INTRODUCTION TO LIE ALGEBRAS. LECTURE 2.

2. More examples. Ideals. Direct products.

2.1. More examples.

2.1.1. Let $k = \mathbb{R}$, $L = \mathbb{R}^3$. Define $[x, y] = x \times y$ — the cross-product. Recall that the latter is defined by the formulas

 $e_1 \times e_2 = e_3, \ e_2 \times e_3 = e_1, \ e_3 \times e_1 = e_2.$

2.1.2. It is convenient to choose a basis of \mathfrak{sl}_2 as follows.

(1)
$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Than the bracket in \mathfrak{sl}_2 is given by the formulas

$$[ef] = h, \ [he] = 2e, \ [hf] = -2f.$$

There are much more Lie subalgebras of \mathfrak{gl}_n . For instance,

2.1.3. $\mathfrak{b}_n = \{a \in \mathfrak{sl}_n | a_{ij} = 0 \text{ for } i > j\}$ — upper-triangular matrices of trace zero.

This algebra has dimension $\frac{n(n+1)}{2} - 1$.

2.1.4. $\mathfrak{n}_n = \{a \in \mathfrak{gl}_n | a_{ij} = 0 \text{ for } i \geq j\}$ — strictly upper-triangular matrices.

This algebra has dimension $\frac{n(n-1)}{2}$.

2.2. **Direct product.** Let L and M be two Lie algebras. Define their direct product $L \times M$ as follows. As a set, this is the Cartesian product of L and M. The operations (multiplication by a scalar, sum and bracket) are defined componentwise. For instance,

$$[(x, y), (x', y')] = ([x, x'], [y, y']).$$

2.2.1. Example. If *L* is commutative of dimension *n* and *L'* is commutative of dimension n' then $L \times L'$ is commutative of dimension n + n'.

2.2.2. Example. The Lie algebra \mathfrak{gl}_n is isomorphic to the direct product $\mathfrak{sl}_n \times k$ (k is the one-dimensional algebra). The map from the direct product to \mathfrak{gl}_n is given by the formula $(a, \lambda) \mapsto a + \lambda I$ where I is the identity matrix.

2.3. Some calculations.

2.3.1. Ideals in n_3 . Quotients Choose a basis for n_3 as follows.

(2)
$$x = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, z = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Multiplication is given by

$$[x, y] = z, \ [x, z] = [y, z] = 0.$$

Let us describe all ideals in \mathbf{n}_3 . If I is a non-zero ideal, let $t = ax + by + cz \in I$ be non-zero. Then [x, t] = bz, [y, t] = az, [z, t] = 0. Thus, if $a \neq 0$ or $b \neq 0$ then $z \in I$. If a = b = 0 then once more $z \in I$. Therefore, z belongs to any non-zero ideal. Thus, the only onedimensional ideal is $\langle z \rangle$; any two-dimensional ideal has form $\langle z, ax+by \rangle$. It is easy to see that all these formulas do define ideals.

The quotient algebra $\mathbf{n}_3/\langle z \rangle$ has a basis \overline{x} , \overline{y} with the bracket $[\overline{x}, \overline{y}] = \overline{z} = 0$. Thus, the quotient is a commutative two-dimensional algebra.

2.4. Adjoint action. Let L be a Lie algebra, $x \in L$. Define a linear transformation

$$\operatorname{ad}_x : L \longrightarrow L$$

by the formula $ad_x(y) = [x, y].$

Lemma 2.4.1. ad_x is a linear transformation.

In fact, this follows from the linearity of [,] in the second argument.

Lemma 2.4.2. ad_x is a derivation.

In fact,

$$\operatorname{ad}_{x}[y, z] = [\operatorname{ad}_{x}(y), z] + [y, \operatorname{ad}_{x}(z)]$$

— this follows from the Jacobi identity.

Assembling together ad_x for all $x \in L$ we get therefore a map

ad : $L \longrightarrow \text{Der}(L)$.

Lemma 2.4.3. The map $\operatorname{ad} : L \to \operatorname{Der}(L)$ is a homomorphism of Lie algebras.

One has to check that

$$\operatorname{ad}_{[x,y]} = \operatorname{ad}_x \circ \operatorname{ad}_y - \operatorname{ad}_y \circ \operatorname{ad}_x.$$

This also follows from the Jacobi identity.

Definition 2.4.4. Center of a Lie algebra *L* is defined by the formula

$$Z(L) = \{ x \in L | \forall y \in L \quad [x, y] = 0 \}.$$

By definition of ad, one has Z(L) = Ker(ad). For example, $Z(\mathfrak{n}_3) = \langle z \rangle$.

2.5. Simplicity of \mathfrak{sl}_2 .

Definition 2.5.1. A Lie algebra L is *simple* if it is not one-dimensional and if it has no non-trivial ideals.

Our aim is to prove the following

Theorem 2.5.2. \mathfrak{sl}_2 is simple.

2.5.3. Some linear algebra

Let V be a finite dimensional vector space and $f \in \text{End}(V)$.

Endomorphism f is called *diagonalizable* if V has a basis of eigenvectors.

If f is diagonalizable then $V = \bigoplus_{\lambda \in S} V_{\lambda}$ where $V_{\lambda} = \{x \in V | f(x) =$ λx is the eigenspace corresponding to the eigenvalue λ and S is the set of eigenvalues of f (spectrum of f).

Lemma 2.5.4. Let $f \in End(V)$ be diagonalizable and let W be a finvariant subspace of V (i.e., $f(W) \subseteq W$). Then

$$W = \bigoplus_{\lambda \in S} W_{\lambda}$$
 where $W_{\lambda} = W \cap V_{\lambda}$.

Proof. We have to prove that if $x \in W$ and if $x = \sum x_{\lambda}$ with $x_{\lambda} \in V_{\lambda}$ then $x_{\lambda} \in W$.

In fact, $W \ni f^k(x) = \sum f^k(x_\lambda) = \sum \lambda^k x_\lambda$ for each k. Let $T = \{\lambda \in S | x_\lambda \neq 0\}$ and let t = |T|. This is the number of non-zero summands in the decomposition of x. The vectors $x, f(x), \ldots, f^{t-1}(x)$ can be expressed as linear combinations of t linearly independent vectors x_{λ} . The transition matrix has form

$$\begin{pmatrix} 1 & 1 & \dots & 1\\ \lambda_1 & \lambda_2 & \dots & \lambda_t\\ \dots & \dots & \dots & \dots\\ \lambda_1^{t-1} & \lambda_2^{t-1} & \dots & \lambda_t^{t-1} \end{pmatrix}$$

This is Vandermonde matrix. Its determinant is

$$\prod_{i < j} (\lambda_i - \lambda_j) \neq 0$$

This proves that x_{λ} can be expressed through $f^k(x)$ and therefore belong to W.

2.5.5. Proof of Theorem 2.5.2.

Consider endomorphism ad_h of \mathfrak{sl}_2 . It is diagonalizable with eigenvalues -2, 0, 2. Any ideal I is invariant with respect to ad_h . Therefore, I should be spanned by a subset of f, h, g. It is easy to check that this is impossible for any nonempty proper subset of generators.

Problem assignment, 1

1. Derivations.

(a) Let A = k[t] be the algebra of polynomials. Fix $f \in A$ and define $d: A \longrightarrow A$ by the formula

$$d(g) = fg'.$$

Prove d is a derivation.

(b) The same A, f and $d: A \longrightarrow A$ is given by the formula d(g) = fg' + g.

is this a derivation?

(c) Prove that any derivation of A is of form described in (a). Hint: consider the value of d on 1, $t \in A$.

2. Find all ideals and all quotient algebras of the algebra

$$L = \{a \in \mathfrak{gl}_2 | a_{21} = 0\}.$$

Prove that L is isomorphic to the direct product of k (onedimensional algebra) and \mathfrak{b}_2 .

3. (bonus). Let $L = \mathbb{R}^3$ with cross-product as a bracket. Prove that $L_{\mathbb{C}}$ is isomorphic to $\mathfrak{sl}_2(\mathbb{C})$.

Here $L_{\mathbb{C}}$ denotes the Lie algebra over \mathbb{C} having the base e_1, e_2, e_3 with the bracket given by the formulas

 $[e_1,e_2]=e_3,\ [e_2,e_3]=e_1,\ [e_3,e_1]=e_2.$