INTRODUCTION TO LIE ALGEBRAS. LECTURE 6.

6. Representations of $\mathfrak{s l}_{2}$. Complete reducibility

6.1. Verma modules. Let V be a $\mathfrak{s l}_{2}$-module (not necessarily finite dimensional!) and let $v_{0} \in V$ be a primitive weight vector of weight λ. In the previous lecture we defined the elements $v_{n}=F^{n} v_{0}$ and proved the formulas

$$
\begin{equation*}
F v_{n}=v_{n+1}, H v_{n}=(\lambda-2 n) v_{n}, E v_{n}=n(\lambda-n+1) v_{n-1} . \tag{1}
\end{equation*}
$$

This suggests the following definition.
Definition 6.1.1. Let $\lambda \in \mathbb{C}$. Define a module $M(\lambda)$ as follows. The collection $\left\{v_{k} \mid k \in \mathbb{N}\right\}$ is a linear basis of $M(\lambda)$. The action of $e, f, h \in$ $\mathfrak{s l}_{2}$ on $M(\lambda)$ is given by the formulas (1) above.

Module $M(\lambda)$ is called Verma module of highest weight λ.
Strictly speaking, we have not yet proven Verma module exists. To prove this, one has to check the formulas $[E, F]=H,[H, E]=$ $2 E,[H, F]=-2 F$. This is an easy exercise.

Now, if a module V has a primitive vector x of weight λ, a module homomorphism $f: M\left(\lambda \longrightarrow V\right.$ sending v_{0} to $x \in V$ is uniquely defined. One has $f\left(v_{k}\right)=F^{k} x$ and since the formulas (1) are satisfied both by v_{k} and by $F^{k} x$, this is an $\mathfrak{s l}_{2}$-homomorphism.

Let us study submodules of $M(\lambda)$.
Lemma 6.1.2. If $\lambda \neq \mathbb{N}$ then $M(\lambda)$ is simple. If λ is a nonnegative integer, $M(\lambda)$ admits a unique non-trivial submodule N isomorphic to $M(-\lambda-2)$. The quotient $M(n) / N$ of the Verma module of highest weight $n \in \mathbb{N}$ modulo its nontrivial submodule is isomorphic to $V(n)$.

Proof. Let N be a submodule of $M(\lambda)$. In particular, this is a $H-$ submodule. Therefore, N is a sum of weight subspaces which are all one-dimensional in $M(\lambda)$. Therefore, if $N \neq 0, v_{k} \in N$ for some k.

Now, if $\lambda \ni \mathbb{N} E v_{i} \neq 0$ for all $i \neq 0$ and this implies that $v_{k} \in N$ for all k. This proves the first claim of the lemma.

If $\lambda \in \mathbb{N}, E v_{i}=0$ for $i=0, \lambda+1$ only. This implies that submodule generated by v_{k} is $M(\lambda)$ if $k \leq \lambda$ and $N=\left\langle v_{i} \mid i \geq \lambda+1\right\rangle$ otherwise. This proves the second claim of the lemma. The quotient module $M(n) / N$
has basis $\bar{v}_{0}, \ldots, \bar{v}_{n}$ with the action of $\mathfrak{s l}_{2}$ given by the formulas identical to that for $V(n)$. This proves the third claim.

Corollary 6.1.3. Let $n \in \mathbb{N}$ so that the Verma module $M(n)$ is not simple. The module $M(n)$ cannot be presented as a direct sum.
Proof. If $M(n)=N^{\prime} \oplus N^{\prime \prime}$ then $M(n)$ admits at least two different nontrivial submodules, N^{\prime} and $N^{\prime \prime}$. We saw in 6.1.2 this is not the case.

We intend to prove later that finite dimensional $\mathfrak{s l}_{2}$-modules are completely reducible. However, before that we need to understand better complete reducibility.
6.2. Complete reducibility: generalities. All modules in this subsection are supposed to be modules over a fixed Lie algebra (or over a fixed associative algebra).

Let V be a module.
Theorem 6.2.1. The following conditions are equivalent.
CR1. V is a sum of its simple submodules.
CR2. V is a direct sum of a family of its simple submodules.
CR3. Any submodule V^{\prime} of V is a direct summand, i.e. there exists a submodule $V^{\prime \prime}$ of V such that $V=V^{\prime} \oplus V^{\prime \prime}$.

The modules satisfying the equivalent properties (CR1)-(CR3) are called semisimple modules or completely reducible representations.

We start with two lemmas.
Lemma 6.2.2. Let a module V satisfy the property (CR3). Then any submodule of V satisfies (CR3) as well.

Proof. If $V \supseteq W \supseteq W^{\prime}$ there exists a submodule $V^{\prime \prime}$ in V such that $V=W^{\prime} \oplus V^{\prime \prime}$. Let $W^{\prime \prime}=W \cap V^{\prime \prime}$. Then $W^{\prime \prime} \cap W^{\prime}=0$ and the only thing to check is that $W=W^{\prime}+W^{\prime \prime}$. Any element $w \in W \subseteq V$ has a decomposition $w=w_{1}+v_{2}$ such that $w_{1} \in W^{\prime}$ and $v_{2} \in V^{\prime \prime}$. Then $v_{2}=w-w_{1}$ belongs to W automatically which implies that $v_{2} \in W^{\prime \prime}$.
Lemma 6.2.3. Let $V \neq 0$ satisfy the condition (CR3). Then V has a simple submodule.
Proof. Choose $v \in V, v \neq 0$. By Zorn Lemma, the collection of submodules of V which do not contain v, admits a maximal element, say, W. By (CR3) $V=W \oplus W^{\prime}$ for some W^{\prime}. We claim that W^{\prime} is simple. In fact, suppose W^{\prime} has a proper nontrivial submodule. By Lemma 6.2.2 this implies that W^{\prime} admits a non-trivial decomposition
$W^{\prime}=W_{1} \oplus W_{2}$. Then $V=W \oplus W_{1} \oplus W_{2}$. Consider the corresponding decomposition of the element v chosen at the beginning of the proof. We have

$$
v=w+w_{1}+w_{2} \text { where } w \in W, w_{1} \in W_{1}, w_{2} \in W_{2}
$$

Since $v \notin W, w_{1} \neq 0$ or $w_{2} \neq 0$. Suppose $w_{2} \neq 0$. Then $v \notin W \oplus W_{1}$ and we have a contradiction.

Now we are ready to prove the theorem.
Proof. Obviously, (CR2) implies (CR1). In the other direction, we claim that if $V=\sum_{i \in I} V_{i}$ with V_{I} simple, there exists a subset $J \subset I$ such that $V=\oplus_{i \in J} V_{i}$. The proof uses Zorn Lemma. Choose J to be a maximal subset of I such that $\sum_{i \in J} V_{i}$ is a direct sum. Let us prove the sum equals V. In fact, if this were not so, one would have

$$
V_{j} \nsubseteq \sum_{i \in J} V_{i} .
$$

Then the intersection $V_{j} \cap \sum_{i \in J} V_{i}$ is zero (it is a submodule of V_{j}). This proves that the sum $\sum_{i \in J \cup\{j\}} V_{i}$ is direct. Contradiction.

Thus, (CR1) implies (CR2). The same reasoning proves that (CR1) implies (CR3): if V^{\prime} is a submodule of V, let J be a maximal subset of I such that $V^{\prime}+\sum_{i \in J} V_{i}$ is a direct sum. Similarly to the above this sum is equal to V.

Let us prove now that (CR3) implies (CR1). Let $V^{\prime} \subseteq V$ be the sum of all simple submodules of V, According to (CR3), $V=V^{\prime} \oplus V^{\prime \prime}$ for some submodule $V^{\prime \prime}$. According to Lemma 6.2.3, if $V^{\prime \prime}$ is non-zero, it has a simple submodule. This gives a contradiction.
6.3. Complete reducibility of finite dimensional $\mathfrak{s l}_{2}$-modules. In this subsection we prove the following

Theorem 6.3.1. Any finite dimensional representation of $\mathfrak{s l}_{2}(\mathbb{C})$ is completely reducible.

The proof will take a while.
6.3.2. The Casimir operator. Let V be a finite dimensional representation. The operator $Q=H^{2}+2 E F+2 F E$ is a $\mathfrak{s l}_{2}$-module endomorphism of V. It is called Casimir operator. Recall that Q : $V \longrightarrow V$ gives rise to a decomposition

$$
\begin{equation*}
V=\bigoplus V_{\theta} \tag{2}
\end{equation*}
$$

where V_{θ} is the generalized eigenspace corresponding to the eigenvalue θ of Q.

By definition $V_{\theta}=\left\{v \in V \mid \exists n:(Q-\theta \cdot \mathrm{id})^{n} v=0\right\}$. Thus $V_{\theta}=$ $\cup_{n} \operatorname{Ker}(Q-\theta \cdot \mathrm{id})^{n}$. Since Q is $\mathfrak{s l}_{2}$-invariant, V_{θ} is an $\mathfrak{s l}_{2}$-submodule of V. Thus, (2) is a direct decomposition of modules.

Thus, we reduced the claim of our theorem to the case Q has only one (generalized) eigenvalue θ.
6.3.3. Let now V be any finite dimensional representation and let $P(V)=\{v \in V \mid E v=0\}$ denote the set of primitive elements of V. We claim that $P(V)$ is an H-invariant vector subspace of V.

In fact, if $E v=0$ then $E H v=H E v-2 E v=0$.
Proposition 6.3.4. The operator H is semisimple on $P(V)$.
To prove Proposition 6.3 .4 we need the following identity connecting E, F and H.

Lemma 6.3.5. One has for $k>0$

$$
E F^{k}=F^{k} E+k F^{k-1}(H-k+1) .
$$

Proof. Induction on k. For $k=1$ the claim is obvious. Suppose it has already been proven for k. We have

$$
\begin{aligned}
& E F^{k+1}=\left(E F^{k}\right) F=F^{k} E F+k F^{k-1}(H-k+1) F= \\
& F^{k} F E+F^{k} H+k F^{k-1} F(H-k+1)-2 k F^{k-1} F= \\
& F^{k+1} E+F^{k}(H+k(H-k+1)-2 k)= \\
& \quad F^{k+1} E+(k+1) F^{k}(H-k) .
\end{aligned}
$$

6.3.6. Proof of Proposition 6.3.4.

Let $v \in V$ be primitive and let $k>0$ be a natural number. Let us check that

$$
\begin{equation*}
E^{k} F^{k} v=k!H(H-1) \cdots(H-(k-1)) v . \tag{3}
\end{equation*}
$$

In fact, the claim is obvious for $k=1$ since v is primitive. Suppose we have already checked it for a given $k \in \mathbb{N}$. Then

$$
\begin{array}{r}
E^{k+1} F^{k+1} v=E^{k}\left(E F^{k+1}\right) v=E^{k} F^{k+1} E v+(k+1) E^{k} F^{k}(H-k) v= \\
(k+1)!H(H-1) \cdots(H-k) v
\end{array}
$$

Now, since V is finite dimensional, there exists $k \in \mathbb{N}$ big enough, so that $F^{k} v=0$ for each primitive element $v \in V$.

This implies that the restriction H_{P} of the operator H on $P(V)$ satisfies the identity

$$
H_{P}\left(H_{P}-1\right) \cdots\left(H_{P}-k+1\right)=0
$$

This means semisimplicity.
6.3.7. Suppose now that $V=V_{\theta}$. If $v \in P(V)$ is a weight primitive vector of weight n, V admits a simple submodule isomorphic to $V(n)$. By Schur lemma Q acts on $V(n)$ as a multiplication by a number. This number is obviously equal to θ.

On the other hand, one has
Lemma 6.3.8. The Casimir operator Q acts on $V(n)$ as multiplication by $n(n+2)$.
Proof. The highest weight vector v_{0} of $V(n)$ has weight n. Thus, $Q v_{0}=$ $H^{2}\left(v_{0}\right)+2 F E+2 E F=\left(n^{2}+2 n\right) v_{0}$. The rest follows from Schur Lemma.

As an immediate corollary we deduce that all weight vectors of $P(V)$ have the same weight: this is the natural number n such that $\theta=$ $n^{2}+2 n$. This implies that all primitive vectors of V are weight vectors.

Denote $V_{(\lambda)}$ the generalized weight space of V corresponding to weight $\lambda \in k$. Recall that

$$
V_{(\lambda)}=\left\{x \in V \mid \exists n:(H-\lambda)^{n} x=0\right\} .
$$

We know that

$$
V=\bigoplus_{\lambda} V_{(\lambda)}
$$

Lemma 6.3.9. Let $x \in V_{(\lambda)}$. Then $E x \in V_{(\lambda+2)}$ and $F x \in V_{(\lambda-2)}$.
Proof. We will prove only the first claim. Induction in n such that ($H-$ $\lambda)^{n} x=0$. If $n=1$, there is nothing to prove (we have already checked this). If $n=k+1$, then $(H-\lambda)^{k}$ annihilates $(H-\lambda) x$. Therefore by the inductive assumption $E(H-\lambda) x$ has generalized weight $\lambda+2$.

$$
E(H-\lambda) x=(H-\lambda-2) E x
$$

we get the required claim.

6.3.10. Proof of Theorem 6.3.1.

Choose a basis $\left\{v^{1}, \ldots, v^{k}\right\}$ of $P(V)$. Each vector v^{i} is a primitive weight vector. It, therefore, defines a simple submodule $V^{i}=$ $\left\langle v^{i}, F v^{i}, \ldots F^{n} v^{i}\right\rangle$. We claim that $V=\oplus V^{i}$. Here is the proof.

Consider the natural map $f: V(n)^{k} \longrightarrow V$ sending the i-th component of $V(n)$ to V^{i}. The map f is an isomorphism in the weight n part by the choice of v^{i}. If $\operatorname{Ker}(f) \neq 0$, this is a non-trivial submodule on which Q acts by multiplicatin on $\theta=n^{2}+2 n$. Therefore, its primitive vectors have weight n which contradicts bijectivity of f in weight n.

The proof of surjectivity of f is similar. Consider the quotient module $V / \operatorname{Im}(f)$. The Casimir acts on it with the same generalized eigenvalue θ since if V is annihilated by a power of $Q-\theta$ the same is true for $V / \operatorname{Im}(f)$. Therefore, the primitive vectors of the quotient have teh same weight n as the primitive vectors of V. If \bar{v} is a primitive vector of the quotient and v is its (generalized) weight n representative in V, there exists a nonnegative integer k such that $E^{k} v$ is primitive in V. Since all primitive vectors in V have weight $n, k=0, v$ is primitive and therefore belongs to the image of f (recall: f is bijective on the primitive part). This proves that $\bar{v}=0$.

Theorem is proven.
Corollary 6.3.11. A finite dimensional representation V of $\mathfrak{s l}_{2}$ decomposes as

$$
V=\bigoplus_{n} V(n)^{d_{n}}
$$

where $d_{n}=\operatorname{dim} P(V)_{n}$ is the dimension of the space of primitive vectors of V of weight n.

Problem assignment, 4

1. Let V be a finite dimensional $\mathfrak{s l}_{2}$-module and let V_{k} be the subspace of weight k vectors. Let $P(V)_{k}$ be the space of primitive weight k vectors. Prove that for $k \geq 0$

$$
\operatorname{dim} P(V)_{k}=\operatorname{dim} V_{k}-\operatorname{dim} V_{k+2} .
$$

2. Define $i: \mathfrak{s l}_{2} \longrightarrow \mathfrak{g l}_{n}$ by the formulas

$$
\begin{aligned}
& i(e)=\sum_{i=1}^{n-1} E_{i, i+1} \\
& i(h)=\sum_{i=1}^{n} a_{i} E_{i, i} \\
& i(f)=\sum_{i=1}^{n-1} b_{i} E_{i+1, i}
\end{aligned}
$$

Find a_{i} and b_{i} so that i is a Lie algebra homomorphism. Consider $\mathfrak{g l}_{n}$ as a $\mathfrak{s l}_{2}$-module with respect to the restriction of the adjoint action along i. Using Problem 2, find the multiplicity of each irreducible module $E(k)$ in $\mathfrak{g l}_{n}$.

Note. Whoever prefers working in a more concrete setting is allowed to put $n=3$.
3. We say that a module M satisfies condition (CR4) if for any surjective homomorphism $f: M \longrightarrow N$ there exists $g: N \longrightarrow M$ such that $f g=\mathrm{id}_{N}$.

Prove that condition (CR4) is equivalent to (CR3).

