INTRODUCTION TO LIE ALGEBRAS.
LECTURE 3.

2.1. Simplicity of \((\mathbb{R}^3, \times)\). The proof of the simplicity of this Lie algebra is very geometric. Let \(I\) be a non-zero ideal in it and let \(0 \neq v \in I\). We can normalize \(v\) so that \(||v|| = 1\). There exists a pair of vectors \(v_2, v_3\) so that the triple \(v, v_2, v_3\) forms an orthonormal base. Then \(v_2 = v \times v_3\) and \(v_3 = v \times v_2\) up to sign, therefore, all three vectors belong to \(I\). This proves the assertion.

3. Modules

The notion of module over a Lie algebra is of extreme importance.

3.1. Two definitions and their equivalence. Let \(L\) be a Lie algebra over a field \(k\).

Definition 3.1.1. An \(L\)-module is a \(k\)-vector space \(M\) together with a bilinear map

\[r : L \times M \longrightarrow M \]

satisfying the following property

\[r([x, y], m) = r(x, r(y, m)) - r(y, r(x, m)). \]

Usually one writes simply \(xm\) instead of \(r(x, m)\). Then our axiom reads

\[[x, y]m = xym - yxm. \]

To give another definition of \(L\)-module recall that for every vector space \(M\) the collection of endomorphisms \(\text{End}(V)\) admits an associative composition. The operation

\[f, g \in \text{End}(M) \mapsto [f, g] = fg - gf \in \text{End}(M) \]

defines a Lie algebra structure on \(\text{End}(M)\). The Lie algebra of endomorphisms so obtained is denoted \(\mathfrak{gl}(M)\).

Definition 3.1.2. An \(L\)-module is a vector space \(M\) endowed with a Lie algebra homomorphism

\[\rho : L \longrightarrow \mathfrak{gl}(M). \]
The proof of the equivalence of the above definitions is fairly standard.

Another name for an L-module is representation of L.

If M is finite dimensional, we are talking about a finite dimensional representation.

3.2. Examples.

3.2.1. $L = k$. If L is one-dimensional, say, $L = ke$, a module structure

$$\rho : L \longrightarrow \mathfrak{gl}(M)$$

is given by an endomorphism of M (the image $\rho(e)$).

3.2.2. L is commutative. A representation of L is a Lie algebra homomorphism. If $L = \langle e_1, \ldots, e_n \rangle$, a homomorphism $r : L \rightarrow \mathfrak{gl}(M)$ is given by the images $r(e_i)$. Since r is a homomorphism, $r(e_i)$ commute. Vice versa, any collection of n commuting endomorphisms of M define on M a structure of L-module.

3.2.3. An \mathfrak{sl}_2-module is a vector space M with three endomorphisms E, F, H of M satisfying the conditions

$$EF - FE = H; \ HE - EH = 2E; \ HF - FH = -2F.$$

This means that an \mathfrak{sl}_2-module defines a representation of \mathfrak{sl}_2 in matrices. This is the explanation of the term representation.

3.2.4. Natural representation. By definition, Lie algebra \mathfrak{gl}_n admits an n-dimensional representation. It is given by the identity map

$$\text{id} : \mathfrak{gl}_n \longrightarrow \mathfrak{gl}(k^n).$$

It is called the natural representation. Similarly, if $g \subseteq \mathfrak{gl}_n$ is a Lie subalgebra, we have a natural n-dimensional representation of g.

Examples include $g = \mathfrak{sl}_n, \ b_n, n_n$ and some other algebras.

3.3. Category of L-modules. Fix a Lie algebra L.

A linear map $f : M \longrightarrow N$ is an L-module homomorphism if

$$f(ax) = af(x)$$

for each $a \in L, \ x \in M$. Clearly, composition of homomorphisms is a homomorphism.

Lemma 3.3.1. Let $f : M \longrightarrow N$ be a bijective homomorphism of L-modules. Then $f^{-1} : N \longrightarrow M$ is also a homomorphism.
Proof. Straightforward. □

The notion of submodule and quotient module are defined in a standard way.

3.3.2. Direct sum. Given two \(L \)-modules \(M \) and \(N \), one defines an \(L \)-module structure on \(M \oplus N \) by the formula

\[
a(m, n) = (am, an).
\]

3.4. Representation theory. Representation theory of Lie algebras studies the category of modules over a Lie algebra. Here are the typical questions and the typical notions studied.

3.4.1. Classification. Description of all isomorphism classes of \(L \)-modules. Sometimes only modules satisfying special properties are considered (e.g., finite dimensional modules).

Today we will see that in the case \(L \) is one-dimensional we already know the answer from Linear Algebra.

3.4.2. Simple modules. A module is called simple if it does not admit non-trivial submodules. (A synonym: irreducible representation).

3.4.3. Semisimple modules. A module is called semisimple if it is isomorphic to a direct sum of simple modules (there are other equivalent definitions). Synonym: a completely reducible representation.

We will study soon the following result.

Theorem 3.4.4. All finite dimensional representations of \(\mathfrak{sl}_2 \) are completely reducible.

3.5. Representations of a one-dimensional Lie algebra.

3.5.1. Isomorphism classes. We are looking for isomorphism classes of \(n \)-dimensional representations. A map \(f : M \to N \) is a homomorphism of representations if \(f\alpha_M = \alpha_N f \). Since \(M = N = k^n \) as vector spaces, we deduce that endomorphisms \(\alpha_1 \) and \(\alpha_2 \) define isomorphic representations iff there exists an automorphism \(f \) such that

\[
\alpha_2 = f\alpha_1 f^{-1}.
\]

Thus the problem of classifications of \(n \)-dimensional representations is equivalent to that of classification of square matrices up to conjugation.

Theory of Jordan normal form answers this question in the case \(k \) is algebraically closed.
Let us recall the most important steps in this theory.

3.5.2. Recollections from Linear Algebra.

Let $f : V \rightarrow V$ be an endomorphism of a finite dimensional vector space over an algebraically closed field k. Recall that $\lambda \in k$ is an eigenvalue of f iff $f - \lambda I$ is not invertible. The collection of eigenvalues of f is therefore the set of roots of the characteristic polynomial of f defined as

$$P_f(t) = \det(f - tI).$$

In what follows $S(f)$ will denote the set of eigenvalues of f (the spectrum of f).

Let $\lambda \in S(f)$. A vector $v \in V$ is called an eigenvector corresponding to λ if $f(v) = \lambda v$. Each eigenvalue admits a non-zero eigenvector. Furthermore, $v \in V$ is called generalized eigenvector if there exists $n \in \mathbb{N}$ such that $(f - \lambda I)^n v = 0$.

Fix $\lambda \in S(f)$. Let V^λ denote the set of eigenvectors and V_λ the set of generalized eigenvectors corresponding to λ. These are vector subspaces of V and

$$V_\lambda \supseteq V^\lambda \neq 0.$$

The following are the main results of this study.

- $V = \bigoplus_{\lambda \in S(f)} V_\lambda$.
- $\dim V_\lambda$ equals the multiplicity of λ in the characteristic polynomial of f.
- Each V_λ is isomorphic to a direct sum of Jordan blocks having eigenvalue λ (definition of J. b. see below).

Jordan block having eigenvalue λ is the matrix $A = (a_{ij})$ defined by the formulas

$$a_{ij} = \begin{cases}
\lambda & \text{if } i = j, \\
1 & \text{if } i = j - 1, \\
0 & \text{otherwise.}
\end{cases}$$

3.5.3. Simple modules. Direct consequence of the above: Any simple module has dimension 1; it is defined up to isomorphism by its (only) eigenvalue λ.

This module will be sometimes denoted by k_λ.

3.5.4. Semisimple modules.

Semisimple module is a direct sum of simple modules. Thus (for k algebraically closed) (V, f) is semisimple iff f is diagonalizable.
3.5.5. Example of non-semisimple modules. It is given by the matrix
\[
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}.
\]

3.6. Examples of representations.

3.6.1. Adjoint representation Let \(L \) be any Lie algebra. the map \(\text{ad} : L \rightarrow \mathfrak{gl}(L) \) defines a representation of \(L \) called adjoint representation.

Note that submodules of the adjoint representation are the ideals. Therefore, \(L \) is simple iff \(\dim L > 1 \) and the adjoint representation is irreducible.

3.6.2. ... and its restrictions If \(M \subseteq L \) is a Lie subalgebra, one can consider \(L \) as a \(M \)-module restricting the adjoint representation of \(L \) on \(M \).

Consider, for example, \(L = \mathfrak{sl}_2 \) and \(M = \langle h \rangle \). Algebra \(M \) is one-dimensional and \(L \) is an \(M \)-module. It is semisimple with eigenvalues \(-2, 0, 2\).

If we take another \(M \), say, \(\langle e \rangle \), the picture changes: all eigenvalues are zero and the \(M \)-module \(L \) is not semisimple.

3.7. One-dimensional representations. Let \(L \) be a Lie algebra and let \(\rho : L \rightarrow \mathfrak{gl}(V) \) is a one-dimensional representation. The algebra \(\mathfrak{gl}(V) \) is one-dimensional and therefore commutative in this case. Thus,
\[
\rho[x, y] = [\rho(x), \rho(y)] = 0.
\]
In particular, for \(L = \mathfrak{sl}_2 \) one gets \(\rho = 0 \). This proves \(\mathfrak{sl}_2 \) does not admit non-trivial one-dimensional representations.
Problem assignment, 2

1. Let $\mathfrak{h} \subseteq \mathfrak{gl}_n$ be the set of diagonal matrices. Check that \mathfrak{h} is a commutative Lie subalgebra. Check that \mathfrak{gl}_n as the \mathfrak{h}-module (with respect to adjoint action) is a sum of one-dimensional representations.

2. Prove that the adjoint representation of \mathfrak{gl}_2 is isomorphic to a direct sum of a three-dimensional and one-dimensional representations.

3. Prove that the adjoint representation of \mathfrak{sl}_2 is not isomorphic to the sum of the natural representation with the trivial representation.