INTRODUCTION TO LIE ALGEBRAS. LECTURE 6.

6. Representations of \mathfrak{sl}_2 . Complete reducibility

6.1. Verma modules. Let V be a \mathfrak{sl}_2 -module (not necessarily finite dimensional!) and let $v_0 \in V$ be a primitive weight vector of weight λ . In the previous lecture we defined the elements $v_n = F^n v_0$ and proved the formulas

(1) $Fv_n = v_{n+1}, \ Hv_n = (\lambda - 2n)v_n, \ Ev_n = n(\lambda - n + 1)v_{n-1}.$

This suggests the following definition.

Definition 6.1.1. Let $\lambda \in \mathbb{C}$. Define a module $M(\lambda)$ as follows. The collection $\{v_k | k \in \mathbb{N}\}$ is a linear basis of $M(\lambda)$. The action of $e, f, h \in \mathfrak{sl}_2$ on $M(\lambda)$ is given by the formulas (1) above.

Module $M(\lambda)$ is called Verma module of highest weight λ .

Strictly speaking, we have not yet proven Verma module exists. To prove this, one has to check the formulas [E, F] = H, [H, E] = 2E, [H, F] = -2F. This is an easy exercise.

Now, if a module V has a primitive vector x of weight λ , a module homomorphism $f : M(\lambda \longrightarrow V \text{ sending } v_0 \text{ to } x \in V \text{ is uniquely}$ defined. One has $f(v_k) = F^k x$ and since the formulas (1) are satisfied both by v_k and by $F^k x$, this is an \mathfrak{sl}_2 -homomorphism.

Let us study submodules of $M(\lambda)$.

Lemma 6.1.2. If $\lambda \neq \mathbb{N}$ then $M(\lambda)$ is simple. If λ is a nonnegative integer, $M(\lambda)$ admits a unique non-trivial submodule N isomorphic to $M(-\lambda - 2)$. The quotient M(n)/N of the Verma module of highest weight $n \in \mathbb{N}$ modulo its nontrivial submodule is isomorphic to V(n).

Proof. Let N be a submodule of $M(\lambda)$. In particular, this is a H-submodule. Therefore, N is a sum of weight subspaces which are all one-dimensional in $M(\lambda)$. Therefore, if $N \neq 0$, $v_k \in N$ for some k.

Now, if $\lambda \ni \mathbb{N}$ $Ev_i \neq 0$ for all $i \neq 0$ and this implies that $v_k \in N$ for all k. This proves the first claim of the lemma.

If $\lambda \in \mathbb{N}$, $Ev_i = 0$ for $i = 0, \lambda + 1$ only. This implies that submodule generated by v_k is $M(\lambda)$ if $k \leq \lambda$ and $N = \langle v_i | i \geq \lambda + 1 \rangle$ otherwise. This proves the second claim of the lemma. The quotient module M(n)/N has basis $\overline{v}_0, \ldots, \overline{v}_n$ with the action of \mathfrak{sl}_2 given by the formulas identical to that for V(n). This proves the third claim. \Box

Corollary 6.1.3. Let $n \in \mathbb{N}$ so that the Verma module M(n) is not simple. The module M(n) cannot be presented as a direct sum.

Proof. If $M(n) = N' \oplus N''$ then M(n) admits at least two different nontrivial submodules, N' and N''. We saw in 6.1.2 this is not the case.

We intend to prove later that finite dimensional \mathfrak{sl}_2 -modules are completely reducible. However, before that we need to understand better complete reducibility.

6.2. Complete reducibility: generalities. All modules in this subsection are supposed to be modules over a fixed Lie algebra (or over a fixed associative algebra).

Let V be a module.

Theorem 6.2.1. The following conditions are equivalent.

- CR1. V is a sum of its simple submodules.
- CR2. V is a direct sum of a family of its simple submodules.
- CR3. Any submodule V' of V is a direct summand, i.e. there exists a submodule V'' of V such that $V = V' \oplus V''$.

The modules satisfying the equivalent properties (CR1)-(CR3) are called *semisimple modules* or *completely reducible representations*.

We start with two lemmas.

Lemma 6.2.2. Let a module V satisfy the property (CR3). Then any submodule of V satisfies (CR3) as well.

Proof. If $V \supseteq W \supseteq W'$ there exists a submodule V'' in V such that $V = W' \oplus V''$. Let $W'' = W \cap V''$. Then $W'' \cap W' = 0$ and the only thing to check is that W = W' + W''. Any element $w \in W \subseteq V$ has a decomposition $w = w_1 + v_2$ such that $w_1 \in W'$ and $v_2 \in V''$. Then $v_2 = w - w_1$ belongs to W automatically which implies that $v_2 \in W''$.

Lemma 6.2.3. Let $V \neq 0$ satisfy the condition (CR3). Then V has a simple submodule.

Proof. Choose $v \in V$, $v \neq 0$. By Zorn Lemma, the collection of submodules of V which do not contain v, admits a maximal element, say, W. By (CR3) $V = W \oplus W'$ for some W'. We claim that W' is simple. In fact, suppose W' has a proper nontrivial submodule. By Lemma 6.2.2 this implies that W' admits a non-trivial decomposition

 $\mathbf{2}$

 $W' = W_1 \oplus W_2$. Then $V = W \oplus W_1 \oplus W_2$. Consider the corresponding decomposition of the element v chosen at the beginning of the proof. We have

$$v = w + w_1 + w_2$$
 where $w \in W, w_1 \in W_1, w_2 \in W_2$.

Since $v \notin W$, $w_1 \neq 0$ or $w_2 \neq 0$. Suppose $w_2 \neq 0$. Then $v \notin W \oplus W_1$ and we have a contradiction.

Now we are ready to prove the theorem.

Proof. Obviously, (CR2) implies (CR1). In the other direction, we claim that if $V = \sum_{i \in I} V_i$ with V_I simple, there exists a subset $J \subset I$ such that $V = \bigoplus_{i \in J} V_i$. The proof uses Zorn Lemma. Choose J to be a maximal subset of I such that $\sum_{i \in J} V_i$ is a direct sum. Let us prove the sum equals V. In fact, if this were not so, one would have

$$V_j \not\subseteq \sum_{i \in J} V_i.$$

Then the intersection $V_j \cap \sum_{i \in J} V_i$ is zero (it is a submodule of V_j). This proves that the sum $\sum_{i \in J \cup \{j\}} V_i$ is direct. Contradiction.

Thus, (CR1) implies (CR2). The same reasoning proves that (CR1) implies (CR3): if V' is a submodule of V, let J be a maximal subset of I such that $V' + \sum_{i \in J} V_i$ is a direct sum. Similarly to the above this sum is equal to V.

Let us prove now that (CR3) implies (CR1). Let $V' \subseteq V$ be the sum of all simple submodules of V, According to (CR3), $V = V' \oplus V''$ for some submodule V''. According to Lemma 6.2.3, if V'' is non-zero, it has a simple submodule. This gives a contradiction.

6.3. Complete reducibility of finite dimensional \mathfrak{sl}_2 -modules. In this subsection we prove the following

Theorem 6.3.1. Any finite dimensional representation of $\mathfrak{sl}_2(\mathbb{C})$ is completely reducible.

The proof will take a while.

6.3.2. The Casimir operator. Let V be a finite dimensional representation. The operator $Q = H^2 + 2EF + 2FE$ is a \mathfrak{sl}_2 -module endomorphism of V. It is called *Casimir operator*. Recall that $Q : V \longrightarrow V$ gives rise to a decomposition

(2)
$$V = \bigoplus V_{\theta}$$

where V_{θ} is the generalized eigenspace corresponding to the eigenvalue θ of Q.

By definition $V_{\theta} = \{v \in V | \exists n : (Q - \theta \cdot \mathrm{id})^n v = 0\}$. Thus $V_{\theta} = \bigcup_n \mathrm{Ker}(Q - \theta \cdot \mathrm{id})^n$. Since Q is \mathfrak{sl}_2 -invariant, V_{θ} is an \mathfrak{sl}_2 -submodule of V. Thus, (2) is a direct decomposition of modules.

Thus, we reduced the claim of our theorem to the case Q has only one (generalized) eigenvalue θ .

6.3.3. Let now V be any finite dimensional representation and let $P(V) = \{v \in V | Ev = 0\}$ denote the set of primitive elements of V. We claim that P(V) is an H-invariant vector subspace of V.

In fact, if Ev = 0 then EHv = HEv - 2Ev = 0.

Proposition 6.3.4. The operator H is semisimple on P(V).

To prove Proposition 6.3.4 we need the following identity connecting E, F and H.

Lemma 6.3.5. *One has for* k > 0

$$EF^{k} = F^{k}E + kF^{k-1}(H - k + 1).$$

Proof. Induction on k. For k = 1 the claim is obvious. Suppose it has already been proven for k. We have

$$EF^{k+1} = (EF^{k})F = F^{k}EF + kF^{k-1}(H - k + 1)F =$$

$$F^{k}FE + F^{k}H + kF^{k-1}F(H - k + 1) - 2kF^{k-1}F =$$

$$F^{k+1}E + F^{k}(H + k(H - k + 1) - 2k) =$$

$$F^{k+1}E + (k + 1)F^{k}(H - k).$$

6.3.6. Proof of Proposition 6.3.4.

Let $v \in V$ be primitive and let k > 0 be a natural number. Let us check that

(3)
$$E^k F^k v = k! H(H-1) \cdots (H-(k-1)) v.$$

In fact, the claim is obvious for k = 1 since v is primitive. Suppose we have already checked it for a given $k \in \mathbb{N}$. Then

$$E^{k+1}F^{k+1}v = E^k(EF^{k+1})v = E^kF^{k+1}Ev + (k+1)E^kF^k(H-k)v = (k+1)!H(H-1)\cdots(H-k)v.$$

Now, since V is finite dimensional, there exists $k \in \mathbb{N}$ big enough, so that $F^k v = 0$ for each primitive element $v \in V$.

This implies that the restriction H_P of the operator H on P(V) satisfies the identity

$$H_P(H_P - 1) \cdots (H_P - k + 1) = 0.$$

This means semisimplicity.

6.3.7. Suppose now that $V = V_{\theta}$. If $v \in P(V)$ is a weight primitive vector of weight n, V admits a simple submodule isomorphic to V(n). By Schur lemma Q acts on V(n) as a multiplication by a number. This number is obviously equal to θ .

On the other hand, one has

Lemma 6.3.8. The Casimir operator Q acts on V(n) as multiplication by n(n+2).

Proof. The highest weight vector v_0 of V(n) has weight n. Thus, $Qv_0 = H^2(v_0) + 2FE + 2EF = (n^2 + 2n)v_0$. The rest follows from Schur Lemma.

As an immediate corollary we deduce that all weight vectors of P(V) have the same weight: this is the natural number n such that $\theta = n^2 + 2n$. This implies that all primitive vectors of V are weight vectors.

Denote $V_{(\lambda)}$ the generalized weight space of V corresponding to weight $\lambda \in k$. Recall that

$$V_{(\lambda)} = \{ x \in V | \exists n : (H - \lambda)^n x = 0 \}.$$

We know that

$$V = \bigoplus_{\lambda} V_{(\lambda)}.$$

Lemma 6.3.9. Let $x \in V_{(\lambda)}$. Then $Ex \in V_{(\lambda+2)}$ and $Fx \in V_{(\lambda-2)}$.

Proof. We will prove only the first claim. Induction in n such that $(H - \lambda)^n x = 0$. If n = 1, there is nothing to prove (we have already checked this). If n = k + 1, then $(H - \lambda)^k$ annihilates $(H - \lambda)x$. Therefore by the inductive assumption $E(H - \lambda)x$ has generalized weight $\lambda + 2$.

$$E(H - \lambda)x = (H - \lambda - 2)Ex,$$

we get the required claim.

6.3.10. Proof of Theorem 6.3.1.

Choose a basis $\{v^1, \ldots, v^k\}$ of P(V). Each vector v^i is a primitive weight vector. It, therefore, defines a simple submodule $V^i = \langle v^i, Fv^i, \ldots, F^nv^i \rangle$. We claim that $V = \oplus V^i$. Here is the proof.

Consider the natural map $f: V(n)^k \longrightarrow V$ sending the *i*-th component of V(n) to V^i . The map f is an isomorphism in the weight n part by the choice of v^i . If $\operatorname{Ker}(f) \neq 0$, this is a non-trivial submodule on which Q acts by multiplicatin on $\theta = n^2 + 2n$. Therefore, its primitive vectors have weight n which contradicts bijectivity of f in weight n.

The proof of surjectivity of f is similar. Consider the quotient module V/Im(f). The Casimir acts on it with the same generalized eigenvalue θ since if V is annihilated by a power of $Q - \theta$ the same is true for V/Im(f). Therefore, the primitive vectors of the quotient have teh same weight n as the primitive vectors of V. If \bar{v} is a primitive vector of the quotient and v is its (generalized) weight n representative in V, there exists a nonnegative integer k such that $E^k v$ is primitive in V. Since all primitive vectors in V have weight n, k = 0, v is primitive and therefore belongs to the image of f (recall: f is bijective on the primitive part). This proves that $\bar{v} = 0$.

Theorem is proven.

Corollary 6.3.11. A finite dimensional representation V of \mathfrak{sl}_2 decomposes as

$$V = \bigoplus_{n} V(n)^{d_n}$$

where $d_n = \dim P(V)_n$ is the dimension of the space of primitive vectors of V of weight n.

Problem assignment, 4

1. Let V be a finite dimensional \mathfrak{sl}_2 -module and let V_k be the subspace of weight k vectors. Let $P(V)_k$ be the space of primitive weight k vectors. Prove that for $k \ge 0$

 $\dim P(V)_k = \dim V_k - \dim V_{k+2}.$

2. Define $i : \mathfrak{sl}_2 \longrightarrow \mathfrak{gl}_n$ by the formulas

$$\begin{array}{rcl} i(e) & = & \sum_{i=1}^{n-1} E_{i,i+1} \\ i(h) & = & \sum_{i=1}^{n} a_i E_{i,i} \\ i(f) & = & \sum_{i=1}^{n-1} b_i E_{i+1,i} \end{array}$$

Find a_i and b_i so that i is a Lie algebra homomorphism. Consider \mathfrak{gl}_n as a \mathfrak{sl}_2 -module with respect to the restriction of the adjoint action along i. Using Problem 2, find the multiplicity of each irreducible module E(k) in \mathfrak{gl}_n .

Note. Whoever prefers working in a more concrete setting is allowed to put n = 3.

3. We say that a module M satisfies condition (CR4) if for any surjective homomorphism $f: M \longrightarrow N$ there exists $g: N \longrightarrow M$ such that $fg = id_N$.

Prove that condition (CR4) is equivalent to (CR3).