INTRODUCTION TO LIE ALGEBRAS. LECTURE 3.

2.1. Simplicity of (\mathbb{R}^3, \times) . The proof of the simplicity of this Lie algebra is very geometric. Let I be a non-zero ideal in it and let $0 \neq v \in I$. We can normalize v so that ||v|| = 1. There exists a pair of vectors v_2, v_3 so that the triple v, v_2, v_3 forms an orthonormal base. Then $v_2 = v \times v_3$ and $v_3 = v \times v_2$ up to sign, therefore, all three vectors belong to I. This proves the assertion.

3. MODULES

The notion of module over a Lie algebra is of extreme importance.

3.1. Two definitions and their equivalence. Let L be a Lie algebra over a field k.

Definition 3.1.1. An L-module is a k-vector space M together with a bilinear map

$$r: L \times M \longrightarrow M$$

satisfying the following property

$$r([x, y], m) = r(x, r(y, m)) - r(y, r(x, m)).$$

Usually one writes simply xm instead of r(x, m). Then our axiom reads

$$[x, y]m = xym - yxm.$$

To give another definition of L-module recall that for every vector space M the collection of endomorphisms $\operatorname{End}(V)$ admits an associative composition. The operation

$$f, g \in \operatorname{End}(M) \mapsto [f, g] = fg - gf \in \operatorname{End}(M)$$

defines a Lie algebra structure on $\operatorname{End}(M)$. The Lie algebra of endomorphisms so obtained is denoted $\mathfrak{gl}(M)$.

Definition 3.1.2. An L-module is a vector space M endowed with a Lie algebra homomorphism

$$\rho: L \longrightarrow \mathfrak{gl}(M).$$

The proof of the equivalence of the above definitions is fairly standard.

Another name for an L-module is representation of L.

If M is finite dimensional, we are talking about a finite dimensional representation.

3.2. Examples.

3.2.1. L = k. If L is one-dimensional, say, L = ke, a module structure

$$\rho: L \longrightarrow \mathfrak{gl}(M)$$

is given by an endomorphism of M (the image $\rho(e)$).

3.2.2. *L* is commutative. A representation of *L* is a Lie algebra homomorphism. If $L = \langle e_1, \ldots, e_n \rangle$, a homomorphism $r : L \to \mathfrak{gl}(M)$ is given by the images $r(e_i)$. Since *r* is a homomorphism, $r(e_i)$ commute. Vice versa, any collection of *n* commuting endomorphisms of *M* define on *M* a structure of *L*-module.

3.2.3. An \mathfrak{sl}_2 -module is a vector space M with three endomorphisms E, F, H of M satisfying the conditions

$$EF - FE = H$$
; $HE - EH = 2E$; $HF - FH = -2F$.

This means that an \mathfrak{sl}_2 -module defines a representation of \mathfrak{sl}_2 in matrices. This is the explanation of the term representation.

3.2.4. Natural representation. By definition, Lie algebra \mathfrak{gl}_n admits an *n*-dimensional representation. It is given by the identity map

$$\operatorname{id}:\mathfrak{gl}_n\longrightarrow\mathfrak{gl}(k^n).$$

It is called the natural representation. Similarly, if $\mathfrak{g} \subseteq \mathfrak{gl}_n$ is a Lie subalgebra, we have a natural *n*-dimensional representation of \mathfrak{g} .

Examples include $\mathfrak{g} = \mathfrak{sl}_n$, \mathfrak{b}_n , \mathfrak{n}_n and some other algebras.

3.3. Category of *L*-modules. Fix a Lie algebra *L*.

A linear map $f: M \longrightarrow N$ is an L-module homomorphism if

$$f(ax) = af(x)$$

for each $a \in L$, $x \in M$. Clearly, composition of homomorphisms is a homomorphism.

Lemma 3.3.1. Let $f : M \longrightarrow N$ be a bijective homomorphism of *L*-modules. Then $f^{-1} : N \longrightarrow M$ is also a homomorphism.

2

Proof. Straighforward.

The notion of submodule and quotient module are defined in a standard way.

3.3.2. Direct sum. Given two *L*-modules *M* and *N*, one defines an *L*-module structure on $M \oplus N$ by the formula

$$a(m,n) = (am,an).$$

3.4. **Representation theory.** Representation theory of Lie algebras studies the category of modules over a Lie algebra. Here are the typical questions and the typical notions studied.

3.4.1. Classification. Description of all isomorphism classes of *L*-modules. Sometimes only modules satisfying special properties are considered (e.g., finite dimensional modules).

Today we will see that in the case L is one-dimensional we already know the answer from Linear Algebra.

3.4.2. Simple modules. A module is called simple if it does not admit non-trivial submodules. (A synonym: irreducible representation).

3.4.3. Semisimple modules A module is called semisimple if it is isomorphic to a direct sum of simple modules (there are other equivalent definitions). Synonym: a completely reducible representation.

We will study soon the following result.

Theorem 3.4.4. All finite dimensional representations of \mathfrak{sl}_2 are completely reducible.

3.5. Representations of a one-dimensional Lie algebra.

3.5.1. Isomorphism classes. We are looking for isomorphism classes of *n*-dimensional representations. A map $f: M \longrightarrow N$ is a homomorphism of representations if $f\alpha_M = \alpha_N f$. Since $M = N = k^n$ as vector spaces, we deduce that endomorphisms α_1 and α_2 define isomorphic representations iff there exists an automorphism f such that $\alpha_2 = f\alpha_1 f^{-1}$.

Thus the problem of classifications of n-dimensional representations is equivalent to that of classification of square matrices up to conjugation.

Theory of Jordan normal form answers this question in the case k is algebraically closed.

Let us recall the most important steps in this theory.

3.5.2. Recollections from Linear Algebra.

Let $f: V \longrightarrow V$ be an endomorphism of a finite dimensional vector space over an algebraically closed field k. Recall that $\lambda \in k$ is an eigenvalue of f iff $f - \lambda I$ is not invertible. The collection of eigenvalues of f is therefore the set of roots of the characteristic polynomial of f defined as

$$P_f(t) = \det(f - tI).$$

In what follows S(f) will denote the set of eigenvalues of f (the spectrum of f).

Let $\lambda \in S(f)$. A vector $v \in V$ is called an eigenvector corresponding to λ if $f(v) = \lambda v$. Each eigenvalue admits a non-zero eigenvector. Furthermore, $v \in V$ is called generalized eigenvector if there exists $n \in \mathbb{N}$ such that $(f - \lambda I)^n v = 0$.

Fix $\lambda \in S(f)$. Let V^{λ} denote the set of eigenvectors and V_{λ} the set of generalized eigenvectors corresponding to λ . These are vector subspaces of V and

$$V_{\lambda} \supseteq V^{\lambda} \neq 0.$$

The following are the main results of this study.

- $V = \bigoplus_{\lambda \in S(f)} V_{\lambda}$.
- dim V_{λ} equals the multiplicity of λ in the characteristic polynomial of f.
- Each V_{λ} is isomorphic to a direct sum of Jordan blocks having eigenvalue λ (definition of J. b. see below).

Jordan block having eigenvalue λ is the matrix $A = (a_{ij})$ defined by the formulas

$$a_{ij} = \begin{cases} \lambda & \text{if} \quad i = j, \\ 1 & \text{if} \quad i = j - 1, \\ 0 & \text{otherwise.} \end{cases}$$

3.5.3. Simple modules. Direct consequence of the above: Any simple module has dimension 1; it is defined up to isomorphism by its (only) eigenvalue λ .

This module will be sometimes denoted by k_{λ} .

3.5.4. Semisimple modules.

Semisimple module is a direct sum of simple modules. Thus (for k algebraically closed) (V, f) is semisimple iff f is diagonalizable.

3.5.5. Example of non-semisimple modules. It is given by the matrix

$$\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right).$$

3.6. Examples of representations.

3.6.1. Adjoint representation Let *L* be any Lie algebra. the map ad : $L \longrightarrow \mathfrak{gl}(L)$ defines a repersentation of *L* called adjoint representation.

Note that submodules of the adjoint representation are the ideals. Therefore, L is simple iff dim L > 1 and the adjoint representation is irreducible.

3.6.2. ... and its restrictions If $M \subseteq L$ is a Lie subalgebra, one can consider L as a M-module restricting the adjoint representation of L on M.

Consider, for example, $L = \mathfrak{sl}_2$ and $M = \langle h \rangle$. Algebra M is onedimensional and L is an M-module. It is semisimple with eigenvalues -2, 0, 2.

If we take another M, say, $\langle e \rangle$, the picture changes: all eigenvalues are zero and the M-module L is not semisimple.

3.7. One-dimensional representations. Let L be a Lie algebra and let $\rho : L \longrightarrow \mathfrak{gl}(V)$ is a one-dimensional representation. The algebra $\mathfrak{gl}(V)$ is one-dimensional and therefore commutative in this case. Thus,

$$\rho[x, y] = [\rho(x), \rho(y)] = 0.$$

In particular, for $L = \mathfrak{sl}_2$ one gets $\rho = 0$. This proves \mathfrak{sl}_2 does not admit non-trivial one-dimensional representations.

Problem assignment, 2

- 1. Let $\mathfrak{h} \subseteq \mathfrak{gl}_n$ be the set of diagonal matrices. Check that \mathfrak{h} is a commutative Lie subalgebra. Check that \mathfrak{gl}_n as the \mathfrak{h} -module (with respect to adjoint action) is a sum of one-dimensional representations.
- 2. Prove that the adjoint representation of \mathfrak{gl}_2 is isomorphic to a direct sum of a three-dimensional and one-dimensional representations.
- 3. Prove that the adjoint representation of \mathfrak{sl}_2 is not isomorphic to the sum of the natural representation with the trivial representation.