INTRODUCTION TO LIE ALGEBRAS. LECTURE 7.

7. KILLING FORM. NILPOTENT LIE ALGEBRAS

7.1. Killing form.

7.1.1. Let *L* be a Lie algebra over a field *k* and let $\rho : L \longrightarrow \mathfrak{gl}(V)$ be a finite dimensional *L*-module. Define a map

$$B_{\rho}: L \times L \longrightarrow k$$

by the formula

$$B_{\rho}(x, y) = \operatorname{Tr}(\rho(x) \circ \rho(y)),$$

where Tr denotes the trace of endomorphism.

Lemma 7.1.2. The map B_{ρ} is bilinear and symmetric.

Proof. Bilinearity is obvious. Symmetricity follows from the well-known property of trace we have already used:

$$\operatorname{Tr}(fg) = \operatorname{Tr}(gf).$$

The map B_{ρ} satisfies another property called *invariance*.

Definition 7.1.3. Let V, W, K be three *L*-modules. A map

 $f: V \times W \longrightarrow K$

is called *L*-invariant if for all $x \in L$, $v \in V$, $w \in W$ one has

xf(v,w) = f(xv,w) + f(v,xw).

Lemma 7.1.4. Let $\rho: L \longrightarrow \mathfrak{gl}(V)$ be a finite dimensional representation. The bilinear form $B_{\rho}: V \times V \longrightarrow k$ is invariant (k is the trivial representation). This means that $B_{\rho}([x, y], z) + B_{\rho}(y, [x, z]) = 0$.

Proof. Let $X = \rho(x)$, and similarly Y and Z. One has $B_{\rho}([x, y], z) = \operatorname{Tr}([X, Y]Z) = \operatorname{Tr}(XYZ - YXZ) = \operatorname{Tr}(XYZ) - \operatorname{Tr}(YXZ).$ Similarly,

$$B_{\rho}(y, [x, z]) = \operatorname{Tr}(Y[X, Z]) = \operatorname{Tr}(YXZ) - \operatorname{Tr}(YZX).$$

1

Finally, Tr(X(YZ)) = Tr((YZ)X) and the lemma is proven.

Definition 7.1.5. Killing form on a Lie algebra L is the bilinear form

$$B: L \times L \longrightarrow k$$

defined by the adjoint representation.

Example 7.1.6. Let L be commutative. Then the Killing form on L is zero.

Example 7.1.7. Let $L = \mathfrak{sl}_2$. Then the Killing form is non-degenerate, i.e. for any nonzero $x \in L$ there exists $y \in L$ such that $B(x, y) \neq 0$. (see Problem assignment, 1).

7.1.8. Let $B: V \times V \longrightarrow k$ be a symmetric bilinear form. The kernel of B is defined by the formula

$$\operatorname{Ker}(B) = \{ x \in V | \forall y \in V \quad B(x, y) = 0 \}.$$

The form is *non-degenerate* if its kernel is zero. In this case the linear transformation

$$B': V \longrightarrow V^*$$

from V to the dual vector space V^* given by the formula

$$B'(x)(y) = B(x,y)$$

is injective. If dim $V < \infty$ this implies that B' is an isomorphism.

Proposition 7.1.9. Let $\rho: L \longrightarrow \mathfrak{gl}(V)$ be a finite dimensional representation. Then the kernel of B_{ρ} is an ideal in L.

Proof. Suppose $x \in \text{Ker}B_{\rho}$. This means that $\text{Tr}(\rho(x)\rho(y)) = 0$ for all y. Then for all $z \in L$

$$B_{\rho}([z,x],y) = -B_{\rho}(x,[z,y]) = 0$$

by the invariantness of B_{ρ} .

Today we will study a large class of algebras having vanishing Killing form.

7.2. Nilpotent Lie algebras. Let $V, W \subseteq L$ be two vector subspaces of a Lie algebra L. We define [V, W] as the vector subspace of L spanned by the brackets $[v, w], v \in V, w \in W$.

Jacobi identity implies that if V, W are ideals in L then [V, W] is also an ideal in L. Define a sequence of ideals $C^k(L)$ by the formulas

$$C^{1}(L) = L; \quad C^{n+1}(L) = [L, C^{n}(L)].$$

Lemma 7.2.1. One has $[C^r(L), C^s(L)] \subseteq C^{r+s}(L)$.

Proof. Induction in r.

Example 7.2.2. Recall that

$$\mathfrak{n}_n = \{ A = (a_{ij}) \in \mathfrak{gl}_n | a_{ij} = 0 \text{ for } j < i+1 \}.$$

If $L = \mathfrak{n}_n$ then

$$C^{k}(L) = \{ A = (a_{ij}) \in \mathfrak{gl}_{n} | a_{ij} = 0 \text{ for } j < i + k \}.$$

Check this!

Definition 7.2.3. A Lie algebra L is called nilpotent if $C^n(L) = 0$ for $n \in \mathbb{N}$ big enough.

Thus, commutative Lie algebras as well as the algebras \mathfrak{n}_n are nilpotent.

7.3. Engel theorem.

Lemma 7.3.1. Let $L, R \in End(V)$ be two commuting nilpotent operators. Then L + R is also nilpotent.

Proof. Since L and R commute, one has a usual Newton binomial formula for $(L+R)^n$. This implies that if $L^n = R^n = 0$ then $(L+R)^{2n} = 0$.

Theorem 7.3.2. Let $L \subseteq \mathfrak{gl}(V)$ be a Lie subalgebra. Suppose that all $x \in L$ considered as the operators on V, are nilpotent. Then there exists a non-zero vector $v \in V$ such that xv = 0 for all $x \in L$.

Proof.

Step 1. Let us check that for each $x \in L$ the endomorphism ad_x of L is nilpotent. In fact, let $L_x : \operatorname{End}(V) \to \operatorname{End}(V)$ be the left multiplication by x and R_x be the right multiplication. Then $\operatorname{ad}_x = L_x - R_x$. The operators L_x and R_x commute. Both of them are nilpotent since x is a nilpotent endomorphism of V. Therefore, ad_x is nilpotent by 7.3.1.

Step 2. By induction on dim L we assume the theorem has been already proven for Lie algebras K of dimension dim $K < \dim L$.

Step 3. Consider a maximal Lie subalgebra K of L strictly contained in L. We will check now that K is a codimension one ideal of L.

Let us prove first K is an ideal in L. Let

$$I = \{ x \in L | \forall y \in K \quad [x, y] \in K \}.$$

This is a Lie subalgebra of L (Jacobi identity). Obviously $I \supseteq K$. We claim $I \neq K$. By maximality of K this will imply that I = L which precisely means that K is an ideal in L.

In fact, consider the (restriction of the) adjoint action of K on L. K is a K-submodule of L. Consider the action of K on L/K. By the induction hypothesis (here we are using ad_x is nilpotent!), there exists 4

a non-zero element $\overline{x} \in L/K$ invariant with respect to K. This means $[a, \overline{x}] = 0$ for all $a \in K$ or, in other words, choosing a representative $x \in L$ of \overline{x} , we get $[a, x] \in K$ for all $a \in K$. Thus, $x \in I \setminus K$ and we are done.

Now we know that K is an ideal. Let us check dim L/K = 1. In fact, If $x \in L \setminus K$, the vector space $K + kx \subseteq L$ is a subalgebra of L. Since K was chosen to be maximal, K + kx = L.

Step 4. Put

$$W = \{ v \in V | Kv = 0 \}$$

Check that W is an L-submodule of V. If $x \in K$, $y \in L$ and $w \in W$, one has

$$x(yw) = y(xw) + [x, y]w = 0$$

By the induction hypothesis, $W \neq 0$. Choose $x \in L \setminus K$. This is a nilpotent endomorphism of W. Therefore, there exists $0 \neq w \in W$ such that xw = 0. Clearly, w annihilates the whole of L.

Theorem is proven.

Corollary 7.3.3. Let $\rho : L \longrightarrow \mathfrak{gl}(V)$ be a representation. Suppose that for each $x \in L$ the operator $\rho(x)$ is nilpotent. Then one can choose a basis v_1, \ldots, v_n of V so that

$$\rho(L) \subseteq \mathfrak{n}_n \subseteq \mathfrak{gl}_n = \mathfrak{gl}(V).$$

Note that the choice of a basis allows one to identify $\mathfrak{gl}(V)$ with \mathfrak{gl}_n .

Proof. Induction on $n = \dim V$.

One can substitute L by $\rho(L) \subseteq \mathfrak{gl}(V)$. By Theorem 7.3.2 there exists a nonzero element $v_n \in V$ satisfying

$$xv_n = 0$$
 for all $x \in L$.

Now consider *L*-module $W = V/\langle v_n \rangle$ and apply the inductive hypothesis.

Corollary 7.3.4. (Engel theorem) A Lie algebra L is nilpotent iff the endomorphism ad_x is nilpotent for all $x \in L$.

Proof. Suppose L is nilpotent, $x \in L$. By definition $ad_x(C^k(L)) \subseteq C^{k+1}(L)$. This implies that ad_x is nilpotent.

In the other direction, suppose ad_x is nilpotent for all $x \in L$.

By 7.3.3 there exists a basis y_1, \ldots, y_n of L such that

 $\operatorname{ad}_x(y_i) \in \langle y_{i+1}, \ldots, y_n \rangle$ for all $x \in L, i$.

This implies by induction that

 $C^i(L) \subseteq \langle y_i, \ldots, y_n \rangle.$

Therefore, $C^{n+1}(L) = 0$.

Problem assignment, 5

- 1. Calculate the Killing form for \mathfrak{sl}_2 in the standard basis.
- 2. Let $\rho : \mathfrak{sl}_2 \longrightarrow \mathfrak{gl}(V_n)$ be the irreducible representation of \mathfrak{sl}_2 of highest weight n > 0. Prove that B_{ρ} is non-degenerate. *Hint.* Check that $B_{\rho}(h, h) \neq 0$.
- 3. Prove that the Killing form of a nilpotent Lie algebra vanishes.
- 4. Prove that subalgebra and quotient algebra of a nilpotent Lie algebra is nilpotent.

Let K be a nilpotent ideal of L and let L/K be nilpotent. Does this imply that L is nilpotent?

5. Prove that a nilpotent three-dimensional Lie algebra L is either abelian or isomorphic to \mathfrak{n}_3 .