
INTRODUCTION TO LIE ALGEBRAS.
LECTURE 6.

6. Representations of sl2. Complete reducibility

6.1. Verma modules. Let V be a sl2-module (not necessarily finite
dimensional!) and let v0 ∈ V be a primitive weight vector of weight λ.
In the previous lecture we defined the elements vn = F nv0 and proved
the formulas

(1) Fvn = vn+1, Hvn = (λ− 2n)vn, Evn = n(λ− n+ 1)vn−1.

This suggests the following definition.

Definition 6.1.1. Let λ ∈ C. Define a module M(λ) as follows. The
collection {vk|k ∈ N} is a linear basis of M(λ). The action of e, f, h ∈
sl2 on M(λ) is given by the formulas (1) above.

Module M(λ) is called Verma module of highest weight λ.
Strictly speaking, we have not yet proven Verma module exists.

To prove this, one has to check the formulas [E,F ] = H, [H,E] =
2E, [H,F ] = −2F . This is an easy exercise.

Now, if a module V has a primitive vector x of weight λ, a module
homomorphism f : M(λ - V sending v0 to x ∈ V is uniquely
defined. One has f(vk) = F kx and since the formulas (1) are satisfied
both by vk and by F kx, this is an sl2-homomorphism.

Let us study submodules of M(λ).

Lemma 6.1.2. If λ 6= N then M(λ) is simple. If λ is a nonnegative
integer, M(λ) admits a unique non-trivial submodule N isomorphic to
M(−λ − 2). The quotient M(n)/N of the Verma module of highest
weight n ∈ N modulo its nontrivial submodule is isomorphic to V (n).

Proof. Let N be a submodule of M(λ). In particular, this is a H-
submodule. Therefore, N is a sum of weight subspaces which are all
one-dimensional in M(λ). Therefore, if N 6= 0, vk ∈ N for some k.

Now, if λ 3 N Evi 6= 0 for all i 6= 0 and this implies that vk ∈ N for
all k. This proves the first claim of the lemma.

If λ ∈ N, Evi = 0 for i = 0, λ+ 1 only. This implies that submodule
generated by vk is M(λ) if k ≤ λ and N = 〈vi|i ≥ λ+1〉 otherwise. This
proves the second claim of the lemma. The quotient module M(n)/N
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has basis v0, . . . , vn with the action of sl2 given by the formulas identical
to that for V (n). This proves the third claim. �

Corollary 6.1.3. Let n ∈ N so that the Verma module M(n) is not
simple. The module M(n) cannot be presented as a direct sum.

Proof. If M(n) = N ′ ⊕ N ′′ then M(n) admits at least two different
nontrivial submodules, N ′ and N ′′. We saw in 6.1.2 this is not the
case. �

We intend to prove later that finite dimensional sl2-modules are com-
pletely reducible. However, before that we need to understand better
complete reducibility.

6.2. Complete reducibility: generalities. All modules in this sub-
section are supposed to be modules over a fixed Lie algebra (or over a
fixed associative algebra).

Let V be a module.

Theorem 6.2.1. The following conditions are equivalent.

CR1. V is a sum of its simple submodules.
CR2. V is a direct sum of a family of its simple submodules.
CR3. Any submodule V ′ of V is a direct summand, i.e. there exists a

submodule V ′′ of V such that V = V ′ ⊕ V ′′.

The modules satisfying the equivalent properties (CR1)–(CR3) are
called semisimple modules or completely reducible representations.

We start with two lemmas.

Lemma 6.2.2. Let a module V satisfy the property (CR3). Then any
submodule of V satisfies (CR3) as well.

Proof. If V ⊇ W ⊇ W ′ there exists a submodule V ′′ in V such that
V = W ′ ⊕ V ′′. Let W ′′ = W ∩ V ′′. Then W ′′ ∩W ′ = 0 and the only
thing to check is that W = W ′ + W ′′. Any element w ∈ W ⊆ V
has a decomposition w = w1 + v2 such that w1 ∈ W ′ and v2 ∈ V ′′.
Then v2 = w − w1 belongs to W automatically which implies that
v2 ∈ W ′′. �

Lemma 6.2.3. Let V 6= 0 satisfy the condition (CR3). Then V has a
simple submodule.

Proof. Choose v ∈ V , v 6= 0. By Zorn Lemma, the collection of sub-
modules of V which do not contain v, admits a maximal element, say,
W . By (CR3) V = W ⊕ W ′ for some W ′. We claim that W ′ is
simple. In fact, suppose W ′ has a proper nontrivial submodule. By
Lemma 6.2.2 this implies that W ′ admits a non-trivial decomposition
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W ′ = W1⊕W2. Then V = W ⊕W1⊕W2. Consider the corresponding
decomposition of the element v chosen at the beginning of the proof.
We have

v = w + w1 + w2 where w ∈ W, w1 ∈ W1, w2 ∈ W2.

Since v 6∈ W , w1 6= 0 or w2 6= 0. Suppose w2 6= 0. Then v 6∈ W ⊕W1

and we have a contradiction. �

Now we are ready to prove the theorem.

Proof. Obviously, (CR2) implies (CR1). In the other direction, we
claim that if V =

∑
i∈I Vi with VI simple, there exists a subset J ⊂ I

such that V = ⊕i∈JVi. The proof uses Zorn Lemma. Choose J to be
a maximal subset of I such that

∑
i∈J Vi is a direct sum. Let us prove

the sum equals V . In fact, if this were not so, one would have

Vj 6⊆
∑
i∈J

Vi.

Then the intersection Vj ∩
∑

i∈J Vi is zero (it is a submodule of Vj).
This proves that the sum

∑
i∈J∪{j} Vi is direct. Contradiction.

Thus, (CR1) implies (CR2). The same reasoning proves that (CR1)
implies (CR3): if V ′ is a submodule of V , let J be a maximal subset of
I such that V ′ +

∑
i∈J Vi is a direct sum. Similarly to the above this

sum is equal to V .
Let us prove now that (CR3) implies (CR1). Let V ′ ⊆ V be the sum

of all simple submodules of V , According to (CR3), V = V ′ ⊕ V ′′ for
some submodule V ′′. According to Lemma 6.2.3, if V ′′ is non-zero, it
has a simple submodule. This gives a contradiction. �

6.3. Complete reducibility of finite dimensional sl2-modules.
In this subsection we prove the following

Theorem 6.3.1. Any finite dimensional representation of sl2(C) is
completely reducible.

The proof will take a while.

6.3.2. The Casimir operator. Let V be a finite dimensional
representation. The operator Q = H2 + 2EF + 2FE is a sl2-module
endomorphism of V . It is called Casimir operator. Recall that Q :
V - V gives rise to a decomposition

(2) V =
⊕

Vθ

where Vθ is the generalized eigenspace corresponding to the eigenvalue
θ of Q.
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By definition Vθ = {v ∈ V |∃n : (Q − θ · id)nv = 0}. Thus Vθ =
∪nKer(Q− θ · id)n. Since Q is sl2-invariant, Vθ is an sl2-submodule of
V . Thus, (2) is a direct decomposition of modules.

Thus, we reduced the claim of our theorem to the case Q has only
one (generalized) eigenvalue θ.

6.3.3. Let now V be any finite dimensional representation and let
P (V ) = {v ∈ V |Ev = 0} denote the set of primitive elements of V .
We claim that P (V ) is an H-invariant vector subspace of V .

In fact, if Ev = 0 then EHv = HEv − 2Ev = 0.

Proposition 6.3.4. The operator H is semisimple on P (V ).

To prove Proposition 6.3.4 we need the following identity connecting
E,F and H.

Lemma 6.3.5. One has for k > 0

EF k = F kE + kF k−1(H − k + 1).

Proof. Induction on k. For k = 1 the claim is obvious. Suppose it has
already been proven for k. We have

EF k+1 = (EF k)F = F kEF + kF k−1(H − k + 1)F =

F kFE + F kH + kF k−1F (H − k + 1)− 2kF k−1F =

F k+1E + F k(H + k(H − k + 1)− 2k) =

F k+1E + (k + 1)F k(H − k).

�

6.3.6. Proof of Proposition 6.3.4.
Let v ∈ V be primitive and let k > 0 be a natural number. Let us

check that

(3) EkF kv = k!H(H − 1) · · · (H − (k − 1))v.

In fact, the claim is obvious for k = 1 since v is primitive. Suppose we
have already checked it for a given k ∈ N. Then

Ek+1F k+1v = Ek(EF k+1)v = EkF k+1Ev + (k + 1)EkF k(H − k)v =

(k + 1)!H(H − 1) · · · (H − k)v.

Now, since V is finite dimensional, there exists k ∈ N big enough, so
that F kv = 0 for each primitive element v ∈ V .
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This implies that the restriction HP of the operator H on P (V )
satisfies the identity

HP (HP − 1) · · · (HP − k + 1) = 0.

This means semisimplicity.
�

6.3.7. Suppose now that V = Vθ. If v ∈ P (V ) is a weight primitive
vector of weight n, V admits a simple submodule isomorphic to V (n).
By Schur lemma Q acts on V (n) as a multiplication by a number. This
number is obviously equal to θ.

On the other hand, one has

Lemma 6.3.8. The Casimir operator Q acts on V (n) as multiplication
by n(n+ 2).

Proof. The highest weight vector v0 of V (n) has weight n. Thus, Qv0 =
H2(v0) + 2FE + 2EF = (n2 + 2n)v0. The rest follows from Schur
Lemma. �

As an immediate corollary we deduce that all weight vectors of P (V )
have the same weight: this is the natural number n such that θ =
n2 +2n. This implies that all primitive vectors of V are weight vectors.

Denote V(λ) the generalized weight space of V corresponding to weight
λ ∈ k. Recall that

V(λ) = {x ∈ V |∃n : (H − λ)nx = 0}.
We know that

V =
⊕
λ

V(λ).

Lemma 6.3.9. Let x ∈ V(λ). Then Ex ∈ V(λ+2) and Fx ∈ V(λ−2).
Proof. We will prove only the first claim. Induction in n such that (H−
λ)nx = 0. If n = 1, there is nothing to prove (we have already checked
this). If n = k + 1, then (H − λ)k annihilates (H − λ)x. Therefore by
the inductive assumption E(H − λ)x has generalized weight λ+ 2.

E(H − λ)x = (H − λ− 2)Ex,

we get the required claim. �

6.3.10. Proof of Theorem 6.3.1.
Choose a basis {v1, . . . , vk} of P (V ). Each vector vi is a primi-

tive weight vector. It, therefore, defines a simple submodule V i =
〈vi, Fvi, . . . F nvi〉. We claim that V = ⊕V i. Here is the proof.
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Consider the natural map f : V (n)k - V sending the i-th compo-
nent of V (n) to V i. The map f is an isomorphism in the weight n part
by the choice of vi. If Ker(f) 6= 0, this is a non-trivial submodule on
which Q acts by multiplicatin on θ = n2 + 2n. Therefore, its primitive
vectors have weight n which contradicts bijectivity of f in weight n.

The proof of surjectivity of f is similar. Consider the quotient mod-
ule V/Im(f). The Casimir acts on it with the same generalized eigen-
value θ since if V is annihilated by a power of Q − θ the same is true
for V/Im(f). Therefore, the primitive vectors of the quotient have teh
same weight n as the primitive vectors of V . If v̄ is a primitive vector
of the quotient and v is its (generalized) weight n representative in V ,
there exists a nonnegative integer k such that Ekv is primitive in V .
Since all primitive vectors in V have weight n, k = 0, v is primitive
and therefore belongs to the image of f (recall: f is bijective on the
primitive part). This proves that v̄ = 0.

Theorem is proven.

Corollary 6.3.11. A finite dimensional representation V of sl2 de-
composes as

V =
⊕
n

V (n)dn

where dn = dimP (V )n is the dimension of the space of primitive vectors
of V of weight n.
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Problem assignment, 4

1. Let V be a finite dimensional sl2-module and let Vk be the sub-
space of weight k vectors. Let P (V )k be the space of primitive
weight k vectors. Prove that for k ≥ 0

dimP (V )k = dimVk − dimVk+2.

2. Define i : sl2 - gln by the formulas

i(e) =
∑n−1

i=1 Ei,i+1

i(h) =
∑n

i=1 aiEi,i
i(f) =

∑n−1
i=1 biEi+1,i

Find ai and bi so that i is a Lie algebra homomorphism. Con-
sider gln as a sl2-module with respect to the restriction of the
adjoint action along i. Using Problem 2, find the multiplicity
of each irreducible module E(k) in gln.
Note. Whoever prefers working in a more concrete setting is

allowed to put n = 3.
3. We say that a module M satisfies condition (CR4) if for any sur-

jective homomorphism f : M - N there exists g : N - M
such that fg = idN .

Prove that condition (CR4) is equivalent to (CR3).


