INTRODUCTION TO LIE ALGEBRAS.
LECTURE 2.

2. MORE EXAMPLES. IDEALS. DIRECT PRODUCTS.

2.1. More examples.

2.1.1. Letk =R, L =R3 Define [z,y] = xxy — the cross-product.
Recall that the latter is defined by the formulas

€1 X g =e3, € X €3 = €1, €3 X €] = €9.

2.1.2. It is convenient to choose a basis of sly as follows.

(1) e=<83)’f:<(1)8)’h:<(1)0—1)'

Than the bracket in sl, is given by the formulas
[ef] = ha [h'e} = 267 [hf] = _2f

There are much more Lie subalgebras of gl,,. For instance,

2.1.3. b, ={a€sl,|a;; =0 for i > j} — upper-triangular matrices
of trace zero.
n(n+1)

This algebra has dimension —5— — 1.

2.1.4. n, ={a € gl,|a;; =0 for i > j} — strictly upper-triangular
matrices.

This algebra has dimension 2.
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2.2. Direct product. Let L and M be two Lie algebras. Define their
direct product L x M as follows. As a set, this is the Cartesian product
of L and M. The operations (multiplication by a scalar, sum and
bracket) are defined componentwise. For instance,

[(z,y), (", 4] = ([z,2), [y, ¥/]).

2.2.1. Example. If L is commutative of dimension n and L’ is
commutative of dimension n’ then L x L’ is commutative of dimension
n+n'.
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2.2.2. Example. The Lie algebra gl, is isomorphic to the direct
product sl,, X k (k is the one-dimensional algebra). The map from the
direct product to gl,, is given by the formula (a, A) — a + Al where
is the identity matrix.

2.3. Some calculations.
2.3.1. Ideals in n3. Quotients Choose a basis for ng as follows.

010 00 0 00 1
2 z=|(o0o0o0],y=[001]|,z=[000
000 000 000

Multiplication is given by

[JT,y] =z, [I" Z] = [ya Z] = 0.

Let us describe all ideals in ns. If I is a non-zero ideal, let t =
ax + by + cz € I be non-zero. Then [z,t] = bz, [y,t] = az, [2,t] = 0.
Thus, if a # 0 or b # 0 then z € I. If a = b = 0 then once more
z € I. Therefore, z belongs to any non-zero ideal. Thus, the only one-
dimensional ideal is (z); any two-dimensional ideal has form (z, az+by).
It is easy to see that all these formulas do define ideals.

The quotient algebra ns/(z) has a basis T, ¥ with the bracket [z, 7] =
z = 0. Thus, the quotient is a commutative two-dimensional algebra.

2.4. Adjoint action. Let L be a Lie algebra, x € L. Define a linear
transformation

ad, : L —— L
by the formula ad,(y) = [z, y].
Lemma 2.4.1. ad, is a linear transformation.
In fact, this follows from the linearity of [,] in the second argument.

Lemma 2.4.2. ad, is a derivation.

In fact,
ada[y, 2] = [ada(y), 2] + [y, ade(2)]

— this follows from the Jacobi identity.
Assembling together ad, for all x € L we get therefore a map

ad : L — Der(L).

Lemma 2.4.3. The map ad : L — Der(L) is a homomorphism of Lie
algebras.



One has to check that
adp,, = ad, o ad, — ad, o ad,.
This also follows from the Jacobi identity.
Definition 2.4.4. Center of a Lie algebra L is defined by the formula
Z(L)y={z e LNVye L |[z,y]=0}.

By definition of ad, one has Z(L) = Ker(ad).

For example, Z(n3) = (z).
2.5. Simplicity of sl,.

Definition 2.5.1. A Lie algebra L is simple if it is not one-dimensional
and if it has no non-trivial ideals.

Our aim is to prove the following

Theorem 2.5.2. sly is simple.

2.5.3. Some linear algebra

Let V be a finite dimensional vector space and f € End(V).

Endomorphism f is called diagonalizable if V' has a basis of eigen-
vectors.

If f is diagonalizable then V' = @,cgV) where V) = {z € V|f(x) =
Az} is the eigenspace corresponding to the eigenvalue A and S is the
set of eigenvalues of f (spectrum of f).

Lemma 2.5.4. Let f € End(V) be diagonalizable and let W be a f-
invariant subspace of V' (i.e., f(W) C W ). Then

W = ®resWy where W, =W NV,.

Proof. We have to prove that if z € W and if x = > 2, with z, € V),
then z, € W.

In fact, W 2 f*(x) = f*(z)) = 3. Az, for each k.

Let T = {\ € S|zx # 0} and let ¢t = |T'|. This is the num-
ber of non-zero summands in the decomposition of . The vectors

z, f(z),..., f7(x) can be expressed as linear combinations of ¢ lin-
early independent vectors z,. The transition matrix has form

1 1 ... 1
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t—1 t—1 t—1
AL



This is Vandermonde matrix. Its determinant is
[T =x) #o.
i<j
This proves that x) can be expressed through f*(z) and therefore be-
long to W. U

2.5.5. Proof of Theorem 2.5.2.

Consider endomorphism ady, of sl,. It is diagonalizable with eigenval-
ues —2, 0, 2. Any ideal [ is invariant with respect to ad;,. Therefore,
I should be spanned by a subset of f, h, g. It is easy to check that this
is impossible for any nonempty proper subset of generators.



Problem assignment, 1

1. Derivations.
(a) Let A = E[t] be the algebra of polynomials. Fix f € A
and define d : A —— A by the formula

d(g) = fg'.
Prove d is a derivation.
(b) The same A, f and d: A —— A is given by the formula

d(g) = fd +g.
is this a derivation?
(c) Prove that any derivation of A is of form described in (a).
Hint: consider the value of d on 1, t € A.
2. Find all ideals and all quotient algebras of the algebra

L= {a € 9[2’6121 = O}

Prove that L is isomorphic to the direct product of k (one-
dimensional algebra) and b,.
3. (bonus). Let L = R3 with cross-product as a bracket. Prove
that L¢ is isomorphic to sly(C).
Here L¢ denotes the Lie algebra over C having the base
e1, eg, ez with the bracket given by the formulas

[61,62] = €3, [62,63] = €1, [63761] = €.



