
INTRODUCTION TO LIE ALGEBRAS.
LECTURES 4-5.

4. Schur Lemma

4.1. Space of homomorphisms. Let M, N be two L-modules. The
collection of homomorphism of modules is denoted HomL(M, N). This
is a vector space over k.

Thus,

HomL(M, N) : = {φ ∈ Homk(M, N)| ∀v ∈ M, ∀x ∈ L φ(xv) = xφ(v)}
= {φ ∈ Homk(M, N)| ∀x ∈ L φρ(x) = ρ(x)φ}.

4.2. Schur’s lemma.

Theorem 4.2.1. Suppose the base field k is algebraically closed. If
V is a simple finite dimensional module over a Lie algebra L then
HomL(V, V ) = k · id.

Proof. Take φ ∈ HomL(V, V ). For any c ∈ k the linear operator
(φ− c · id) is a L-homomorphism and so it is either an isomorphism or
zero. Let c be an eigenvalue of φ; then the operator (φ − c · id) has a
non-zero kernel and so it is not an isomorphism. Hence φ − c · id = 0
as required. �

4.3. Application: Casimir operator for sl2(C). Take k := C. Fix
the standard basis h, e, f of sl2. Recall that

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Let ρ : sl(2) → gl(V ) be a representation. Denote

E = ρ(e), F = ρ(f), H = ρ(h).

Then the above relations imply

(1)
HE − EH = 2E,
HF − FH = −2F,
EF − FE = H.

Consider the endomorphism

Q := H2 + 2FE + 2EF.
1
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This is a linear endomorphism of V . We will check now that Q is an
sl2-endomorphism. To check this, it is enough to prove

QE = EQ, QF = FQ, QH = HQ.

The following easy lemma is useful in calculations.

Lemma 4.3.1. Let f, g, h ∈ End(V ). Then

[f, gh] = [f, g]h + g[f, h].

Here, as usual, the bracket is defined by the formula [f, g] = fg − gf .

Proof.

[f, g]h + g[f, h] = fgh− gfh + gfh− ghf = fgh− ghf = [f, gh].

�

Now one can easily get

Lemma 4.3.2. The operator Q commutes with E, F, H.

Proof. Recall that all calculations are done in End(V ).
One has

[E, Q] = [E, H2 + 2EF + 2FE] = [E, H]H + H[E, H]+

2E[E, F ] + 2[E, F ]E = −2EH − 2HE + 2EH + 2HE = 0.

Similarly,

[F, Q] = [F, H2 + 2EF + 2FE] = [F, H]H + H[F, H]+

2[F, E]F + 2F [F, E] = 2FH + 2HF − 2HF − 2FH = 0

and

[H, Q] = [H, H2 + 2EF + 2FE] = 2[H, E]F + 2E[H, F ]+

2[H, F ]E + 2F [H, E] = 4EF − 4EF − 4FE + 4FE = 0.

�

Corollary 4.3.3. Let V be finite dimensional and simple sl2-module.
Then Q = c · id for some c ∈ C.

5. Finite dimensional representations of sl2(C)

Our next goal is to describe all finite dimensional representations of
sl2(C).
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5.1. Representations V (n). As a first step, we will describe a collec-
tion of irreducible representations which will turn out to be the collec-
tion of all irreducible representations.

We denote by N the set of non-negative integers.

5.1.1. Recall that sl2 ⊆ gl2 = 〈E11, E12, E21, E22〉 where Eij denotes
the matrix whose only non-zero entry is 1 in the (ij) position.

Note that in this notation E = E12, F = E21, H = E11 − E22.
Consider the polynomial algebra C[x, y] and define the action of gl2

on it by the formulas

(2) E11(p) = xp′x, E22(p) = yp′y, E12(p) = xp′y, E21(p) = yp′x.

Lemma 5.1.2. The formulas (2) define a gl2-module structure on
C[x, y].

Proof. One can check this claim directly.
Here is another way which allows to almost avoid calculations. Note

that the formulas (2) assign to Eij derivations of C[x, y] (compare to
Problem assignment,1, # 1).

Any derivation of C[x, y] is uniquely defined by its value on the degree
one polynomials x and y: if d(x) = p, d(y) = q then d(f) = pf ′

x + qf ′
y

(once more, compare to Problem assignment, 1).
Then, in order to prove the formulas (2) are compatible with the

brackets it is enough to check them on x and on y. One can see that
the formulas (2) restricted on 〈x, y〉 give just the natural representation
of gl2. �

The set of homogeneous polynomials of a degree n is, obviously, a
gl2-submodule and an sl2-submodule. Denote this sl2-submodule by
V (n). Let us show that V (n) is a simple sl2-module.

5.1.3. Module V(n). Fix n. Consider the following basis of V (n):

v0 := xn, v1 := nxn−1y, v2 := n(n− 1)xn−2y2, . . . ,

vk := n!/(n− k)!xn−kyk, . . . , vn := n!yn.

One has

Fvk = E2,1vk = vk+1, Evk = E1,2vk = k(n + 1− k)vk−1,(3)

Hvk = (E1,1 − E2,2)vk = (n− 2k)vk.

We see that H acts diagonally on the basis and all eigenvalues are
distinct. By a lemma proven in Lecture 2, any submodule W ⊆ V (n) is
spanned by the elements of our basis belonging to W . In particular, any
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non-zero submodule contains vk for some k; the relations (3) imply that
such a submodule contains all basis elements. Hence V (n) is simple.

5.2. We have got all of them... Now we will prove there are no
finite dimensional irreducible representations of sl2 except for the V (n)
described above.

5.2.1. Definitions
A vector v of sl2-module is called a weight vector if Hv ∈ Cv.
A vector v of sl2-module is called of weight c (c ∈ C) if Hv = cv.
A vector v of sl2-module is called primitive if Ev = 0.

5.2.2. The set of vectors of weight λ in V is denoted V λ.
Let v ∈ V λ. We claim that Ev ∈ V λ+2 and Fv ∈ V λ−2. In fact,

HEv = EHv + [H, E]v = λEv + 2Ev = (λ + 2)Ev

and similarly for Fv.

5.2.3. Let V be a finite dimensional sl2-module. We claim that V
has a primitive weight vector.

In fact, H : V - V is an endomorphism of a finite dimensional
vector space. Therefore, H admits an eigenvector v ∈ V . Let v ∈ V λ.
Then Ekv ∈ V λ+2k. Since V is finite dimensional, this proves that
Ekv = 0 for k big enough. Thus, if n = max{k|Ekv 6= 0}, the element
Env is a primitive weight vector.

5.2.4. Let V be a finite dimensional sl2-module and let v0 be a
primitive vector of weight λ.

Put vn = F nv0. One has Fvn = vn+1 and Hvn = (λ − 2n)vn. It
turns out there is an very nice formula for Evn.

In Lemma 5.2.5 below we will prove the following identity.

(4) EF k = F kE + kF k−1(H − (k − 1)).

The formula (4) implies that

Evn = EF nv0 = F nEv0 + nF n−1(H − n + 1)v0 = n(λ− n + 1)vn−1.

Let us rewrite once more these formulas

(5) Fvn = vn+1, Hvn = (λ− 2n)vn, Evn = n(λ− n + 1)vn−1.

Lemma 5.2.5. The identity (4) is valid for any n ≥ 1 for any repre-
sentation of sl2.
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Proof. Induction on k. For k = 1 it says that EF = FE + H which
is obvious. Suppose it has already been proven for k = n and let
k = n + 1. We have

EF n+1 = EF nF = (F nE+nF n−1(H−n+1))F = F nEF+nF n−1(H−n+1)F =

F n(FE+H)+nF n−1F (H−n+1)−nF n−1(2F ) = F n+1E+(n+1)F n(H−n).

�

5.2.6. We have made a substantial progress. In fact, we already
know that any finite dimensional sl2 module V contains a primitive
weight vector v0; The collection of vn = F nv0 is a submodule. This
implies that only finite number of vi is nonzero.

This has very unexpected consequences. In fact, suppose n = max{i|vi 6=
0}. Then

0 = Evn+1 = (n + 1)(λ− n)vn

and this implies that λ = n.
We have (easily!) proven the following

Theorem 5.2.7. Let V be a finite dimensional representation and let
v0 be a weight primitive vector of weight λ. Then λ ∈ N. The submodule
of V generated by v0 is 〈v0, v1, . . . , vλ〉. It has dimension λ + 1 and its
module structure is given by the formulas (5).
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Problem assignment, 3

1. Let M, N be two non-isomorphic irreducible representations of
a Lie algebra L. Prove that HomL(M, N) = 0.

2. Let L be a Lie algebra over an algebraically closed field k. Let
M1, . . . Mn be non-isomorphic irreducible L-modules and let

M =
n⊕

i=1

Mdi
i .

Calculate dim HomL(M, M).
3. Let V (n) be the standard n + 1-dimensional representation of

sl2. Write down the matrices of the action of E, F, H in the
standard basis v0, . . . , vn of V (n).

4. Let V be the natural n-dimensional representation of the Lie
algebra sln. Consider the map of Lie algebras

f : sl2 - sln

sending each matrix M ∈ sl2 to the matrix f(M) defined by
the formula

f(M)ij =

{
Mij if i, j ∈ {1, 2}
0 otherwise

This defines an action ρ of sl2 on V : ρ(x)(v) = f(x)v. For
which n the resulting representation is irreducible? Write down
the matrices of the operators E, F,H acting on V .


