is a closed
subgroup and we will present a sequence of elements in G converging to exp(At)
for any given t. It is sufficient to do this for all t < ε as exp(At) = exp(A t

n
)n and

one can always find n so that t
n
< ε. Then

γ(t/m)m = (1 + At/m+O(t2/m2))m = (1 + A(t/m))m(1 +O(t2/m2))m,
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(the last equality requires an explanation) and so

lim
m→∞

γ(t/m)m = exp(At).

�

4.2.3. Proposition. g is a vector subspace of Mn(R). If X, Y ∈ g then [X, Y ] :=
XY − Y X ∈ g.

Proof. 1. Let us show g is a vector subspace of Mn(R). First of all, g is closed
under the scalar multiplication. In effect, if A ∈ g, exp(tA) ∈ G for all t. This
implies that exp(tλA) ∈ G for all λ and all t, that is that λA ∈ g. We will now
prove that g is closed under addition.

2. Let A,B ∈ g. Define γ(t) = exp(At) exp(Bt). We have γ′(0) = A + B. By
4.2.2 this proves that A+B ∈ g.

3. Similarly we define, for fixed s ∈ R
γ(t) = exp(At) exp(Bs) exp(−At) exp(−Bs).

One has γ′(0) = A− exp(Bs)A exp(−Bs) so A− exp(Bs)A exp(−Bs) ∈ g. This
gives a path in g that has form s[A,B] +O(s2). Dividing by s, we get a sequence
of points in g converging to [A,B]. This proves the claim. �

The following theorem was proven by John von Neumann in 1929.

4.2.4. Proposition. Any closed linear group is a closed Lie subgroup of GLn(R).

Proof. Let G be a closed subgroup of GL(n,R). Define the Lie algebra of G as
above,

g = {X ∈Mn(R)| exp(tX) ∈ G ∀t ∈ R}.
We will find a neighborhood U of 0 ∈ Mn(R) and a neighborhood V of 1 ∈
GL(n,R), together with a diffeomorphism Φ : U → V , such that Φ induces a
bijection between g ∩ U and G ∩ V .

This will give a neightborhood V of 1 ∈ GL(n,R) where V ∩G is a submanifold.
This will imply that G is a closed Lie subgroup of GL(n,R).

Choose an inner product on Mn(R). We have Mn(R) = s ⊕ g where s = g⊥.
We define

Φ : Mn(R)→ GL(n,R)

by the formula Φ(s + x) = exp(s) exp(x) where s ∈ s and x ∈ g. Note that Φ is
similar to the exponent map but not quite as exp(s) exp(x) = exp(s+ x) only if
sx = xs. Let us verify however that Φ : Mn(R)→ GL(n,R) induces the identity
T0Φ = idMn(R). In fact, choose s + x ∈ Mn(R) and consider the image under Φ
of the line t 7→ ts+ tx. We have

Φ(ts+ tx) = exp(ts) exp(tx) = 1 + ts+ tx+O(t2),

so d
dt

Φ(ts+ tx) = s+ x is the image of s+ x under T0(Φ).
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By the inverse function theorem, Φ induces a diffeomorphism between an open
neighborhood U0 of 0 ∈ Mn(R) and an open neighborhood V0 of 1 ∈ GL(n,R).
We are not yet done as there might exist h ∈ H ∩ V0 that are not of the form
Φ(x), x ∈ g∩U0. We will prove that one can find smaller neighborhoods U ⊂ U0

and V ⊂ V0 that fulfill the mentioned property.
Let us choose a collection of neighborhoods Uk of 0 ∈ Mn(R) forming the

basis of topology (for instance, choosing Uk to be open balls of radius 1/k). Let
Vk = Φ(Uk) and assume, to the contrary, that Vk ∩G 6= Φ(Uk ∩ g). By definition
of g, Φ(Uk ∩ g) ⊂ Vk ∩ G, so, according to the assumption, for every k there is
sk + xk ∈ Uk such that sk 6= 0 and exp(sk) exp(xk) ∈ G, that is exp(sk) ∈ G.
Put yk = sk

||sk||
. The collection of points yk belongs to the unit sphere S ⊂ s;

it is infinite, so there is a subsequence converging to y ∈ S; we will denote this
subsequence by yk.

We will now prove that exp(ty) ∈ G for any t ∈ R. This would lead to
contradiction as this would mean that y ∈ g. Recall that sk ∈ Uk so ||sk|| tends
to zero. Choose mk ∈ Z such that

mk||sk|| ≤ t < (mk + 1)||sk||.

Then exp(sk)
mk = exp(mk||sk||yk) −→ exp(ty). Since exp(sk) ∈ G and G is

closed, exp(ty) ∈ G.
�

As Eli Cartan pointed out in 1930, literally the same proof works for general
Lie groups: any closed subgroup of a Lie group is a closed Lie subgroup. To
make sense of the above proof in the general context, one will have to define the
general notion of exponent for Lie groups. We will do this later.

4.3. Representations of Lie algebras. We defined a (finite dimensional) rep-
resentation of a Lie group as a Lie group homomorphism G → GL(V ) (V is a
real, or, more often, a complex vector spaces). If G ⊂ GL(V ) is a closed linear
group, by definition its Lie algebra g is a Lie subalgebra of gl(V ) that is just the
Lie algebra of matrices with the operation [A,B] = AB −BA.

This observation leads to the following general definition.

4.3.1. Definition. Let g be a Lie algebra. A representation of g in a vector space
V is a Lie algebra homomorphism g → gl(V ). In other words, a representation
of g is given by a bilinear map

g× V → V, (x, v) 7→ x(v),

such that [x, y](v) = x(y(v))− y(x(v)).

We will later see that any finite dimensional representation of a Lie group
defines a finite dimensional representation of the corresponding Lie algebra.
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5. Classical groups

As a special case of the theory presented above, we describe a collection of Lie
groups called the classical groups.

These are groups GL(n,F), SL(n,F) as well as their subgroups of linear trans-
formations preserving a certain non-degenerate form.

5.1. Setup. Let V be a finite dimensional vector space over a field F = R or C.
Let φ : V × V → F be a non-degenerate form on V .

We require φ to be bilinear in case F = R. We require it to be bilinear or
sesquilinear if F = C. We will also add a symmetricity or anti-symmetricity
condition.

We define G(φ) as the subgroup of GL(V ) (or of SL(V )) preserving the form
φ. According to the general theory, G(φ) is a closed subgroup of GL(V ), so it
is a Lie subgoup. Moreover, the corresponding Lie algebra g(φ) consists of the
endomorphisms A : V → V such that exp(tA) ∈ G(φ) for all t ∈ R.

Let us study when is this condition fulfilled.
We already know that exp(A) ∈ SL(V ) iff tr(A) = 0. Let us describe when

exp(A) preserves the form φ.

5.2. Examples.

5.2.1. Let F = C and φ : V × V → C be a symmetric bilinear form. All
nondegenerate symmetric bilinear forms over C are equivalent, so we can think
that φ is the standard form φ(x, y) =

∑
xiyi.

The corresponding closed linear group is the group of orthogonal matrices that
is the collection of A ∈ GL(n,C) satisfying AAt = I. This group is denoted
O(n,C) (the complex orthogonal group). Its Lie algebra o(n,C) consists of ma-
trices X such that exp(sX) exp(sX)t = 1 for all s. This is equivalent to the
condition X +X t = 0. Thus, o(n,C) is the space of skew-symmetric matrices.

It is easy (but not necessary as we already know this in general) to verify that
this is a Lie subalgebra of gl(n,C) = Mn(C).

5.2.2. In the case F = R there are non-equivalent symmetric bilinear forms. If
the form is positively definite, we get the (real) orthogonal group

O(n,R) = {A ∈ GL(n,R)|AAt = I}

and the corresponding Lie algebra o(n,R) consisting of antisymmetric matrices.
If we choose another form (Sylvester theorem classifies them all), we get indefinite
orthogonal groups O(p, q) and their Lie algebras o(p, q). Note that O(p, q) has
four connected components if p, q > 0, see discussion below. As usual, SO(p, q) =
O(p, q)∩SL(n). This group consists of two components if p, q > 0. The connected
component of 1 of O(p, q) is denoted by SO+(p, q).
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5.2.3. The intersection SL(n,F) ∩O(n,F) is denoted SO(n,F). By the general
theorem, Lie algebra of an intersection of closed linear groups is intersection of
their Lie algebras. It is easy to see that o(n,F) ⊂ sl(n,F) so that the groups
O(n,F) and SO(n,F) have the same Lie algebras. It is easy to see that, similarly
to the real case, SO(n,C) is the connected component of 1 in O(n,C).

5.2.4. Let φ : V × V → C be an inner product. This is a form that is antilinear
in the first argument and linear in the second. It is symmetric in a skewed sense:
φ(w, v) = φ(v, w).

In an orthogonal basis one has φ(x, y) =
∑
x̄iyi.

The linear transformations preserving a fixed inner product, is called unitary.
The corresponding group, called the unitary group, is

U(n) = {A ∈ GL(n,C)|AA∗ = I},

where, as usual, A∗ = At.
The corresponding Lie algebra u(n) consists of matrices X such that exp(tX)

is unitary for all t ∈ R. One has

exp(tX)−1 = exp(−tX),

so exp(tX) ∈ U(n) for all t ∈ R iff tX∗+ tX = 0 which implies that X∗+X = 0.
Thus, u(n) consists of skew-Hermitean matrices:

u(n) = {X ∈ GL(n,C)|X∗ = −X}.

5.2.5. As before, we define SU(n) = SL(n,C) ∩ U(n). This is a closed linear
group with Lie algebra

su(n) = u(n) ∩ sl(n,C).

Note that this is a smaller algebra than u as the trace of a skew-Hermitean matrix
needs not be zero.

5.2.6. It is interesting to study the special cases for small n.
For instance, U(1) is the group of complex number of modulus 1. The homo-

morphism

det : GL(n,F)→ F∗

is a Lie group homomorphism for F = R,C with the kernel SL(n,F). Its restric-
tion gives the following surjective homomorphisms.

det : O(n,F)→ O(1,F) = {±1}

with the kernel SO(n,F),

det : U(n)→ U(1)

with the kernel SU(n).
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5.2.7. Let now V be an even-dimensional vector space over F and let

φ : V × V → F
be a non-degenerate antisymmetric bilinear form. One can choose a basis V =
Span{vi, wi, i = 1, . . . , n} such that for v =

∑
xivi +

∑
yiwi and v′ =

∑
x′ivi +∑

y′iwi, one has

φ(v, v′) =
∑

(xiy
′
i − x′iyi).

The group Sp(2n,F) consists of the matrices

(
A B
C D

)
satisfying the conditions

AtC = CtA; BtD = DtB; AtD = 1 + CtB.

5.2.8. Exercise. Calculate the Lie algebra of Sp(2n). In other words, find matri-
ces X such that exp(sX) ∈ Sp(2n) for all s ∈ R.

5.3. Small ranks. It is worth noting that

• Sp(2,F) = SL(2,F).
• SO(2,R) = U(1) is (topologically) a circle.
• SU(2) is a 3-dimensional sphere.

5.4. SU(2) and SO(3). In this subsection we will define a very interesting Lie
group homomorphism

π : SU(2)→ SO(3)

and will study its properties.

5.4.1. Recall that SU(2) consists of 2×2 complex matrices of form

[
a+ bi c+ di
−c+ di a− bi

]
satisfying the condition a2 + b2 + c2 + d2 = 1.

To define the homomorphism π, we have to define first of all a real 3-dimensional
representation of SU(2). Below we will do precisely this.

First of all, let us define an associative algebra over R of dimension 4 called
the quaternion algebra. It has a basis {1, i, j, k} over R, H = SpanR{1, i, j, k},
with the multiplication defined by the formulas

• i2 = j2 = k2 = −1.
• ij = k = −ji, jk = i = −kj, ki = j = −ik.

The algebra (that is, an associative ring containing R in its center) H is very
interesting. It contains the complex numbers as the set of expressions a+ bi.

Let us look a little bit closer to the quaternions. Let us prove, for instance, that
any nonzero quaternion is invertible. The proof is actually the same as for the
complex numbers. Given q = a+ bi+ cj+dk ∈ H, we define q̄ = a− bi− cj−dk.
An easy calculation shows qq̄ = a2 + b2 + c2 + d2 si that, unless q = 0, qq̄ is a
positive real number. Thus, if we define |q| =

√
qq̄, we get the formula q−1 = 1

|q|2 q̄.
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Recall that {z ∈ C||z| = 1} = U(1). We will now show that

SU(2) = {q ∈ H||q| = 1},
both as abstract groups and as smooth manifolds.

The isomorphism assigns to a quaternion q = a+ bi+ cj+dk of absolute value

1 the matrix

[
a+ bi c+ di
−c+ di a− bi

]
. It is straighforward to verify that the product

of quaternions corresponds to the product of unitary matrices.
Now, any q 6= 0 define an automorphism πq of H by the formula

πq(x) = qxq−1.

One has |πq(x)| = |x|. Moreover, the space of pure quaternions H0 = Span{i, j, k}
is invariant under πq. Therefore, one has the action of SU(2) on the three-
dimensional real space H0 by orthogonal transformations.

This yields a group homomorphism π : SU(2) → SO(3). Its kernel is the set
of quaternions of absolute value 1 commuting with all pure (and therefore, all)
quaternions.

It is an easy exercise to verify that Kerφ = {±1}.

5.4.2. π is surjective. The groups SU(2) and SO(3) are both three-dimensional.
The tangent map T1π is therefore an isomorphism, therefore, π is a local isomor-
phism. This implies that a neighborhood of 1 in SO(3) belongs to the image of
π. Therefore, π is surjective.

In the next section we will study in more detail Lie group homomorphisms
with discrete kernel.

5.5. Connected components. If G is a Lie group and G0 is the connected
component of 1, The quotient G/G0 is a discrete group. This group identifies
with the set of connected components of G.

The set of connected components of a (reasonable) topological space, for in-
stance, of a manifold, is denoted π0(X). We have just verified that, if G is a
Lie group, π0(G) is a group. In this subsection we will descuss the group of
components of classical groups.

The following result is useful in determining π0(X).

5.5.1. Lemma. Let p : X → Y be a locally trivial fibration with fiber F . If F
and Y are connected, X is also connected.

Proof. We will discuss a more precise claim in the next section. This one can be
proven as an exercise. �

We know that if H is a closed Lie subgroup of a Lie group G then the natural
map G → G/H is a locally trivial fibration with fiber H. This implies that
if a Lie group G acts transitively on a connected manifold X with connected
stabilizer, then G is connected.
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5.5.2. Appying the results of Exercise 3.5.5, we can deduce that U(n) are con-
nected and O(n) have two connected components, SO(n) being the connected
component of 1 in O(n).

5.5.3. By QR decomposition (see Linear algebra course) any real invertible ma-
trix A can be uniquely presented as a product QR where Q is orthogonal and
R is upper triangular with positive entries at the diagonal. This implies that
GL(n,R) has two connected components, exactly as O(n,R).

5.5.4. Let O(p, q;R) be the real group preserving the quadratic form

p∑
i=1

x2
i −

p+q∑
i=p+1

x2
i ,

This group consists of matrices

[
A B
C D

]
satisfying the conditions

AtA = I + CtC; AtB = CtD; DtD = I +BtB.

The matrix CtC represents a non-negative self-adjoint operator. This means that
AtA is positively definite hense A is invertible. Similarly D is invertible. This
yields (at least) four connected components for O(p, q), determined by the signs
of det(A), det(D).

6. Covering spaces. Simply connected groups

A part of this section is just a chapter in elementary topology. In it we define
the notion of covering of a topological space. If X is a smooth manifold, any its
covering is also a smooth manifold.

There always exists a universal covering of a (good) connected topological
space. If X is a connected Lie group, any its covering is also a Lie group. A Lie
group and it covering have the same Lie algebra.

6.1. Covering. Universal covering.

6.1.1. Definition. A (continuous) map π : Y → X of topological spaces is called
a covering if for any x ∈ X there exists a neighborhood U 3 x and a set F
(considered as a dicrete topological space) together with and homeomorphism
θ : π−1(U)→ U × F such that p1 ◦ θ = π.

6.1.2. Examples.

• The map f : C∗ → C∗, f(z) = zn, is a covering.
• The map f : C→ C, f(z) = zn is not a covering.
• The map exp : C→ C∗ is a covering.
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In what follows we will assume that X is a manifold. In fact the requirement
should be much weaker (it is enough for X to be locally simply connected), but
we will not see more general topological spaces.

Here is the most important property of covering spaces.

6.1.3. Proposition. Let π : Y → X be a covering. Given y ∈ Y , x = π(y) and
f : [0, 1]→ X a continuous map with f(0) = x, there exists a unique continuous
map g : [0, 1]→ Y such that f = π ◦ g and g(0) = y.

Proof. For any t ∈ [0, 1] there exists an open set Ut ⊂ X such that f(t) ∈ Ut and
a homeomorphism θt : π−1(Ut)→ Ut × Ft as in the definition of covering.

Since [0, 1] is compact, there is a finite number of points t1, . . . , tn such that
f([0, 1]) ⊂ ∪Ui where Ui := Uti . We can now show by induction in k = 1, . . . , n
that the restriction f : [0, tk] → X uniquely lifts to g : [0, tk] → Y . This is very
easy and is left as an exercise. �

6.1.4. Connectedness. Path-connectedness. A topological space X is connected
if it has no nontrivial decomposition X = U1 ∪ U2 as a union of open disjoint
subsets.
X is called path-connected if any two points x, y ∈ X can be connected by a

continuous path: there exists f : [0, 1]→ X such that x = f(0), y = f(1).
Any path-connected space is connected: assume, on the contrary that X is

path connected but X = U1∪U2 is a nontrivial decomposition into disjoint union
of open subsets. Choose x ∈ U1 and y ∈ U2 and left f : [0, 1] → X be a path
connecting x with y. Then f−1(U1) and f−1(U2) are two nonempty disjoint open
subsets of [0, 1]. Contradiction.

For our kind of spaces the two notions of connectedness coincide. Let x ∈ X
and define U as the set of all y ∈ X that can be connected to x with a path.
Then it is easy to see that U is both open and closed. (We use here that any
point of X has a neighborhood that is path connected. The is obviously so for
manifolds).

6.1.5. Homotopy. Simply-connected spaces. Two maps f, g : [0, 1]→ X are called
homotopic if x := f(0) = g(0) and y := f(1) = g(1) and there exists h :
[0, 1]×K → X such that

• h(0,−) = f , h(1,−) = g
• h(−, 0) = x, h(−, 1) = y.

Note: this is a special kind of homotopy, the one “preserving the ends”.
A connected space X is called simply connected if for any two maps f, g :

[0, 1] → X with x := f(0) = g(0), y := f(1) = g(1) there exists a homotopy
between f and g.
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6.1.6. Examples.

1. X = Rn is simply connected, for one can define

h(s, t) = sf(t) + (1− s)g(t).

2. X = S1 the circle is not simply connected as the path around the circle
cannot be contracted to a point.

3. X = Sn, n > 1, is simply connected. Here is the proof: X − {x} is
homeomorphic to Rn is contractible. For any two paths f, g with common
ends let us find x ∈ X that does not belong to them. Choose a homotopy
between f and g inside X−{x}. This, in particular, with give a homotopy
in X.

Here is a continuation of Proposition 6.1.3.

6.1.7. Proposition. Let π : Y → X be a covering, f, f ′ : [0, 1] → X two paths
with f(0) = f ′(0) = x, f(1) = f ′(1) = y. Let g, g′ be the liftings of f and f ′ with
g(0) = g′(0) = z. π(z) = x. Then, if f and f ′ are homotopic, g(1) = g′(1) and
the paths g and g′ are homotopic.

Proof. Shortly: For any (s, t) ∈ [0, 1] × [0, 1] there is Us,t ⊂ X open so that the
preimage π−1(Us,t) is homeomorphic to a product. Now we can divide the square
[0, 1]× [0, 1] into N2 small squares so that each one of them belongs to a certain
Us,t. We can now reduce the lifting of h to consecutive lifting of the restriction
of h to one of the N2 small squares. This is easy. �

6.1.8. Universal cover. Let now X be a connected space. We will construct a
simply connected space X̃ together with a covering π : X̃ → X. We will see later
that this covering satisfies a certain inversal property. This is why we will call it
a universal cover of X.

6.1.9. Construction of X̃. Choose x ∈ X and define a set X̃ = Z/ ∼, a quotient
of Z by an equivalence relation, as follows.

• Z is the set of continuous maps f : [0, 1]→ X with f(0) = x.
• The paths f, g ∈ Z are equivalent iff f(1) = g(1) and f and g are homo-

topic, that is, there exists h : [0, 1]× [0, 1]→ X satisfying the properties
listed in 6.1.5.

The map π : X̃ → X carries f to f(1). We will now define a topology on X̃ so
that π becomes a covering and X̃ is simply-connected. For any y ∈ X choose a
simply-connected neighborhood Uy (here we use that the topology of X is good
enough). The set F := π−1(y) identifies with the set homotopy classes of paths
connecting x to y. We define the map

π−1(Uy)→ Uy × F
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by a pair of maps; the first one is the restriction of π, whereas the map π−1(Uy)→
F carries any path from x to z ∈ Uy to its composition with a path in Uy from z
to y.

It is easy to verify that the map so defined is a bijection. We define topology
on π−1(Uy) so that this ibjection becomes a homeomorphism.

Let, finally, prove that X̃ is simply connected. Any two paths connecting two
points y and z in X̃ give rise to two paths connecting π(y) with π(z) in X.
Composing them with a path from x to π(y) defined (up to homotopy) by y, we
get two paths from x to π(z) that lift to the same point z in X̃. This means
that they are homotopic. This implies that two original paths from y to z are
homotopic.

6.2. Universal property. Let X be connected, x ∈ X and let π : X̃ → X
be the universal covering of X constructed as above (note that the construction
slightly depends of the choice of x). We denote by x0 ∈ X̃ the class of the
constant path from x to x.

Let now ρ : Y → X be a covering.

6.2.1. Proposition. There is a one-to-once correspondence between maps f :
X̃ → Y over X (that is, satisfying π = ρ ◦ f) and the points y ∈ ρ−1(x). The
correspondence assigns to f : X̃ → Y the image f(x0).

Proof. For any z ∈ X̃ choose a path h connecting x0 to z. Its image in X
will connect x with π(z). There is a unique lifting of this path to a path in Y
connecting y with a certain point that will be now declared the image of z. The
construction does not depend on the choice of the path connecting x0 to z as X̃
is simply connected. �

6.2.2. Corollary. There is a one-to-one correspondence between the set of maps
X̃ → X̃ over X and the set π−1(x). Each such map is a homeomorphism;
Therefore, the set π−1(x) acquires a group structure where x0 is the unit element.
This is the group of homotopy classes of paths (loops) connecting x with itself.

6.2.3. Definition. The fundamental group π1(X, x) is defined as the group of
automorphisms of X̃ or as the group of homotopy classes of loops at x in X.

In the case when X is not connected, π1(X, x) is defined as π1(X0, x) where
X0 is the connected component of x in X.

The fundamental group of X, as defined above, depends on the choice of a base
point x ∈ X. What is the connection between π1(X, x) and π1(X, y)? There is
no connection if x and y belong to different components of X. Otherwise we can
assume that X is connected. In this case there is a path γ connecting x to y.
Any loop α around x defines a loop γ ◦ α ◦ γ−1 around y. This is obviously an
isomorphism of groups π1(X, x) and π1(X, y). Note that a path γ′ homotopic
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to γ defines the same isomorphism of the fundamental groups; non-homotopic
paths may define different isomorphisms.

The same reasoning can be reformulated in terms of universal coverings.
Given two universal coverings X̃ and X̃ ′ of X, a homeomorphism X̃ → X̃ ′

is uniquely given by an image of x0 ∈ X̃ in X̃ ′. If X̃ is obtained by the above
construction with the base point x ∈ X and X̃ ′ by the same construction with
the base point y, The choice of a point over x in X̃ ′ is equivalent to a choice of
a homotopy class of a path connecting y to x.

6.3. Fundamental group and coverings. Let X be a connected topological
space, x ∈ X. We can now present a full classification of coverings of X, in terms
of the fundamental group π1(X, x).

Recall that, given a group G and a set F , an action of G on F is a group
homomorphism ρ : G → Aut(F ). Equivalently, this is a map r : G × F → F
satisfying the following properties.

• r(1, x) = x.
• r(g, r(h, x)) = r(gh, x).

A map a : F1 → F2 of G-sets is called a G-map if for any g ∈ G and any f ∈ F1

one has g(a(f)) = a(g(f)).
Given a covering p : Y → X, we assign to it the set F = p−1(x) on which the

group G = π1(X, x) acts is follows. Given g ∈ G represented by a loop γ : x→ x,
and f ∈ F , there is a unique lifting of γ that starts at f ; its end will be denoted
g(f).

6.3.1. Theorem. The construction described above establishes an bijection be-
tween the (isomorphism classes) of G-sets and (isomorphism classes of) covern-
ings. Any G-map F1 → F2 defines a map of the corresponding covernings of
X.

It is interesting to compare properties of coverings with the properties of the
corresponding G-sets.

6.3.2. Proposition. A coverning p : Y → X is connected iff the corresponding
G-set F is transitive, that is for any f, f ′ ∈ F there exists g ∈ G such that
f ′ = g(f).

6.3.3. Corollary. Let p : Y → X be a connected covering of a connected space
X, y ∈ Y , x = p(y). The fundamental group π1(Y, y) identifies with the stabilizer
of y ∈ p−1(x) under the action of π1(X, x).

6.4. Some fundamental groups. Recall that a map f : X → Y is called a
homotopy equivalence if there exists g : Y → X so that the compositions f ◦ g
and g ◦ f are homotopic to identity.
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6.4.1. Proposition. Let f : X → Y be a homotopy equivalence. Then the map
π1(X, x)→ π1(Y, f(x)) is an isomorphism.

�

6.4.2. Some basic examples. Since Rn is homotopy equivalent to a point, it is
simply connected. Next, the n-dimensional sphere Sn is simply connected for
n > 1.

Since exp : R → U(1) is a universal covering, π1(U(1)) = Z. We know that
topologically U(1) = S1. Since S1 is homotopy equivalent to R∗, one has π1(R∗) =
Z.

6.4.3. SL(2,R). Any A ∈ SL(2,R) has a unique presentation as A = QR where
Q ∈ SO(2,R) and R is upper-triangular with positive elements on the diagonal.

We leave as an exercise to verify the following.

• The group of upper-triangular matrices with positive elements on the
diagonal is contractive (that is, homotopy equivalent to a point).
• SL(2,R) is homotopy equivalent to SO(2,R).

Thus, π1(SL(2,R)) = Z.

6.4.4. The group SL(2,C). Similarly to the above, for any A ∈ SL(2,C) there
exists a unique decomposition A = QR where Q ∈ SU(2) and R is upper-
triangular with positive real entries at the diagonal.

This implies, similarly to the above, that π1(SL(2,C)) = π1(SU(2)).
Since SU(2) is topologically S3, the group SL(2,C) is simply-connected.

6.5. Coverings of Lie groups.

6.5.1. Coverings of manifolds. First of all, let p : Y → X be a covering and let
X be a manifold.

6.6. Lemma. There is a unique manifold structure on Y such that p is a smooth
map.

Proof. For any x ∈ X there exists an open U 3 x such that p−1(U)→ F × U is
a homeomorphism over U . This implies that there is a unique smooth structure
on p−1(U). Since for any two open subsets U, V of X the smooth structures
on them are compatible, the smooth structures on p−1(U) and p−1(V ) are also
compatible. �

6.6.1. Group structure on G̃. Let G be a Lie group and let π : G̃ → G be a
universal covering. Choose u ∈ G̃ such that π(u) = 1. We will now define a
group structure on G̃ so that G̃ becomes a Lie group with the unit element u and
π becomes a Lie group homomorphism.
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Assuming G to be connected, π is surjective, so that K = Ker(π) is a discrete
normal subgroup of G̃. Lemma 6.6.2 below than shows that the elements of K
commute with the elements of G̃.

The multiplication m̃ : G̃ × G̃ → G̃ is defined as follows. Given x1, x2 ∈ G̃,
choose paths γi : [0, 1] → G̃ connecting u with xi, and multiply their images
π ◦ γi in G. We get a new path δ : [0, 1] → G defined by the formula δ(s) =

π(γ1(s))π(γ2(s)) and we lift it to a path δ̃ such that π(δ̃) = δ.
In this way we define a map m̃ : G̃×G̃→ G̃ satisfying the following properties.

• π ◦ m̃ = m ◦ (π × π).
• m̃ is continuous.

Now m̃ is automatically smooth. In fact, the map π : G̃ → G is a local diffeo-
morphism. This allows one to chose charts for (g, h) ∈ G̃ × G̃ and for gh ∈ G̃
diffeomorphic to their images in G×G and in G. Tis prove smoothness of m̃.

6.6.2. Lemma. Let G be a connected Lie group and K a discrete normal subgroup
of G. Then for all g ∈ G and k ∈ K one has gk = kg.

Proof. Let γ : [0, 1] → G connect 1 with g. The map s 7→ γ(s)−1kγ(s) is
continuous with values in K, therefore, constant. Thus, g−1kg = k. �

6.7. Exact sequence of a locally trivial fibration. Let p : Y → X be a
locally trivial fibration with connected X. Fix y ∈ Y , x = p(y), and we think of
(Y, y) and (X, x) as pointed spaces. We denote F = p−1(x). We have a sequence
of pointed spaces

(F, y)
q→ (Y, y)

p→ (X, x).

For a pointed set (X, x) we denote π0(X, x) the pointed set of connected com-
ponents of X (a pointed set is a set with a chosen point in it, in this case the
component of x). A continuous map of pointed sets induces a map of pointed π0.
This yields a sequence

π0(F, y)→ π0(Y, y)→ π0(X, x) = ∗

of pointed sets. We similarly have a sequence of homomorphisms

π1(F, y)→ π1(Y, y)→ π1(X, x)

of fundamental groups. We will say that a sequence of maps of pointed sets

. . .→ (Sn+1, sn+1)
fn+1→ (Sn, sn)

fn→ (Sn−1, sn−1)→ . . .

is exact if for any n the image of fn+1 coincides with f−1
n (sn−1).

6.7.1. Theorem. There is an exact sequence of pointed sets

π1(F, y)→ π1(Y, y)→ π1(X, x)
∂→ π0(F, y)→ π0(Y, y)→ π0(X, x) = ∗.
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Proof. We will only construct the map ∂. An interested reader can find the proof
in any book on basic algebraic topology.

Let p : Y → X be a locally trivial fibration, y ∈ Y and x = p(y). It is easy to
see that any path γ : [0, 1] → X such that γ(0) = x can be lifted (non-uniquely
but uniquely up to homotopy) to a path δ : [0, 1]→ Y such that δ(0) = y. Now,
for any g ∈ π1(X, x) we define ∂(g) as follows: we represent g with a path γ as
above, and define ∂(g) as the connected component of δ(1) ∈ F . �

6.7.2. Remark. It is worthwhile to add that π1(X, x) acts on the set π0(F ) so
that the map ∂ defined in the proof is deduced from this action, ∂(g) = g([y]),
where [y] is the component of y ∈ F . Using this action, one describes π0(Y ) as
the factor π0(F )/π1(X, x).

The above exact sequence is often used to calculate fundamental groups of
spaces.

6.8. Example of a nonlinear Lie group. We will now prove that the group
H/Z defined in 4.1.3, is not linear.

6.8.1. Representations of a circle. For any n ∈ Z we define a one-dimensional
complex representation ρn of the group U(1) by the formula

ρn(z) = zn ∈ C∗.
For the time being we accept, without proof, the following result.

Theorem. Any finite-dimensional representation of U(1) decomposes as a sum
of ρn.

Let r : G → GL(V ) be a complex finite-dimensional representation of G. We
will prove that V is a sum of trivial representations. This will imply, in particular,
that G is not linear.

First of all, the group G contains in its center U(1) = R/Z. We denote
Vn = {v ∈ V |r(z)v = znv}. The theorem formulated above implies that V = ⊕Vn
(most of Vn are zero, of course). One can verify that Vn is a subrepresentation
of V , that is that for any g ∈ G one has r(g)(Vn) ⊂ Vn. We will now prove that
Vn = 0 for n 6= 0. In fact, a calculation shows that any element g of G with
x = y = 0 is a commutator. Therefore, det(r(g)) = 1. On the other hand, for
v ∈ Vn det(r(g)) = znd where z ∈ U represents g and d = dimVn. This imiplies
the claim.

7. Vector fields. Lie algebra of a Lie group.

We start with a general notion of a vector field on a manifold. We continue
with studying invariant vector fields on a Lie group.

7.1. Vector fields.
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7.1.1. Let U be an open subset in Rn. By definition, all tangent spaces Tx(U),
x ∈ U , identify with Rn. A (smooth) vector field on U is, by definition, an
assignment x ∈ U 7→ Vx ∈ Tx(U) defined by a smooth function V : U → Rn.

Any vector field Φ on U defines an operator on C∞(U) carrying f to the
function sending x to the directional derivative of f ′Φ(x). In particular, choosing

the base x1, . . . , xn of Rn, the constant vector field Φ(x) := xi defines the operator
∂
∂xi

on C∞(U). A general vector field given by the components Φ1, . . . ,Φn, defines
the derivation

(4)
∑

Φi
∂

∂xi
: C∞(U)→ C∞(U).

The space of vector fields on U is just the set of expressions (4). We denote it
by Vect(U). This is a free module over C∞(U) with the basis ∂

∂xi
.

7.1.2. Base change. What happens to our formulas for vector fields under the
change of coordinates? Assume we have U ⊂ Rn and V ⊂ Rn and a smooth map
f : Rn → Rn given by the matrix of smooth functions y1(x1, . . . , xn), . . . , yn(x1, . . . , xn)
establishing a diffeomorphism of U with V .

One can (try to) use the tangent maps Txf : TxU → Tf(x)V to construct
a vector field on V from a vector field on U . Of course, one should make a
calculation to prove that the resulting assignment will give a (smooth) vector
field. It is easy to see that the vector field ∂

∂xi
is sent, under the tanget map, to

∂

∂xi
=
∑ ∂yj

∂xi

∂

∂yj.

Note that these are the standard calculus formulas.
Note that, in general, a smooth map f : U → V does not induce a

map Vect(U) → Vect(V ). This was possible only because in our case

f : U → V was a diffeomorphism.

7.1.3. Let now M be a smooth manifold, U an open subset in M . A vector field
on U is an assignment x ∈ U 7→ V (x) ∈ Tx(U) that is smooth in any chart of U .

The set of vector fields on U is denoted Vect(U). This is a vector space.
Obviously, Vect(U) is always a module over C∞(U) This module is not necessarily
free as we have no global coordinate system to get a basis consisting of ∂

∂xi
.

7.1.4. Vector fields as derivations. A linear map d : C∞(M)→ C∞(M) is called
a derivation if it satisfies the Leibniz rule:

d(fg) = d(f)g + fd(g).
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Any endomorphism defined by a vector field is a derivation. This can be verified
at any chart where the result follows from the “usual” Leibniz rule

∂

∂xi
(fg) =

∂f

∂xi
g + f

∂g

∂xi
.

It turns out that the converse is also true. We will use it without proof as
interpretation of vector fields as derivations is very convenient.

The following exercise makes us belive that the above claim may be correct.

7.1.5. Exercise. Let A = k[x1, . . . , xn] be the polynomial ring over a field k. Let
Φ be a k-linear derivation of A. Prove that

Φ =
∑

Φi
∂

∂xi

where Φi = Φ(xi) ∈ A.

7.1.6. In is easy to see that if θ : M → N is a diffeomorphism, it induces an
isomorphism Tθ : Vect(M)→ Vect(N). Here are the details.

Given x ∈ M and y = θ(x) ∈ N we have an isomorphism Tθx : Tx(M) →
Ty(N). Thus, given a vector field Φ on M , we get an assignment y 7→ Tx(Φ(x)) ∈
Ty(N). It remains to prove that this assignment is given by smooth functions in
any chart of N . This is immediate since θ is a diffeomorphism and Φ is given
by smooth functions. Let us describe Tθ in terms of derivations. First of all, θ
induces an isomorphism of the algebras of smooth functions

θ∗ : C∞(M)→ C∞(N)

carrying f ∈ C∞(M) to the function θ∗(f) defined by the formula θ(f)(y) =
f(θ−1(y)). Now, given a derivation δ : C∞(M) → C∞(M), we define Tθ(δ) by
the formula

Tθ(δ)(f) = θ∗(δ(θ
−1
∗ (f))),

where f is a smooth function on N . In other words,

Tθ(δ)(f)(y) = θ∗(δ(θ
−1
∗ (f)))(y) = δ(θ−1

∗ (f)))(θ−1(y)).

7.2. Lie bracket on the vector fields. There is a binary operation on the
collection of vector fields Vect(M) that satisfies the properties similar to the
bracket [X, Y ] = XY − Y X on matrices.

7.2.1. Bracket in terms of derivations. Given two vector fields X, Y ∈ Vect(M),
denote by dX , dY the corresponding derivations. We define [dX , dY ] : C∞(M)→
C∞(M) as the endomorphism given by the formula

[dX , dY ](f) = dX(dY (f))− dY (dX(f)).

It is easy to see that this is also a derivation. Therefore, it is given by a vector
field denoted by [X, Y ].
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7.2.2. Let us write down the explicit formulas for Vect(U) where U is an open
subset of Rn. Let X =

∑
fi

∂
∂xi

and Y =
∑
gi

∂
∂xi

. Then

[X, Y ](φ) =
∑
i,j

(fi
∂gj
∂xi
− gi

∂fj
∂xi

)
∂φ

∂xj
,

so

[X, Y ] =
∑
i,j

(fi
∂gj
∂xi
− gi

∂fj
∂xi

)
∂

∂xj
.

7.3. Lie algebras. We will now give a definition of a Lie algebra.

7.3.1. Definition. A Lie algebra is a vector space g endowed with a bilinear
operation x, y 7→ [x, y] satisfying the following properties.

• [x, y] = −[y, x].
• [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity).

Notes: The first condition is often replaced with the condition [x, x] = 0 that
is equivalent if 1 + 1 6= 0 (as in the present course).

7.3.2. Exercise. Let A be an associative algebra. Then the operation [a, b] =
ab− ba defines on A a structure of a Lie algebra.

For instance, Mn(R) is a Lie algebra with respect to the bracket operation.

7.3.3. Exercise. Verify that sln(R) is a Lie subalgebra of Mn(R).

7.3.4. Exercise. Verify that the space Vect(M) of vector fields on a manifold is
a Lie algebra with respect to the bracket. More generally, verify that the set
of derivations of any algebra A (that is, a vector space endowed with a bilinear
operation) is a Lie algebra with respect to the bracket defined as [δ, δ′] = δ ◦ δ′−
δ′ ◦ δ.

7.4. Vector fields on a Lie group. Let G be a Lie group. Left multiplication
by g ∈ G defines a diffeomorphism Lg : G→ G that induces a linear map

Tg := TLg : Vect(G)→ Vect(G).

7.4.1. A vector field X is called left-invariant if Tg(X) = X for any g. Let
Xg ∈ Tg(G) be the component of X at g. Left invariance of X means that
Xgh = Tg(Xh) for any g, h ∈ G.

In particular, a left-invariant vector field on G is uniquely determined by it
component X1 ∈ T1(G). Conversely, any choice of X1 ∈ T1(G) allows one to
define Xg := Tg(X1) ∈ Tg(G).

7.4.2. Lemma. For any X1 ∈ T1(G) the assignment Xg := Tg(X1) defines a
left-invariant vector field.
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Proof. This is a smooth vector field by smoothness of m : G × G → G. It is
left-invariant as Tg(Xh) = Tg(Th(X1)) = Tgh(X1) = Xgh. �

7.4.3. Lemma. Let X, Y be left-invariant vector fields. Then [X, Y ] is also left-
invariant.

Proof. It is convenient to use the interpretation of vector fields in terms of deriva-
tions. A vector field X on G is left-invariant iff for any g ∈ G and for any
f ∈ C∞(G) one has

X(g∗(f)) = g∗(X(f)).

A direct computation shows that if X and Y satisfy this property, then [X, Y ]
also satisfies it. �

7.4.4. Definition. Lie algebra Lie(G) of a Lie group G is the Lie algebra of
left-invariant vector fields on G. As proven above, it identifies, as a vector space,
with the tangent space T1(G).

7.4.5. Example. Let us make everything explicit for the case G = GLn(R). A
vector field on G is given by a smooth function f : GLn → Mn. Left mul-
tiplication Lg : GLn → GLn induces an endomorphism Tg : Mn → Mn also
given by left multiplication by g. Thus, an invariant vector field defined by
X ∈Mn = T1(GLn) is the assignment g 7→ gX.

7.5. Vector fields and flows. Vector fields on manifolds have two complemen-
tary manifestation. The one interprets a vector field on M as a derivation of the
algebra of functions C∞(M). On the other way, vector fields can be integrated,
to define flows, as follows.

7.5.1. Flows. Given a vector field X on a manifold M , and a point x ∈ M , one
can integrate it, that is find ε > 0 and a unique curve γ : (−ε, ε)→M such that
γ̇(t) = Xγ(t). This defines (locally, that is, in a neighborhood of x and for small
ε) a map carrying x to a point γ(t) =: ΦX

t (x). The meaning of the indices in

the notation: ΦX
t (x) is the result of the movement along the vector

field X during the time t, starting from x ∈M.

7.5.2. Bracket in terms of flows. Given two vector fields X and Y , the value of
[X, Y ] at x ∈M can be described as follows. We define

φ(s, t) = Φ−Yt ◦ Φ−Xs ◦ ΦY
t ◦ ΦX

s (x).

Here is a standard fact in differential geometry whose proof we give for complete-
ness.

Proposition. The value of [X, Y ] at x ∈M can be calculated as ∂2φ
∂s∂t

(0, 0).
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Proof. Let us, first of all, present the connection between two interpretation of a
vector field: as something defining a flow and as an operator on functions. Given
a vector field X with a flow ΦX , and given a function f , one has X(f)(x) =
d
dt

(f(ΦX
t (x)))(0). Let now X, Y be two vector fields and let the function φ :

R×R→M be defined as above. We will prove that for any function f ∈ C∞(M)
and for each x ∈M one has

∂2

∂s∂t
(f ◦ φ)(0, 0) = X(Y (f))(x)− Y (X(f))(x).

The map φ is defined as a composition of four flows applied to x, so that two of
them depend of s and two of them depend of t. This is inconvenient. For this
technical reason we prefer to define a (more general) function ψ as follows.

ψ(s, s′, t, t′) = Φ−Yt′ ◦ Φ−Xs′ ◦ ΦY
t ◦ ΦX

s (x),

so that φ(s, t) = ψ(s, s, t, t) and therefore

∂2

∂s∂t
(f ◦ φ)(0, 0) = (

∂2

∂s∂t
+

∂2

∂s∂t′
+

∂2

∂t∂s′
+

∂2

∂s′∂t′
)(f ◦ ψ)(0, 0, 0, 0).

Note that we chose the order of derivation that is more convenient for calculation;
for instace, ∂2

∂t∂s′
= ∂

∂t
∂
∂s′

. We present below the example of the calculation of the
first summand.

∂

∂t
(f ◦ Φ−Yt′ ◦ Φ−Xs′ ◦ ΦY

t ◦ ΦX
s (x)) =

∂

∂t
((Φ−Yt′ ◦ Φ−Xs′ )∗(f) ◦ ΦY

t ◦ ΦX
s (x)) =

Y ((Φ−Yt′ ◦ Φ−Xs′ )∗(f)(ΦX
s (x)),(5)

so the second derivative yields

∂2

∂s∂t
(f ◦ Φ−Yt′ ◦ Φ−Xs′ ◦ ΦY

t ◦ ΦX
s (x)) = X ◦ Y ((Φ−Yt′ ◦ Φ−Xs′ )∗(f)(x),

whose value at (0, 0, 0, 0) gives X ◦ Y (f)(x). The rest of the summands are

−X((Φ−Xs′ ΦY
t )∗Y (f))(x), −Y X((Φ−Yt′ )∗(f))(ΦX

s (x)) and XY (f)(ΦY
t ◦ ΦX

s (x)).

Evaluating at (0, 0, 0, 0) and summing up, we get the required answer. �

Remark. Note that the first partial derivatives ∂φ
∂s

(0, 0) and ∂φ
∂t

(0, 0), as well as
∂2φ
∂s2

(0, 0) and ∂2φ
∂t2

(0, 0), vanish as φ(s, 0) = φ(0, t) = x. Therefore, the mixed
second derivative is the only nontrivial term of second degree in s, t.

7.5.3. The exponential map. Let X ∈ Lie(G) and let vX ∈ Vect(G) be the
corresponding left-invariant vector field. By the general construction given above
we get an integral line

γ : (−ε, ε)→ G

in a neighborhood of 0, such that γ̇(t) = vX(γ(t)) = γ(t)(X). Let us show that
this map extends to the whole R. In fact, since vX is invariant, the left translation
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Lγ(t) for t ∈ (−ε, ε) carries a solution of the ODE to a solution. Because of the
uniqueness of the solution, they coincide on the intersection, that is

γ(s+ t) = γ(s)γ(t).

It makes sense to call it expX . Obviously, expX(t) = exptX(1) so we call it
exp(tX).

This defines a smooth map exp : g → G. Let us calculate its derivative at 0,
T exp(0). One can easily see that T exp(0) = idg. Therefore, exp : g → G is a
local diffeomorphism.

7.5.4. Exercise. Verify that in case of G = GLn the map exp defined above is
given by the matrix exponent.

7.5.5. We can now use 7.5.2 to find a formula for the bracket [X, Y ] for X, Y ∈
T1(G). We define φ(s, t) = exp(−tY ) exp(−sX) exp(tY ) exp(sX). Then for vary-

ing s the derivative ∂φ
∂t

gives a map from (−ε, ε) → T1(G) whose derivative ∂2φ
∂s∂t

is a vector in T1(G). This is the value of [X, Y ]. In other words, up to higher

degree terms, one has

exp(−tY ) exp(−sX) exp(tY ) exp(sX) ∼ exp(st[X, Y ]).

7.5.6. Exercise. Prove that the Lie bracket of invariant vector fields on GLn is
given by the formula [X, Y ] = XY − Y X.

7.6. More on connection between a Lie group and its Lie algebra. A Lie
group homomorphism f : G→ H induces a linear map T1f : T1(G)→ T1(H).

7.6.1. Theorem. The linear map T1f is a Lie algebra homomorphism.

Proof. We have to verify that T1f preserves the Lie bracket. This follows from
the description of the Lie bracket given above and the fact that f : G → H
carries exp(X) ∈ G to exp(Y ) ∈ H where Y = T1(f)(X). The latter follows
from the uniqueness of the solution of ODE. �

Recall that a finite dimensional representation of a Lie group G in a vector
space V is just a Lie group homomorphism G → GL(V ) (note that V can be
real or complex vector space). Since the Lie algebra of GL(V ) is just the Lie
algebra of endomorphism of V (we denote it by gl(V ) when it is considered as a
Lie algebra), we deduce that any finite dimensional representation of G induces
a Lie algebra homomorphism g → gl(V ). It makes sense to give the following
definition.

7.6.2. Definition. A finite dimensional representation (real or complex) of a Lie
algebra g is a homomorphism of Lie algebras

g→ gl(V ).
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In other words, a representation of g is an assignment, for each X ∈ g, of an
operator ρ(X) ∈ End(V ), such that

ρ([X, Y ]) = ρ(X) ◦ ρ(Y )− ρ(Y ) ◦ ρ(X).

7.6.3. Example: Adjoint action. Recall the adjoint action of a Lie group G on
itself given by the formula Adg(h) = ghg−1. Since Adg(1) = 1, this defines an
action of G on g = Lie(G). This is a representation of G called the adjoint
representation. According to above, it induces a representation of g on g that is
also called the adjoint representation and denoted ad : g→ End(g). We will now
show that the adjoint representation is given by the formula

ad(X)(Y ) = [X, Y ].

In effect, to calculate ad(X)(Y ), one should choose a curve in G with tangent X
at 1, for instance, exp(sX), calculate Adexp(sX)(Y ) and take the derivative. This
means that one should derive twice, in t and in s, the expression

Adexp(sX)(exp(tY )) = exp(sX) exp(tY ) exp(−sX).

The result can be deduced from the calculation of the mixed derivatives of ψ
presented in 7.5.2.

7.6.4. An action of a Lie group G on a manifold M can hardly be presented
as a homomorphism from G to the group of diffeomorphisms of M — for the
simple reason that this group is infinitely dimensional and so is not (formally)
a Lie group. However, one can easily see that the Lie algebra Vect(M) of vec-
tor fields on M plays the role of the Lie algebra of the “not-so-Lie group” of
diffeomorphisms of M .

Let G be a Lie group and let g = T1(G) be the Lie algebra of G. Given an
action

m : G×M →M,

any choice of x ∈ M defines a smooth (orbit) map mx : G → M given by the
formula mx(g) = m(g, x). Its tangent map gives T1(G)→ Tx(M). This defines a
linear map Lie(m) : g → Vect(M) that carries X ∈ g to the vector field whose
x-component is T1mx(X).

We have the following analog of Theorem 7.6.1.

7.6.5. Theorem. The map Lie(m) : g→ Vect(M) is an anti-homomorphism of
Lie algebras, that is Lie(m)([X, Y ]) = −[Lie(m)(X), Lie(m)(Y )].

Note that a map f : g → h is an anti-homomorphism of Lie algebras if and
only if −f : g→ h is a Lie algebra homomorphism.

7.6.6. Remark. The minus sign in the formulation of the theorem requires an
explanation. Let us illustrate it with the following example. Let M = G and
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the action be the standard left action, that is m : G × G → G is the multi-
plication. Let us calculate the map Lie(m) : g → Vect(G). The g-component
of Vect(m)(X) is the image of X under the map T1(G) → Tg(G) induced by
the right multiplication by g. Thus, Lie(m) : g → Vect(G) carries g to right-
invariant vector fields. Recall that we identified g with the space of left-invariant
vector fields. If we denote by gR the set of right-invariant vector fields on G, both
g and gR indentify with T1(G), but they acqure different Lie algebra structures
from Vect(G). One can show that the structures differ by sign, see Exercise
below.

7.6.7. Exercise. Prove that the identity map g → gR is an anti-isomorphism of
Lie algebras, [X, Y ] = −[X, Y ]R. Hint: The map i : G → G carrying g to g−1

carries left-invariant vector fields to right-invariant vector fields.

Proof of the theorem. The proof is very similar to the proof of7.6.1. We use the
description of the bracket of vector fields given in 7.5.2. For a fixed X ∈ g we have
to describe the flow ΦX

t on M defined by the vector field vX whose y-component
for y ∈ M is given by the formula vXy = T1my(X). The map mg(x) : G → M is
the composition

G
Rg→ G

mx→ M,

so the integral lines of the flow ΦX starting from y := g(x) are images of the
integral lines of the flow defined by the right-invariant vector field on G defined
by X, the one given by the formula g 7→ T1(Rg)(X). Now the claim follows from
Remark 7.6.6. �

7.7. Closed subgroups of Lie groups. Theorem of von Neumann 4.2.4 claims
that any closed subgroup of GLn(R) is a closed Lie subgroup. We have now all
necessary tools to deduce the following result of Elie Cartan (1930).

7.7.1. Theorem. Any closed subgroup of a Lie group G is in fact a closed Lie
subgroup.

Proof. The proof follows the original proof by von Neumann. Recall the main
steps of the proof.

Let G be a Lie group and H a closed subgroup in it. Let g be the Lie algebra of
G. We define h ⊂ g as the collection of X such that exp(tX) ∈ H for all t (this is
the definition we used for linear groups, but with a slightly different meaning for
the exponent). We prove that h is a Lie subalgebra, and then that in a certain
neighborhood U of 1 the intersection H ∩U lies in the image of exp : h→ G. �

We can now prove Proposition 3.5.8 describing the orbits of an Lie group action
on a manifold.
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7.7.2. Proof of 3.5.8. Let G be a Lie group acting on a manifold M . Let x ∈
M . The stabilizer H := StabG(x) is a closed subgroup. Therefore, by Cartan
theorem, it is a closed Lie subgroup. This implies that there is a natural structure
of manifold on the quotient G/H that is, as a set, coincides with the orbit of G
containing x ∈M . By universal property of the quotient, see 3.4.4, the orbit map
G/H →M is a smooth map. It remains to verify that this map is an immersion,
that is, to prove that the tangent map is injective. The tangent space of G/H at 1
identifies with g/h. Recall that the orbit of x is defined by the map mx : G→M
carrying g ∈ G to g(x) ∈ M . Look at the tangent map Tmx : g → Tx(M). We
have to verify that if Tmx(X) = 0 then X ∈ h. In fact, If Tmx(X) = 0, the
integral line ΦX

t in M is constant, therefore exp(tX) ∈ H. By definition this
implies X ∈ H.

7.7.3. Corollary. Let f : G→ H be a Lie group homomorphism and let Lie(f) :
g → h be the induced homomorphism of Lie algebras. Then K = Ker(f) is a
closed normal Lie subgroup of G with Lie algebra Ker(Lie(f)).

Proof. The homomorphism f defines a left action of G on H as the composition

G×H f×id→ H×H mH→ H(in other words, Lg(h) = f(g)h. Then K is the stabilizer
of 1 ∈ H under this action and its Lie algebra is the kernel of Lie(f) by 3.5.8,
see also 7.7.2. �

7.7.4. Exercise. Define the direct product of Lie groups and of Lie algebras.
Prove that Lie(G×H) is isomorphic to the direct product Lie(G)× Lie(H).

8. Fundamental Lie theorems

8.1. In this section we study the precise connection between Lie groups and Lie
algebras. If G, H are connected Lie groups, we denote by HomLG(G,H) the set
of Lie group homomorphisms from G to H. Similarly, if g and h are Lie algebras,
we denote by HomLA(g, h) the set of Lie algebra homomorphisms from g to h.
We already know that any Lie group homomorphism f : G → H gives rise to a
Lie algebra homomorphism Lie(f) := T1(f) : Lie(G)→ Lie(H). This defines a
map

HomLG(G,H)→ HomLA(Lie(G), Lie(H)).

Here is the first fundamental theorem.

8.1.1. Theorem. (Lie theorem 1) Let G be a Lie group with g = Lie(G). There
is a one-to-one correspondence between connected Lie subgroups of G and Lie
subalgebras of g.

8.1.2. Remark. Note that the theorem is talking about immersed (not necessarily
closed) subgroups in G.
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The second Lie theorem extends the first one to general Lie group or Lie algebra
homomorphisms.

8.1.3. Theorem. (Lie theorem 2) Let G, H be connected Lie groups, g = Lie(G),
h = Lie(H). The map

HomLG(G,H)→ HomLA(g, h)

assigning to f : G → H the tangent map Lie(f) : g → h is injective. It is
bijective if G is simply connected.

Here is the third principal theorem.

8.1.4. Theorem. (Lie theorem 3) For any finite dimensional Lie algebra g there
exists a Lie group G such that g = Lie(G).

8.1.5. Corollary. There is an equivalence of the category LA of finite dimensional
Lie algebras and the full subcategory of LG spanned by the simply connected Lie
groups.

�
In other words, for any finite dimensional Lie algebra g there is

a unique, up to isomorphism, simply connected Lie group and to any Lie

algebra homomorphism g→ h uniquely lifts to a Lie group homomorphism

G→ H.

There is a number of approaches to these results. Moreover, some of them can
be easily deduced from he others.

8.1.6. For instance, here is an easy way to deduce Theorem 1 from Theorems
2 and 3. By Lie 3 theorem, h admits a simply connected Lie group H̃. By Lie
theorem 2 there is a Lie group homomorphism f : H̃ → G such that Lie(f) is
the embedding h→ g. This means that the kernel of f is a discrete subgroup K
and the quotient H = G/K is a Lie group locally isomorphic to H̃.

Obviously, H is a unique Lie subgroup of G whose Lie algebra identifies with
h.

8.2. Lie theorem 1. Recall that we defined a smooth map exp : U → G for an
open neighborhood U of 0 in g. This makes the image exp(U) ⊂ G endowed with
the inverse map log : exp(U) → g a chart for the group U at the neighborhood
of 1 ∈ G.

Given a Lie subalgebra h ⊂ g, the image exp(h) ⊂ G is a submanifold. We
cannot expect it to be a subgroup, but we hope it to be a small neighborhood of
a subgroup. How can one prove this? At least this should mean that, if h, h′ ∈ h
are small enough, the product exp(h) exp(h′) belongs to exp(h).

There are different approaches. A more algebraic one is based on the beautiful
BCH (Backer-Campbell-Hausdorff) formula that claims exp(x) exp(y) = exp(z)
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where z can be expressed through x and y using (multiple) commutators,

z = x+ y +
1

2
[x, y] +

1

12
([x, [x, y]] + [y, [y, x]]) + . . . .

A more geometric way of proving this theorem is based on a very important
Frobenius theorem. Let us first indicate that Lie theorem 1 has already been
proven in the case when h has dimension 1: if h = R · X, the corresponding
Lie subgroup of G is the one-parametric subgroup t 7→ exp(tX) constructed
above. The exponent map was constructed using the theorem on the existence
and uniqueness of a solution of ODE. Our proof of Theorem 1 is based on a
multi-dimensional generalization of this theorem. This is Frobenius theorem.

8.3. Distribution, involutive distributions. Let M be a smooth manifold of
dimension n.

8.3.1. Definition. 1. A d-dimensional family D of tangent vectors in M is
an assignment, for any x ∈M , of a d-dimensional subspace Dx ⊂ Tx(M).

2. A d-dimensional distribution D on M is a d-dimensional family locally
generated by d linearly independent vector fields: for any x ∈ M there
exist an open neighborhood U of x and vector fields X1, . . . , Xd ∈ Vect(U)
such that for any y ∈ U Dy = Span((X1)y, . . . (Xd)y).

Thus, a one-dimensional distribution is just a direction field (a notion very
close to a non-vanishing vector field).

8.3.2. Definition. A d-dimensional distribution D on M is integrable if at any
x ∈ M there are local coordinates x1, . . . , xn such that D is (locally) generated
by ∂

∂xi
, i = 1, . . . , d. In other words, this means that for any x ∈ M there is a

(small) d-dimensional submanifold D̃ of M containing x such that for any y ∈ D̃
one has Dy = TyD̃ ⊂ TyM .

Any one-dimensional distribution is integrable, as the existence and uniqueness
of a solution of ODE shows. This is not so in general: integral distributions have
to be involutive in the sense of the definition below.

Let D be a distribution on M . We say that a vector field X on M belongs to
D if for any x ∈M Xx ∈ Dx.

8.3.3. Definition. A distribution D on M is called involutive if for any two vector
fields X and Y belonging to D their bracket [X, Y ] also belongs to D.

8.3.4. Remark. Let D be a d-dimensional distribution on U generated by the
vector fields X1, . . . , Xd. Then, in order to verify that D is involutive, it is
sufficient to verify that [Xi, Xj] belongs to D. In effect, X ∈ D decomposes
X =

∑
fiXi for some functions Xi. One has

[X, Y ] = [
∑

fiXi,
∑

gjXj] =
∑
i,j

[fiXi, gjXj],
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so it is sufficient to find an expression for [fX, gY ]. Here is the general formula
that can be easily verified in the local coordinates.

[fX, gY ] = fg[X, Y ] + fX(g)Y − gY (f)X.

in particular, if X, Y and [X, Y ] belong to D, [fX, gY ] also belongs to D.

The above remark implies, in particular, that any one-dimensional distribution
is automatically involutive: if D is (locally) generated by X ∈ Vect(U), [X,X] =
0 implies [fX, gX] ∈ D.

8.3.5. Lemma. Let D be an integrable distribution on M . Then it is involutive.

Proof. In a local chart where D is generated by ∂
∂xi

, i = 1, . . . , d, one has [ ∂
∂xi

, so
by the above remark D is involutive. �

Frobenius theorem claims that the above condition is also sufficient. Moreover,
the d-dimensional submanifold containing x is uniquely defined in a neighborhood
of x. We will prove Frobenius theorem in 8.4. Meanwhile we will show how to
deduce Fundamental Lie theorem 1 from it.

8.3.6. Proof of Lie theorem 1. Let G be a Lie group, g = Lie(G) identified
with the Lie algebra of left-invariant vector fields, and let h be a Lie subalgebra
of g. For any g ∈ G we define Hg = T1Lg(h) ∈ Tg(G). This is a d-dimensional
distribution on G that is invariant under left multiplication. It is obviously closed
under the Lie bracket as h is a Lie subalgebra of g. Therefore, it satisfies the
Frobenius theorem, so that there exists a d-dimensional (d = dim h) submanifold
H of G tangent to the distribution H. Since H is left-invariant, the uniqueness
implies that for any g ∈ H the submanifolds H and Lg(H) coincide at the
intersection. This implies the existence of H, the maximal among those immersed
d-dimensional submanifolds tangent to H. Moreover, H = Lg(H) for any g ∈ H.
This implies that H is a subgroup.

8.4. Proof of Frobenius theorem. Let us formulate once more the existence
and the uniqueness part.

8.4.1. Theorem. (Frobenius, 1849–1917) A d-dimensional distribution D on M
is integrable iff for any two vector fields X, Y ∈ Vect(U) belonging to D the
bracket [X, Y ] also belongs to D. In this case a d-dimensional submanifold D̃
containing x and tangent to D is unique in a neighborhood of x.

Here is a global version of the theorem.

8.4.2. Corollary. If a d-dimensional distribution D on M is closed under the
brackets as above, for any x ∈ M there exists a unique maximal immersed sub-
manifold containing x and tangent to D.
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Proof of Frobenius theorem. The claim of the theorem being local, we can think
of M as an open subset U of Rn. We have d vector fields X1, . . . , Xd on U that
generate D. The conditions give that [Xi, Xj] is a linear combination of Xk with
coefficients in C∞(U). The idea of the proof is to find another basis X ′1, . . . , X

′
d

satisfying [X ′u, X
′
j] = 0.

Step one. We choose the coordinates x1, . . . , xn on U so that Xd = ∂
∂xn

(this is

possible by ODE (Picard-Lindelöf) as Xd is nonzero at x; we may need to make
U smaller). We have

(6) Xi =
n∑
k=1

hik
∂

∂xk

for i < d and Xd = ∂
∂xn

.
Step two. Replacing Xi with Xi − hidXd for i < d we can assume that hid = 0

in (6).
Now,

(7) [Xd, Xi] =
∂

∂xn
◦
n−1∑
k=1

hik
∂

∂xk
−

n−1∑
k=1

hik
∂

∂xk
◦ ∂

∂xn
=

n−1∑
k=1

∂hik
∂xn

∂

∂xk
.

and, by the assumption,

(8) [Xd, Xi] =
d∑
j=1

gijXj =
d−1∑
j=1

n−1∑
k=1

gijhjk
∂

∂xk
+ gid

∂

∂xn

which implies, in particular, that gid = 0 so that [Xd, Xi] =
∑d−1

j=1 gijXj is a linear
combination of Xj with j < d.

Step three. Our next step is to make a change of variables to ensure that
[Xd, Xi] = 0 for all i. This is done as follows.

For any collection of c1, . . . , cd−1 we can find the functions f1. . . . , fd−1 satisfy-
ing the differential equations

∂fi
∂xn

= −
d−1∑
j=1

fjgji,

with the initial condition fi(x1, . . . , xn−1, 0) = ci. Then one has

[Xd,
d−1∑
i=1

fiXi] =
d−1∑
i=1

∂fi
∂xn

Xi +
d−1∑
i,j=1

figijXj = 0.

Choose, for instance, (c1, . . . , cd−1) = (1, 0, . . . , 0). The vector field Y1 :=
∑
fiXi

coincides with X1 on the hyperplace xn = 0, so Y1 can (locally) replace X1 in the
basis of vector fields. Once can similarly correct X2, . . . , Xd−1.
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Step four. We are now ready to prove the theorem by induction in d. Going
back to the formula (8), we deduce that ∂hik

∂xn
= 0, so hik are independent of

xn. This implies that X1, . . . , Xd−1 can be seen as defining a (d− 1)-dimensional
integrable family of Rn−1, and so by the inductive hypothesis it can be integrated
to a (d−1)-dimensional manifold N0. Then N := N0×R ⊂ Rn is a d-dimensional
manifold tangent to D. �

8.5. Lie theorem 2. The first claim of the theorem is very easy. In fact, given
a Lie algebra homomorphism f : g→ h, any its lifting f̄ : G→ H shooud carry,
for X ∈ g, an element exp(tX) ∈ G to exp(tf(X)) ∈ H. Since G is connected,
it is generated by the exp(tX), so the homomorphism f̄ is (at most) uniquely
determined by f .

The second claim of the theorem will be deduced from Lie theorem 1. Let
g = Lie(G) and h = Lie(H). Then one has g×h = Lie(G×H). Any Lie algebra
homomorphism f : g→ h defines an injective homomorphism F : g→ g×h given
by the formula F (X) = (X, f(X)). By Lie theorem 1 the Lie group G×H admits
a unique Lie subgroup G̃ ⊂ G×H so that Lie(G̃) = g. The composition

p1 : G̃→ G×H → G

induces the identity T1p1 : g→ g, so p1 is a covering. Since G is simply connected,
p1 is an isomorphism. This implies that the second composition

p2 ◦ p−1
1 : G→ G̃→ G×H → H

induces the map f : g→ h.

8.6. Lie theorem 3. The last Lie theorem is the most difficult. We will allow
ourselves to deduce it from a non-trivial result of Ado (1910–1983). An alterna-
tive proof (also based on some properties of Lie algebras that we will not prove)
will be presented later.

8.6.1. Theorem. (Igor Ado) Any finite-dimensional Lie algebra g over R admits
an embedding into Mn(R).

Let us deduce from this that any finite dimensional Lie algebra is a Lie algebra
of a Lie group. Choose an embedding g → Mn(R). By Lie theorem 1 there is a
Lie subgroup G of GLn(R) whose Lie algebra is g.

8.6.2. Remark. The proof of Lie theorem 3 is a bit cheating as its deduction
from Ado theorem is immediate, so that the main difficulty is in the proof of
Ado theorem. The proof of Ado ttheorem is based on a structure theory of Lie
algebras. One can prove Lie theorem 3 directly using the same structure theory;
but in this case one will have to say something about it.
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9. Lie groups vs Lie algebras

We will now start to exploit the connection between Lie groups and Lie alge-
bras.

9.1. Commutative Lie groups.

9.1.1. Definition. A Lie algebra g is called commutative if for X, Y ∈ g one has
[X, Y ] = 0.

Obviously, commutative Lie algebras are just real vector spaces.

9.1.2. Lemma. Let G be a commutative Lie group. Then Lie(G) is a commuta-
tive Lie algebra.

Proof. For X, Y ∈ g = Lie(G) the bracket [X, Y ] is calculated differentiating the
map φ : R2 → G given by the formula

φ(s, t) = exp(sX) exp(tY ) exp(−sX) exp(−tY ).

Since G is commutative, φ(s, t) = 1, so [X, Y ] = 0. �

9.1.3. By the Lie theorems, there exists a unique simply connected Lie group
having a commutative Lie algebra g as a Lie algebra. Since (g,+) obviously
satisfies this property, there are no others.

9.1.4. By the general theory, any Lie group having a commutative Lie algebra g
is the quotient of (g,+) by a discrete subgroup D. Discrete subgroups of a finite
dimensional vector space can be easily classified. Here is the answer.

9.1.5. Proposition. Let V be a finite dimensional real vector space and D be a
discrete subgroup of V . Then there is a basis of V , say, v1, . . . , vn, and a number
d ≤ n such that D is the free abelian group spanned by v1, . . . , vd.

�
Naturally, a discrete subgroup generated by v1, . . . , vd is called a discrete sub-

group of rank d.
This result immediately implies the following classification of of collutative Lie

groups.

9.1.6. Proposition. Any commutative Lie group of dimension n is isomorphic
to the direct product Cd × Rn−d, where C = R/Z is the circle group.

�

9.1.7. Remark. Classification of complex-analytic commutative groups is much
more interesting. Similarly to the real case, they all have form Cn/D where D
is a discrete subgroup of Cn. However, the maximal rank d of D is now 2n
instead of n, and, for instance, different rank 2 discrete subgroups of C lead to
non-isomorphic complex-analytic groups (they are of course isomorphic as groups
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but not as analytic manifolds). For instance, the case n = 1, d = 2 gives elliptic
curves – and there is a continuous family of them.

9.2. Center. Let G be a Lie group. Its center Z is defined as the collection of
elements of G commuting with all elements of G.

9.2.1. Definition. The center of a Lie algebra g is defined as

z = {X ∈ g|[X, Y ] = 0 for all Y }.

9.2.2. Proposition. Let G be a connected Lie group. Then Z is a closed Lie
subgroup with Lie(Z) = z.

Proof. We know that any neighborhood of 1 in G generates G. Therefore, g ∈ Z
iff g commutes with all exp(X), X ∈ g. In other words, if Adg(X) = X. This
means that Z is the kernel of the adjoint representation Ad : G → GL(g).
Therefore, the Lie algebra of Z is the kernel of ad = Lie(Ad) : g → gl(g). This
is precisely the center of g as ad(x)(y) = [x, y]. �

9.3. Normal Lie subgroups versus Lie ideals. A normal subgroup of a Lie
group is, by definition, a closed Lie subgroup that is normal as an abstract
group. (The meaning of a normal subgroup is that it can serve as the kernel of a
homomorphism. Since the kernel of a Lie group homomorphism is automatically
a closed Lie subgroup, we require closedness.)

We know that if H is a normal Lie subgroup of a Lie group G, the quotient
group G/H acquires a structure of a Lie group. We will now show that, in terms
of the correspondence between Lie subgroups and Lie subalgebras, normal Lie
subgroups corresponds to Lie ideals in the sense of the following definition.

9.3.1. Definition. Let g be a Lie algebra. An ideal h ⊂ g is a Lie subalgebra
satisfying the property [x, y] ∈ h for any x ∈ g, y ∈ h.

9.3.2. Proposition. Let H be a closed connected subgroup of connected Lie group
G with h = Lie(H) ⊂ g = Lie(G). Then H is a normal Lie subgroup of G if
and only if h is an ideal in g.

Proof. If H is normap subgroup, Adg(H) = H for all g ∈ G, so Adg(h) = h. So,
Ad defines a representation of G in h, so ad defines a representation of g on h.
This precisely means that [X, Y ] ∈ h for X ∈ g and Y ∈ h.

In the opposite direction, assume h is an ideal in g, so that adX(Y ) ∈ h for
any X ∈ g, Y ∈ h. This means that h is an adX-invariant subspace of g,
and, therefore, it is also an Adexp(sX)-invariant subspace of g. In other words,
Adexp(sX)(h) = h. By Lie theorem 1 this implies thatH and Adexp(sX)(H) coincide
as they have the same Lie algebra. Since G is connected, it is generated by
exp(sX), so this implies that H is normal. �
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9.3.3. Exercise. Show that both connectedness of H and connectedness of G are
important: find examples where one of G, H is not connected, h is an ideal in g
but H is not normal in G.

9.3.4. Definition. • A connected Lie group G is called simple if it is not
abelian and has no nontrivial normal connected Lie subgroups.
• Similarly, a noncommutative Lie algebra g is called simple if it has no

nontrivial ideals.

9.3.5. Example. The group G = SL(2,R) is simple even though its center {±1}
is nontrivial. Of course, the center of a simple Lie group is always discrete.

9.3.6. Corollary. A connected Lie group G is simple iff its Lie algebra is simple.

9.4. Direct product. Semidirect product. It is easy to find out that Lie(G×
H) = Lie(G) × Lie(H). We will now describe a more general operation (both
for Lie groups and for Lie algebras) that assigns a new Lie group (algebra) to a
pair of groups (algebras) and an action of one on the other.

We start with the groups.

9.4.1. Semidirect product of Lie groups. We have two Lie groups G and H and
a smooth action φ : G×H → H of G on H such that, for any g ∈ G the action
φg : H → H is a group automorphism. The semidirect product GnH is defined
as follows.

• As a manifold, GnH is the product G×H.
• The multiplication is given by the formula (g, h)(g′, h′) = (gg′, φg′−1(h)h′).

Here is a simplest example.
The group G = R∗ acts on H = R by multiplication. The semidirect product

is isomorphic to the group of matrices in GL(2,R) having the form

(
a b
0 1

)
with

a ∈ R∗ and b ∈ R.

9.4.2. Exercise. Present the group of matrices

(
a b
0 a−1

)
with a ∈ R∗ and b ∈ R

as a semidirect product of R∗ and R, with respect to a certain action of R∗ on R.

9.4.3. Exercise. Let A be a finite dimensional algebra. Define Aut(A) as the
subgroup of GL(A) consisting of the algebra automorphisms. Prove that Aut(A)
is a Lie subgroup of GL(A). Prove that the Lie algebra of Aut(A) is Der(A), the
Lie algebra of derivations of A.

9.4.4. An action of a Lie algebra g on a Lie algebra h is, by definition, a Lie
algebra homomorphism

ψ : g→ Der(h).
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Thus, an action is described by a bilinear map

ψ : g× h→ h

such that for each X ∈ g the map ψX : h→ h is a derivation.
Given an action of a Lie group G on H

φ : G×H → H,

Defines a representation of G on h = T1(H) so that each g ∈ G defines a Lie
algebra automorphism of h. Deriving, we get an action of g on the Lie algebra h.

9.4.5. Semidirect product of Lie algebras. Let ψ : g → Der(h) be an action of
g on h. Then the semidirect product g n h (it depends on ψ) is defined as the
direct sum g⊕ h of vector spaces, with the bracket defined by the formula

[X + Y,X ′ + Y ′] = [X,X ′] + (ψ(X)(Y ′)− ψ(X ′)(Y ) + [Y, Y ′]).

9.4.6. Proposition. The Lie algebra of the semidirect product G n H is the
semidirect product gn h.

Conversely, let ψ : g → Der(h) be a Lie algebra homomorphism. Let, fur-
thermore, G and H be simply connected Lie groups such that g = Lie(G) and
h = Lie(H). We know that Der(h) is the Lie algebra of the Lie group Aut(h). By
Lie theorem 2, ψ lifts to a Lie group homomorphism G→ Aut(h). Once more, Lie
theorem 2 implies that Aut(h) = Aut(H). Therefore, the Lie algebra action ψ lifts
to a unique Lie group action φ : G→ Aut(H). To be completely honest, one

has to verify that the action of G on H leads to a smooth map G×
H → H. We will leave this fact without the proof.

This allows one to construct a semidirect product GnH whose Lie algebra is
gn h.

9.4.7. Ado theorem is based on the following structural result in the theory of
Lie algebras.

Theorem. Any finite dimensional Lie algebra can be recursively constructed, us-
ing the operation of semidirect product, from simple Lie algebras and commutative
Lie algebras.

This result follows from the Levi theorem in Lie algebra theory, presentation

of a semisimple Lie algebra as a product of simple Lie algebras and

presentation of a solvable Lie algebra as a consecutive semidirect product

of commutative Lie algebras.

Based on this result, we can give an alternative proof of Lie theorem 3.
Case 1. g is a simple Lie algebra. In this case ad : g→ End(g) is injective, so

we do not need Ado theorem to deduce the existence of a Lie group with the Lie
algebra g.
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Case 2. g is a commutative Lie algebra. Then we know the answer: the
additive group (g,+) is a Lie group with the Lie algebra g.

We can now proceed, using the mentioned above stucture theorem, using the
semidirect product construction. If G and H are simply connected Lie groups and
an action g→ Der(h) is given, it lifts to an action of G on H by automorphisms,
so we can take the semidirect product G n H as the Lie group with the LIe
algebra gn h. This completes the proof of Lie theorem 3.

10. Compact groups (digest)

In this section we sketch the argument that allows to prove the following im-
portant property of compact Lie groups.

10.1. Theorem. Any representation of a compact Lie group G is a direct sum of
irreducible representations.

For simplicity, we will be talking about finite dimensional representations only.
Let G be a compact group and ρ : G→ GL(V ) be a finite dimensional complex

representation.

10.2. Unitary representations.

10.2.1. Definition. Let V be a complex vector space endowed with an inner
product. A representation ρ : G → GL(V ) is called unitary if ρ(G) lies in the
group of unitary transformations of V .

10.2.2. Lemma. Let V be a unitary representation and W ⊂ V be a subrepre-
sentation. Then W⊥ is also a subrepresentation so that V = W ⊕W⊥.

Proof. The claim is quite obvious. �

10.2.3. Unitarizability.

Theorem. Let ρ : G→ GL(V ) be any finite dimensional complex representation
of a compact Lie group. Then V admits an inner product making ρ a unitary
representation.

We will discuss later the proof of this important result.

10.2.4. The case G is a finite group. Finite group are compact. So, let us think
the simpler case of representation of finite groups. An inner product on V will
satiisfy the requirement of the theorem if it is invariant, that is if

(g(v), g(w) = (v, w)

for any v, w ∈ V . Choose an arbitrary inner product (−,−) on V . We can
“average” it defining a new inner product by the formula

(9) 〈v, w〉 =
1

|G|
∑
g∈G

(g(v), g(w)).
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The formula defines a symmetric bilinear form. It is an inner product as 〈v, v〉 =
1
|G|
∑

g∈G(g(v), g(v)) > 0.

10.2.5. Integration. The reasoning presented above cannot be generalized to in-
finite groups as the formula (9) makes no sense in general. However, if G is
compact, one can replace the summation with an integration. This is what we
will study now.

The easiest way to define intergation of functions on a manifold is the axiomatic
way. We define a distribution δ on M a linear functional δ : C∞c (M)→ R on the
space of compactly supported smooth functions. The functional is supposed to
be continuous in a certain canonical topology. For example, any x ∈ M defines
the distribution δx carrying f to f(x). This is what is called the delta-function
at x. Another (more reasonable) type of distributions is given by a differential
n-form on an n-dimensional oriented manifold M .

A distribution δ on a group G is called left-invariant iff δ(f) = δ(L∗g(f)) form
any g ∈ G.

It turns out, there is a unique, up to scalar, invariant measure on a Lie group
(a much more general result is called Haar’s theorem).

In particular, for a finite group G the distribution carrying any function f :
G → R to 1

|G|
∑

g∈G f(g), is invariant. For the group G = S1 = R/2πZ, an

invariant distribution is given by the formula

δ(f) =
1

2π

∫ 2π

0

f(x)dx.

10.2.6. Unitarizability. We can now prove that any finite dimensional represen-
tation of a compact Lie group is unitarizable. Given a representation ρ : G →
GL(V ), we have to construct a G-invarian inner product on V .

Choose any inner product (−,−) on V and define a new one by the formula

〈v, w〉 =
1

vol(G)
δ((g(v), g(w))),

where δ is a left-invariant distribution on G and vol(G) = δ(1) is the volume of
G with respect to δ.

Similarly to the case of finite groups, the new Hermitian form is positive and
invariant.

10.2.7. Exercise. Using the fact that G := R/Z is commutative, prove that its
any irreducible representation is one-dimensional.

Hint. Choose an element g ∈ G and find an eigenvalue λ and a corresponding
eigenvector v ∈ V . Prove that {v ∈ V |g(v) = λv} is a G-subrepresentation.
The exercise, together with Theorem 10.1, allows one to describe all

irreducible representations of R/Z, see 6.8.1.
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10.3. One can reformulate the unitarizability result as follows. Let G be a
compact Lie group. Then any Lie group homomorphism f : G → GL(n,C)
factors, after conjugation, through the embedding U(n) → GL(n,C). Simply
saying, this means that U(n) ⊂ GL(n,C) is a maximal compact subgroup.
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