
INTRODUCTION TO LIE ALGEBRAS.
LECTURE 3.

2.1. Simplicity of (R3,×). The proof of the simplicity of this Lie
algebra is very geometric. Let I be a non-zero ideal in it and let
0 6= v ∈ I. We can normalize v so that ||v|| = 1. There exists a pair
of vectors v2, v3 so that the triple v, v2, v3 forms an orthonormal base.
Then v2 = v×v3 and v3 = v×v2 up to sign, therefore, all three vectors
belong to I. This proves the assertion.

3. Modules

The notion of module over a Lie algebra is of extreme importance.

3.1. Two definitions and their equivalence. Let L be a Lie algebra
over a field k.

Definition 3.1.1. An L-module is a k-vector space M together with
a bilinear map

r : L×M - M

satisfying the following property

r([x, y], m) = r(x, r(y, m))− r(y, r(x, m)).

Usually one writes simply xm instead of r(x, m). Then our axiom
reads

[x, y]m = xym− yxm.

To give another definition of L-module recall that for every vector
space M the collection of endomorphisms End(V ) admits an associative
composition. The operation

f, g ∈ End(M) 7→ [f, g] = fg − gf ∈ End(M)

defines a Lie algebra structure on End(M). The Lie algebra of endo-
morphisms so obtained is denoted gl(M).

Definition 3.1.2. An L-module is a vector space M endowed with a
Lie algebra homomorphism

ρ : L - gl(M).
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The proof of the equivalence of the above definitions is fairly stan-
dard.

Another name for an L-module is representation of L.
If M is finite dimensional, we are talking about a finite dimensional

representation.

3.2. Examples.

3.2.1. L = k. If L is one-dimensional, say, L = ke, a module
structure

ρ : L - gl(M)

is given by an endomorphism of M (the image ρ(e)).

3.2.2. L is commutative. A representation of L is a Lie algebra
homomorphism. If L = 〈e1, . . . , en〉, a homomorphism r : L → gl(M) is
given by the images r(ei). Since r is a homomorphism, r(ei) commute.
Vice versa, any collection of n commuting endomorphisms of M define
on M a structure of L-module.

3.2.3. An sl2-module is a vector space M with three endomorphisms
E, F, H of M satisfying the conditions

EF − FE = H; HE − EH = 2E; HF − FH = −2F.

This means that an sl2-module defines a representation of sl2 in ma-
trices. This is the explanation of the term representation.

3.2.4. Natural representation. By definition, Lie algebra gln
admits an n-dimensional representation. It is given by the identity
map

id : gln - gl(kn).

It is called the natural representation. Similarly, if g ⊆ gln is a Lie
subalgebra, we have a natural n-dimensional representation of g.

Examples include g = sln, bn, nn and some other algebras.

3.3. Category of L-modules. Fix a Lie algebra L.
A linear map f : M - N is an L-module homomorphism if

f(ax) = af(x)

for each a ∈ L, x ∈ M . Clearly, composition of homomorphisms is a
homomorphism.

Lemma 3.3.1. Let f : M - N be a bijective homomorphism of
L-modules. Then f−1 : N - M is also a homomorphism.
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Proof. Straighforward. �

The notion of submodule and quotient module are defined in a stan-
dard way.

3.3.2. Direct sum. Given two L-modules M and N , one defines
an L-module structure on M ⊕N by the formula

a(m,n) = (am, an).

3.4. Representation theory. Representation theory of Lie algebras
studies the category of modules over a Lie algebra. Here are the typical
questions and the typical notions studied.

3.4.1. Classification. Description of all isomorphism classes of
L-modules. Sometimes only modules satisfying special properties are
considered (e.g., finite dimensional modules).

Today we will see that in the case L is one-dimensional we already
know the answer from Linear Algebra.

3.4.2. Simple modules. A module is called simple if it does not ad-
mit non-trivial submodules. (A synonym: irreducible representation).

3.4.3. Semisimple modules A module is called semisimple if it is
isomorphic to a direct sum of simple modules (there are other equiva-
lent definitions). Synonym: a completely reducible representation.

We will study soon the following result.

Theorem 3.4.4. All finite dimensional representations of sl2 are com-
pletely reducible.

3.5. Representations of a one-dimensional Lie algebra. .

3.5.1. Isomorphism classes. We are looking for isomorphism
classes of n-dimensional representations. A map f : M - N is a
homomorphism of representations if fαM = αNf . Since M = N =
kn as vector spaces, we deduce that endomorphisms α1 and α2 define
isomorphic representations iff there exists an automorphism f such that
α2 = fα1f

−1.
Thus the problem of classifications of n-dimensional representations

is equivalent to that of classification of square matrices up to conjuga-
tion.

Theory of Jordan normal form answers this question in the case k is
algebraically closed.
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Let us recall the most important steps in this theory.

3.5.2. Recollections from Linear Algebra.
Let f : V - V be an endomorphism of a finite dimensional vector

space over an algebraically closed field k. Recall that λ ∈ k is an
eigenvalue of f iff f−λI is not invertible. The collection of eigenvalues
of f is therefore the set of roots of the characteristic polynomial of f
defined as

Pf (t) = det(f − tI).

In what follows S(f) will denote the set of eigenvalues of f (the spec-
trum of f).

Let λ ∈ S(f). A vector v ∈ V is called an eigenvector corresponding
to λ if f(v) = λv. Each eigenvalue admits a non-zero eigenvector.
Furthermore, v ∈ V is called generalized eigenvector if there exists
n ∈ N such that (f − λI)nv = 0.

Fix λ ∈ S(f). Let V λ denote the set of eigenvectors and Vλ the
set of generalized eigenvectors corresponding to λ. These are vector
subspaces of V and

Vλ ⊇ V λ 6= 0.

The following are the main results of this study.

• V =
⊕

λ∈S(f) Vλ.
• dim Vλ equals the multiplicity of λ in the characteristic polyno-

mial of f .
• Each Vλ is isomorphic to a direct sum of Jordan blocks having

eigenvalue λ (definition of J. b. see below).

Jordan block having eigenvalue λ is the matrix A = (aij) defined by
the formulas

aij =

 λ if i = j,
1 if i = j − 1,
0 otherwise.

3.5.3. Simple modules. Direct consequence of the above: Any
simple module has dimension 1; it is defined up to isomorphism by its
(only) eigenvalue λ.

This module will be sometimes denoted by kλ.

3.5.4. Semisimple modules.
Semisimple module is a direct sum of simple modules. Thus (for k

algebraically closed) (V, f) is semisimple iff f is diagonalizable.
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3.5.5. Example of non-semisimple modules. It is given by the
matrix (

0 1
0 0

)
.

3.6. Examples of representations.

3.6.1. Adjoint representation Let L be any Lie algebra. the
map ad : L - gl(L) defines a repersentation of L called adjoint
representation.

Note that submodules of the adjoint representation are the ideals.
Therefore, L is simple iff dim L > 1 and the adjoint representation is
irreducible.

3.6.2. ... and its restrictions If M ⊆ L is a Lie subalgebra, one
can consider L as a M -module restricting the adjoint representation of
L on M .

Consider, for example, L = sl2 and M = 〈h〉. Algebra M is one-
dimensional and L is an M -module. It is semisimple with eigenvalues
−2, 0, 2.

If we take another M , say, 〈e〉, the picture changes: all eigenvalues
are zero and the M -module L is not semisimple.

3.7. One-dimensional representations. Let L be a Lie algebra and
let ρ : L - gl(V ) is a one-dimensional representation. The algebra
gl(V ) is one-dimensional and therefore commutative in this case. Thus,

ρ[x, y] = [ρ(x), ρ(y)] = 0.

In particular, for L = sl2 one gets ρ = 0. This proves sl2 does not
admit non-trivial one-dimensional representations.
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Problem assignment, 2

1. Let h ⊆ gln be the set of diagonal matrices. Check that h is a
commutative Lie subalgebra. Check that gln as the h-module
(with respect to adjoint action) is a sum of one-dimensional
representations.

2. Prove that the adjoint representation of gl2 is isomorphic to a
direct sum of a three-dimensional and one-dimensional repre-
sentations.

3. Prove that the adjoint representation of sl2 is not isomorphic
to the sum of the natural representation with the trivial repre-
sentation.


