
INTRODUCTION TO LIE ALGEBRAS.
LECTURE 7.

7. Killing form. Nilpotent Lie algebras

7.1. Killing form.

7.1.1. Let L be a Lie algebra over a field k and let ρ : L - gl(V )
be a finite dimensional L-module. Define a map

Bρ : L× L - k

by the formula

Bρ(x, y) = Tr(ρ(x) ◦ ρ(y)),

where Tr denotes the trace of endomorphism.

Lemma 7.1.2. The map Bρ is bilinear and symmetric.

Proof. Bilinearity is obvious. Symmetricity follows from the well-known
property of trace we have already used:

Tr(fg) = Tr(gf).

�

The map Bρ satisfies another property called invariance.

Definition 7.1.3. Let V, W, K be three L-modules. A map

f : V ×W - K

is called L-invariant if for all x ∈ L, v ∈ V, w ∈ W one has

xf(v, w) = f(xv, w) + f(v, xw).

Lemma 7.1.4. Let ρ : L - gl(V ) be a finite dimensional represen-
tation. The bilinear form Bρ : V × V - k is invariant (k is the
trivial representation). This means that Bρ([x, y], z)+Bρ(y, [x, z]) = 0.

Proof. Let X = ρ(x), and similarly Y and Z. One has

Bρ([x, y], z) = Tr([X, Y ]Z) = Tr(XY Z−Y XZ) = Tr(XY Z)−Tr(Y XZ).

Similarly,

Bρ(y, [x, z]) = Tr(Y [X, Z]) = Tr(Y XZ)− Tr(Y ZX).

Finally, Tr(X(Y Z)) = Tr((Y Z)X) and the lemma is proven. �
1



2

Definition 7.1.5. Killing form on a Lie algebra L is the bilinear form

B : L× L - k

defined by the adjoint representation.

Example 7.1.6. Let L be commutative. Then the Killing form on L
is zero.

Example 7.1.7. Let L = sl2. Then the Killing form is non-degenerate,
i.e. for any nonzero x ∈ L there exists y ∈ L such that B(x, y) 6= 0.
(see Problem assignment, 1).

7.1.8. Let B : V × V - k be a symmetric bilinear form. The
kernel of B is defined by the formula

Ker(B) = {x ∈ V |∀y ∈ V B(x, y) = 0}.
The form is non-degenerate if its kernel is zero. In this case the linear
transformation

B′ : V - V ∗

from V to the dual vector space V ∗ given by the formula

B′(x)(y) = B(x, y),

is injective. If dim V < ∞ this implies that B′ is an isomorphism.

Proposition 7.1.9. Let ρ : L - gl(V ) be a finite dimensional rep-
resentation. Then the kernel of Bρ is an ideal in L.

Proof. Suppose x ∈ KerBρ. This means that Tr(ρ(x)ρ(y)) = 0 for all
y. Then for all z ∈ L

Bρ([z, x], y) = −Bρ(x, [z, y]) = 0

by the invariantness of Bρ. �

Today we will study a large class of algebras having vanishing Killing
form.

7.2. Nilpotent Lie algebras. Let V, W ⊆ L be two vector subspaces
of a Lie algebra L. We define [V, W ] as the vector subspace of L spanned
by the brackets [v, w], v ∈ V, w ∈ W .

Jacobi identity implies that if V, W are ideals in L then [V, W ] is also
an ideal in L. Define a sequence of ideals Ck(L) by the formulas

C1(L) = L; Cn+1(L) = [L, Cn(L)].

Lemma 7.2.1. One has [Cr(L), Cs(L)] ⊆ Cr+s(L).

Proof. Induction in r. �



3

Example 7.2.2. Recall that

nn = {A = (aij) ∈ gln|aij = 0 for j < i + 1}.
If L = nn then

Ck(L) = {A = (aij) ∈ gln|aij = 0 for j < i + k}.
Check this!

Definition 7.2.3. A Lie algebra L is called nilpotent if Cn(L) = 0 for
n ∈ N big enough.

Thus, commutative Lie algebras as well as the algebras nn are nilpo-
tent.

7.3. Engel theorem.

Lemma 7.3.1. Let L, R ∈ End(V ) be two commuting nilpotent opera-
tors. Then L + R is also nilpotent.

Proof. Since L and R commute, one has a usual Newton binomial for-
mula for (L + R)n. This implies that if Ln = Rn = 0 then (L + R)2n =
0. �

Theorem 7.3.2. Let L ⊆ gl(V ) be a Lie subalgebra. Suppose that all
x ∈ L considered as the operators on V , are nilpotent. Then there
exists a non-zero vector v ∈ V such that xv = 0 for all x ∈ L.

Proof.
Step 1. Let us check that for each x ∈ L the endomorphism adx of

L is nilpotent. In fact, let Lx : End(V ) → End(V ) be the left multipli-
cation by x and Rx be the right multiplication. Then adx = Lx − Rx.
The operators Lx and Rx commute. Both of them are nilpotent since x
is a nilpotent endomorphism of V . Therefore, adx is nilpotent by 7.3.1.

Step 2. By induction on dim L we assume the theorem has been
already proven for Lie algebras K of dimension dim K < dim L.

Step 3. Consider a maximal Lie subalgebra K of L strictly contained
in L. We will check now that K is a codimension one ideal of L.

Let us prove first K is an ideal in L. Let

I = {x ∈ L|∀y ∈ K [x, y] ∈ K}.
This is a Lie subalgebra of L (Jacobi identity). Obviously I ⊇ K. We
claim I 6= K. By maximality of K this will imply that I = L which
precisely means that K is an ideal in L.

In fact, consider the (restriction of the) adjoint action of K on L.
K is a K-submodule of L. Consider the action of K on L/K. By the
induction hypothesis (here we are using adx is nilpotent!), there exists
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a non-zero element x ∈ L/K invariant with respect to K. This means
[a, x] = 0 for all a ∈ K or, in other words, choosing a representative
x ∈ L of x, we get [a, x] ∈ K for all a ∈ K. Thus, x ∈ I \ K and we
are done.

Now we know that K is an ideal. Let us check dim L/K = 1. In
fact, If x ∈ L \K, the vector space K + kx ⊆ L is a subalgebra of L.
Since K was chosen to be maximal, K + kx = L.

Step 4. Put
W = {v ∈ V |Kv = 0}.

Check that W is an L-submodule of V . If x ∈ K, y ∈ L and w ∈ W ,
one has

x(yw) = y(xw) + [x, y]w = 0.

By the induction hypothesis, W 6= 0. Choose x ∈ L \ K. This is
a nilpotent endomorphism of W . Therefore, there exists 0 6= w ∈ W
such that xw = 0. Clearly, w annihilates the whole of L.

Theorem is proven. �

Corollary 7.3.3. Let ρ : L - gl(V ) be a representation. Suppose
that for each x ∈ L the operator ρ(x) is nilpotent. Then one can choose
a basis v1, . . . , vn of V so that

ρ(L) ⊆ nn ⊆ gln = gl(V ).

Note that the choice of a basis allows one to identify gl(V ) with gln.

Proof. Induction on n = dim V .
One can substitute L by ρ(L) ⊆ gl(V ). By Theorem 7.3.2 there

exists a nonzero element vn ∈ V satisfying

xvn = 0 for all x ∈ L.

Now consider L-module W = V/〈vn〉 and apply the inductive hypoth-
esis. �

Corollary 7.3.4. (Engel theorem) A Lie algebra L is nilpotent iff the
endomorphism adx is nilpotent for all x ∈ L.

Proof. Suppose L is nilpotent, x ∈ L. By definition adx(C
k(L)) ⊆

Ck+1(L). This implies that adx is nilpotent.
In the other direction, suppose adx is nilpotent for all x ∈ L.
By 7.3.3 there exists a basis y1, . . . , yn of L such that

adx(yi) ∈ 〈yi+1, . . . , yn〉 for all x ∈ L, i.

This implies by induction that

Ci(L) ⊆ 〈yi, . . . , yn〉.
Therefore, Cn+1(L) = 0. �
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Problem assignment, 5

1. Calculate the Killing form for sl2 in the standard basis.
2. Let ρ : sl2 - gl(Vn) be the irreducible representation of sl2

of highest weight n > 0. Prove that Bρ is non-degenerate.
Hint. Check that Bρ(h, h) 6= 0.

3. Prove that the Killing form of a nilpotent Lie algebra vanishes.
4. Prove that subalgebra and quotient algebra of a nilpotent Lie

algebra is nilpotent.
Let K be a nilpotent ideal of L and let L/K be nilpotent.

Does this imply that L is nilpotent?
5. Prove that a nilpotent three-dimensional Lie algebra L is either

abelian or isomorphic to n3.


