INTRODUCTION TO LIE ALGEBRAS.
 LECTURES 4-5.

4. Schur Lemma

4.1. Space of homomorphisms. Let M, N be two L-modules. The collection of homomorphism of modules is denoted $\operatorname{Hom}_{L}(M, N)$. This is a vector space over k.

Thus,

$$
\begin{aligned}
\operatorname{Hom}_{L}(M, N): & =\left\{\phi \in \operatorname{Hom}_{k}(M, N) \mid \forall v \in M, \forall x \in L \phi(x v)=x \phi(v)\right\} \\
& =\left\{\phi \in \operatorname{Hom}_{k}(M, N) \mid \forall x \in L \phi \rho(x)=\rho(x) \phi\right\} .
\end{aligned}
$$

4.2. Schur's lemma.

Theorem 4.2.1. Suppose the base field k is algebraically closed. If V is a simple finite dimensional module over a Lie algebra L then $\operatorname{Hom}_{L}(V, V)=k \cdot \mathrm{id}$.

Proof. Take $\phi \in \operatorname{Hom}_{L}(V, V)$. For any $c \in k$ the linear operator ($\phi-c \cdot \mathrm{id}$) is a L-homomorphism and so it is either an isomorphism or zero. Let c be an eigenvalue of ϕ; then the operator ($\phi-c \cdot \mathrm{id}$) has a non-zero kernel and so it is not an isomorphism. Hence $\phi-c \cdot \mathrm{id}=0$ as required.
4.3. Application: Casimir operator for $\mathfrak{s l}_{2}(\mathbb{C})$. Take $k:=\mathbb{C}$. Fix the standard basis h, e, f of $\mathfrak{s l}_{2}$. Recall that

$$
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h .
$$

Let $\rho: \mathfrak{s l}(2) \rightarrow \mathfrak{g l}(V)$ be a representation. Denote

$$
E=\rho(e), F=\rho(f), H=\rho(h) .
$$

Then the above relations imply

$$
\begin{align*}
& H E-E H=2 E, \\
& H F-F H=-2 F, \tag{1}\\
& E F-F E=H .
\end{align*}
$$

Consider the endomorphism

$$
Q:=H^{2}+\underset{1}{2 F E}+2 E F .
$$

This is a linear endomorphism of V. We will check now that Q is an $\mathfrak{s l}_{2}$-endomorphism. To check this, it is enough to prove

$$
Q E=E Q, Q F=F Q, Q H=H Q
$$

The following easy lemma is useful in calculations.
Lemma 4.3.1. Let $f, g, h \in \operatorname{End}(V)$. Then

$$
[f, g h]=[f, g] h+g[f, h] .
$$

Here, as usual, the bracket is defined by the formula $[f, g]=f g-g f$.
Proof.

$$
[f, g] h+g[f, h]=f g h-g f h+g f h-g h f=f g h-g h f=[f, g h] .
$$

Now one can easily get
Lemma 4.3.2. The operator Q commutes with E, F, H.
Proof. Recall that all calculations are done in $\operatorname{End}(V)$.
One has

$$
\begin{aligned}
{[E, Q]=} & {\left[E, H^{2}+2 E F+2 F E\right]=[E, H] H+H[E, H]+} \\
& 2 E[E, F]+2[E, F] E=-2 E H-2 H E+2 E H+2 H E=0 .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& {[F, Q]=\left[F, H^{2}+2 E F+2 F E\right]=[F, H] H+H[F, H]+} \\
& 2[F, E] F+2 F[F, E]=2 F H+2 H F-2 H F-2 F H=0
\end{aligned}
$$

and

$$
\begin{aligned}
{[H, Q]=} & {\left[H, H^{2}+2 E F+2 F E\right]=2[H, E] F+2 E[H, F]+} \\
& 2[H, F] E+2 F[H, E]=4 E F-4 E F-4 F E+4 F E=0 .
\end{aligned}
$$

Corollary 4.3.3. Let V be finite dimensional and simple $\mathfrak{s l}_{2}$-module. Then $Q=c \cdot$ id for some $c \in \mathbb{C}$.

5. Finite dimensional Representations of $\mathfrak{s l}_{2}(\mathbb{C})$

Our next goal is to describe all finite dimensional representations of $\mathfrak{s l}_{2}(\mathbb{C})$.
5.1. Representations $V(n)$. As a first step, we will describe a collection of irreducible representations which will turn out to be the collection of all irreducible representations.

We denote by \mathbb{N} the set of non-negative integers.
5.1.1. Recall that $\mathfrak{s l}_{2} \subseteq \mathfrak{g l}_{2}=\left\langle E_{11}, E_{12}, E_{21}, E_{22}\right\rangle$ where $E_{i j}$ denotes the matrix whose only non-zero entry is 1 in the (ij) position.

Note that in this notation $E=E_{12}, F=E_{21}, H=E_{11}-E_{22}$.
Consider the polynomial algebra $\mathbb{C}[x, y]$ and define the action of $\mathfrak{g l}_{2}$ on it by the formulas

$$
\begin{equation*}
E_{11}(p)=x p_{x}^{\prime}, \quad E_{22}(p)=y p_{y}^{\prime}, \quad E_{12}(p)=x p_{y}^{\prime}, \quad E_{21}(p)=y p_{x}^{\prime} . \tag{2}
\end{equation*}
$$

Lemma 5.1.2. The formulas (2) define $a \mathfrak{g l}_{2}$-module structure on $\mathbb{C}[x, y]$.

Proof. One can check this claim directly.
Here is another way which allows to almost avoid calculations. Note that the formulas (2) assign to $E_{i j}$ derivations of $\mathbb{C}[x, y]$ (compare to Problem assignment,1, \# 1).

Any derivation of $\mathbb{C}[x, y]$ is uniquely defined by its value on the degree one polynomials x and y : if $d(x)=p, d(y)=q$ then $d(f)=p f_{x}^{\prime}+q f_{y}^{\prime}$ (once more, compare to Problem assignment, 1).

Then, in order to prove the formulas (2) are compatible with the brackets it is enough to check them on x and on y. One can see that the formulas (2) restricted on $\langle x, y\rangle$ give just the natural representation of $\mathfrak{g l}_{2}$.

The set of homogeneous polynomials of a degree n is, obviously, a $\mathfrak{g l}_{2}$-submodule and an $\mathfrak{s l}_{2}$-submodule. Denote this $\mathfrak{s l}_{2}$-submodule by $V(n)$. Let us show that $V(n)$ is a simple $\mathfrak{s l}_{2}$-module.
5.1.3. Module $\mathbf{V}(\mathbf{n})$. Fix n. Consider the following basis of $V(n)$:

$$
\begin{aligned}
v_{0}:=x^{n}, v_{1} & :=n x^{n-1} y, v_{2}:=n(n-1) x^{n-2} y^{2}, \ldots, \\
v_{k} & :=n!/(n-k)!x^{n-k} y^{k}, \ldots, v_{n}:=n!y^{n} .
\end{aligned}
$$

One has

$$
\begin{array}{r}
F v_{k}=E_{2,1} v_{k}=v_{k+1}, \quad E v_{k}=E_{1,2} v_{k}=k(n+1-k) v_{k-1}, \tag{3}\\
H v_{k}=\left(E_{1,1}-E_{2,2}\right) v_{k}=(n-2 k) v_{k} .
\end{array}
$$

We see that H acts diagonally on the basis and all eigenvalues are distinct. By a lemma proven in Lecture 2, any submodule $W \subseteq V(n)$ is spanned by the elements of our basis belonging to W. In particular, any
non-zero submodule contains v_{k} for some k; the relations (3) imply that such a submodule contains all basis elements. Hence $V(n)$ is simple.
5.2. We have got all of them... Now we will prove there are no finite dimensional irreducible representations of $\mathfrak{s l}_{2}$ except for the $V(n)$ described above.

5.2.1. Definitions

A vector v of $\mathfrak{s l}_{2}$-module is called a weight vector if $H v \in \mathbb{C} v$.
A vector v of $\mathfrak{s l}_{2}$-module is called of weight $c(c \in \mathbb{C})$ if $H v=c v$.
A vector v of $\mathfrak{s l}_{2}$-module is called primitive if $E v=0$.
5.2.2. The set of vectors of weight λ in V is denoted V^{λ}.

Let $v \in V^{\lambda}$. We claim that $E v \in V^{\lambda+2}$ and $F v \in V^{\lambda-2}$. In fact,

$$
H E v=E H v+[H, E] v=\lambda E v+2 E v=(\lambda+2) E v
$$

and similarly for $F v$.
5.2.3. Let V be a finite dimensional $\mathfrak{s l}_{2}$-module. We claim that V has a primitive weight vector.

In fact, $H: V \longrightarrow V$ is an endomorphism of a finite dimensional vector space. Therefore, H admits an eigenvector $v \in V$. Let $v \in V^{\lambda}$. Then $E^{k} v \in V^{\lambda+2 k}$. Since V is finite dimensional, this proves that $E^{k} v=0$ for k big enough. Thus, if $n=\max \left\{k \mid E^{k} v \neq 0\right\}$, the element $E^{n} v$ is a primitive weight vector.
5.2.4. Let V be a finite dimensional $\mathfrak{s l}_{2}$-module and let v_{0} be a primitive vector of weight λ.

Put $v_{n}=F^{n} v_{0}$. One has $F v_{n}=v_{n+1}$ and $H v_{n}=(\lambda-2 n) v_{n}$. It turns out there is an very nice formula for $E v_{n}$.

In Lemma 5.2 .5 below we will prove the following identity.

$$
\begin{equation*}
E F^{k}=F^{k} E+k F^{k-1}(H-(k-1)) \tag{4}
\end{equation*}
$$

The formula (4) implies that
$E v_{n}=E F^{n} v_{0}=F^{n} E v_{0}+n F^{n-1}(H-n+1) v_{0}=n(\lambda-n+1) v_{n-1}$.
Let us rewrite once more these formulas

$$
\begin{equation*}
F v_{n}=v_{n+1}, H v_{n}=(\lambda-2 n) v_{n}, E v_{n}=n(\lambda-n+1) v_{n-1} . \tag{5}
\end{equation*}
$$

Lemma 5.2.5. The identity (4) is valid for any $n \geq 1$ for any representation of $\mathfrak{S l}_{2}$.

Proof. Induction on k. For $k=1$ it says that $E F=F E+H$ which is obvious. Suppose it has already been proven for $k=n$ and let $k=n+1$. We have

$$
\begin{gathered}
E F^{n+1}=E F^{n} F=\left(F^{n} E+n F^{n-1}(H-n+1)\right) F=F^{n} E F+n F^{n-1}(H-n+1) F= \\
F^{n}(F E+H)+n F^{n-1} F(H-n+1)-n F^{n-1}(2 F)=F^{n+1} E+(n+1) F^{n}(H-n) .
\end{gathered}
$$

5.2.6. We have made a substantial progress. In fact, we already know that any finite dimensional $\mathfrak{s l}_{2}$ module V contains a primitive weight vector v_{0}; The collection of $v_{n}=F^{n} v_{0}$ is a submodule. This implies that only finite number of v_{i} is nonzero.

This has very unexpected consequences. In fact, suppose $n=\max \left\{i \mid v_{i} \neq\right.$ $0\}$. Then

$$
0=E v_{n+1}=(n+1)(\lambda-n) v_{n}
$$

and this implies that $\lambda=n$.
We have (easily!) proven the following
Theorem 5.2.7. Let V be a finite dimensional representation and let v_{0} be a weight primitive vector of weight λ. Then $\lambda \in \mathbb{N}$. The submodule of V generated by v_{0} is $\left\langle v_{0}, v_{1}, \ldots, v_{\lambda}\right\rangle$. It has dimension $\lambda+1$ and its module structure is given by the formulas (5).

Problem assignment, 3

1. Let M, N be two non-isomorphic irreducible representations of a Lie algebra L. Prove that $\operatorname{Hom}_{L}(M, N)=0$.
2 . Let L be a Lie algebra over an algebraically closed field k. Let $M_{1}, \ldots M_{n}$ be non-isomorphic irreducible L-modules and let

$$
M=\bigoplus_{i=1}^{n} M_{i}^{d_{i}} .
$$

Calculate $\operatorname{dim} \operatorname{Hom}_{L}(M, M)$.
3. Let $V(n)$ be the standard $n+1$-dimensional representation of $\mathfrak{s l}_{2}$. Write down the matrices of the action of E, F, H in the standard basis v_{0}, \ldots, v_{n} of $V(n)$.
4. Let V be the natural n-dimensional representation of the Lie algebra $\mathfrak{s l}_{n}$. Consider the map of Lie algebras

$$
f: \mathfrak{s l}_{2} \longrightarrow \mathfrak{s l}_{n}
$$

sending each matrix $M \in \mathfrak{s l}_{2}$ to the matrix $f(M)$ defined by the formula

$$
f(M)_{i j}=\left\{\begin{array}{lll}
M_{i j} & \text { if } & i, j \in\{1,2\} \\
0 & \text { otherwise }
\end{array}\right.
$$

This defines an action ρ of $\mathfrak{s l}_{2}$ on $V: \rho(x)(v)=f(x) v$. For which n the resulting representation is irreducible? Write down the matrices of the operators E, F, H acting on V.

