INTRODUCTION TO LIE ALGEBRAS.
LECTURES 4-5.

4. SCHUR LEMMA

4.1. Space of homomorphisms. Let M, N be two L-modules. The
collection of homomorphism of modules is denoted Homy, (M, N). This
is a vector space over k.

Thus,
Homy(M,N): ={¢ € Homy(M,N)| Vv € M,Vz € L ¢(zv) = zp(v)}
= {¢ € Hom(M, N)| Vo € L ¢p(x) = p(x)¢}.

4.2. Schur’s lemma.

Theorem 4.2.1. Suppose the base field k is algebraically closed. If
V' is a simple finite dimensional module over a Lie algebra L then
Homg(V,V) =k -id.

Proof. Take ¢ € Homy(V, V). For any ¢ € k the linear operator

(¢ — c¢-id) is a L-homomorphism and so it is either an isomorphism or
zero. Let ¢ be an eigenvalue of ¢; then the operator (¢ — ¢ -id) has a
non-zero kernel and so it is not an isomorphism. Hence ¢ — ¢ -id = 0
as required. O

4.3. Application: Casimir operator for sl,(C). Take k := C. Fix
the standard basis h, e, f of sly. Recall that

[h’e]:267 [h7f]:_2f7 [e7f:|:h'
Let p : s[(2) — gl(V) be a representation. Denote
E = ple), F'=p(f),H = p(h).
Then the above relations imply

HE - FEH = 2F,
(1) HF —FH = =2F,
EF—-FE = H.
Consider the endomorphism

Q= H?+2FFE +2EF.
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This is a linear endomorphism of V. We will check now that @) is an
sly-endomorphism. To check this, it is enough to prove

QF =FEQ, QF = FQ, QH = HQ.
The following easy lemma is useful in calculations.
Lemma 4.3.1. Let f,g,h € End(V). Then
[f, gh] = [f, glh + glf. h].
Here, as usual, the bracket is defined by the formula [f,g9] = fg — gf.
Proof.
[f,glh + glf,h] = fgh — gfh+ gfh — ghf = fgh — ghf = [f, ghl.
O
Now one can easily get
Lemma 4.3.2. The operator () commutes with E, F, H.

Proof. Recall that all calculations are done in End (V).
One has

[E,Q) = [E,H? + 2EF +2FE] = |[E, H|H + H[E, H|+
2F[E,F] +2|E,F|E = —2FEH — 2HE + 2EH +2HE = 0.

Similarly,
[F,Q] = [F,H* + 2EF +2FE] = [F, H|H + H[F, H]+

2[F,E|F + 2F|[F,E] =2FH +2HF —2HF —2FH =0

and

[H,Q] = [H,H* + 2EF + 2FE] = 2[H, E|F + 2E[H, F|+

9[H,F|E 4 2F[H,E| = AEF — 4EF — AFE + 4FE = 0.

O

Corollary 4.3.3. Let V' be finite dimensional and simple sly-module.
Then QQ = c-id for some c € C.

5. FINITE DIMENSIONAL REPRESENTATIONS OF sl(C)

Our next goal is to describe all finite dimensional representations of

5[2(@)
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5.1. Representations V' (n). As a first step, we will describe a collec-
tion of irreducible representations which will turn out to be the collec-
tion of all irreducible representations.

We denote by N the set of non-negative integers.

5.1.1.  Recall that sly C gl, = (Ey1, E12, E91, Eg) where E;; denotes
the matrix whose only non-zero entry is 1 in the (ij) position.
Note that in this notation £ = Ei5, F = Ey;, H = E11 — Eos.
Consider the polynomial algebra C[x,y] and define the action of gl,
on it by the formulas

(2)  Eu(p) =ap,, Exn(p)=uyp,, Funlp)=zp, Ex(p)=yp,.

Lemma 5.1.2. The formulas (2) define a gly-module structure on
Clz, y].

Proof. One can check this claim directly.

Here is another way which allows to almost avoid calculations. Note
that the formulas (2) assign to E;; derivations of Clx,y| (compare to
Problem assignment,1, # 1).

Any derivation of Clz, y] is uniquely defined by its value on the degree
one polynomials x and y: if d(x) = p, d(y) = ¢ then d(f) = pf, + qf,
(once more, compare to Problem assignment, 1).

Then, in order to prove the formulas (2) are compatible with the
brackets it is enough to check them on z and on y. One can see that
the formulas (2) restricted on (x, y) give just the natural representation
of gls. O

The set of homogeneous polynomials of a degree n is, obviously, a
gly-submodule and an sly-submodule. Denote this sly-submodule by
V(n). Let us show that V(n) is a simple sl;-module.

5.1.3. Module V(n). Fix n. Consider the following basis of V' (n):

R} . n—1 . n—2, 2
v =", v = nx" Ty, vg = n(n— 1)z 7y L

vp i=n!/(n — k)la" FyF v, = nlym
One has
(3) Fup = Eoqvg = Vg1, FEvg = Ejovp, =k(n+1—k)vg_y,
Hu, = (B 1 — Eap)vg = (n — 2k)vy.
We see that H acts diagonally on the basis and all eigenvalues are

distinct. By a lemma proven in Lecture 2, any submodule W C V'(n) is
spanned by the elements of our basis belonging to W. In particular, any



4

non-zero submodule contains vy, for some k; the relations (3) imply that
such a submodule contains all basis elements. Hence V'(n) is simple.

5.2. We have got all of them... Now we will prove there are no
finite dimensional irreducible representations of sly except for the V'(n)
described above.

5.2.1. Definitions
A vector v of slo-module is called a weight vector if Hv € Cu.
A vector v of sly-module is called of weight ¢ (¢ € C) if Hv = cv.
A vector v of slo-module is called primitive if Ev = 0.

5.2.2. The set of vectors of weight A in V is denoted V.
Let v € V*. We claim that Ev € V22 and Fv € V272, In fact,

HEv=FEHv+ [H,Elv=AEv+2Ev = (A+2)Ev

and similarly for F'v.

5.2.3. Let V be a finite dimensional slo-module. We claim that V'
has a primitive weight vector.

In fact, H : V —— V is an endomorphism of a finite dimensional
vector space. Therefore, H admits an eigenvector v € V. Let v € V.
Then Efv € VA2 Since V is finite dimensional, this proves that
E*v = 0 for k big enough. Thus, if n = max{k|E*v # 0}, the element
E™v is a primitive weight vector.

5.2.4. Let V be a finite dimensional sl,-module and let vy be a
primitive vector of weight .

Put v, = F™v. One has Fuv, = v, and Hv, = (A — 2n)v,. It
turns out there is an very nice formula for Fuv,.

In Lemma 5.2.5 below we will prove the following identity.

(4) EF* = FFE + kFFY(H — (k- 1)).
The formula (4) implies that
Ev, = EF"vy = F"Evg +nF" '(H —n+ 1)vg = n(A —n+ Dv,_;.
Let us rewrite once more these formulas
(5)  Fu, =vp41, Hup, = (A —2n)v,, Ev, =n(A—n+ 1)v,_1.

Lemma 5.2.5. The identity (4) is valid for any n > 1 for any repre-
sentation of sls.
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Proof. Induction on k. For k = 1 it says that FF = F'E + H which
is obvious. Suppose it has already been proven for k& = n and let
k=n+ 1. We have

EF™ = EF"F = (F"E4+nF" Y (H—n+1))F = F"EF4nF" " (H—n+1)F =
FY(FE+H)+nF" 'F(H—n+1)—nF""'(2F) = F""' E+(n+1)F"(H—n).
0

5.2.6. We have made a substantial progress. In fact, we already
know that any finite dimensional sl module V' contains a primitive
weight vector vg; The collection of v, = F™vy is a submodule. This
implies that only finite number of v; is nonzero.

This has very unexpected consequences. In fact, suppose n = max{i|v; #
0}. Then

0= FEvpy =+ 1)(A=n)y,

and this implies that A = n.

We have (easily!) proven the following

Theorem 5.2.7. Let V' be a finite dimensional representation and let
v be a weight primitive vector of weight X. Then A € N. The submodule
of V' generated by vy is (vg,v1,...,v5). It has dimension A+ 1 and its
module structure is given by the formulas (5).



Problem assignment, 3

. Let M, N be two non-isomorphic irreducible representations of
a Lie algebra L. Prove that Homy (M, N) = 0.

. Let L be a Lie algebra over an algebraically closed field k. Let
M, ... M, be non-isomorphic irreducible L-modules and let

M = @Mﬁi.

Calculate dim Homy (M, M).

. Let V(n) be the standard n + 1-dimensional representation of
sly. Write down the matrices of the action of E, F, H in the
standard basis vy, ..., v, of V(n).

. Let V be the natural n-dimensional representation of the Lie
algebra sl,,. Consider the map of Lie algebras

f sl — sl,
sending each matrix M € sly to the matrix f(M) defined by
the formula
[ My if i,je{1,2}
F(M)ij = { 0  otherwise

This defines an action p of sly on V: p(z)(v) = f(x)v. For
which n the resulting representation is irreducible? Write down
the matrices of the operators E, F, H acting on V.



