INTRODUCTION TO LIE ALGEBRAS.
 LECTURE 2.

2. More examples. Ideals. Direct products.

2.1. More examples.

2.1.1. Let $k=\mathbb{R}, L=\mathbb{R}^{3}$. Define $[x, y]=x \times y$ — the cross-product. Recall that the latter is defined by the formulas

$$
e_{1} \times e_{2}=e_{3}, \quad e_{2} \times e_{3}=e_{1}, \quad e_{3} \times e_{1}=e_{2} .
$$

2.1.2. It is convenient to choose a basis of $\mathfrak{s l}_{2}$ as follows.

$$
e=\left(\begin{array}{ll}
0 & 1 \tag{1}\\
0 & 0
\end{array}\right), f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), h=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Than the bracket in $\mathfrak{s l}_{2}$ is given by the formulas

$$
[e f]=h,[h e]=2 e,[h f]=-2 f .
$$

There are much more Lie subalgebras of $\mathfrak{g l}_{n}$. For instance,
2.1.3. $\quad \mathfrak{b}_{n}=\left\{a \in \mathfrak{s l}_{n} \mid a_{i j}=0\right.$ for $\left.i>j\right\}$ - upper-triangular matrices of trace zero.

This algebra has dimension $\frac{n(n+1)}{2}-1$.
2.1.4. $\mathfrak{n}_{n}=\left\{a \in \mathfrak{g l}_{n} \mid a_{i j}=0\right.$ for $\left.i \geq j\right\}$ - strictly upper-triangular matrices

This algebra has dimension $\frac{n(n-1)}{2}$.
2.2. Direct product. Let L and M be two Lie algebras. Define their direct product $L \times M$ as follows. As a set, this is the Cartesian product of L and M. The operations (multiplication by a scalar, sum and bracket) are defined componentwise. For instance,

$$
\left[(x, y),\left(x^{\prime}, y^{\prime}\right)\right]=\left(\left[x, x^{\prime}\right],\left[y, y^{\prime}\right]\right)
$$

2.2.1. Example. If L is commutative of dimension n and L^{\prime} is commutative of dimension n^{\prime} then $L \times L^{\prime}$ is commutative of dimension $n+n^{\prime}$.
2.2.2. Example. The Lie algebra $\mathfrak{g l}_{n}$ is isomorphic to the direct product $\mathfrak{s l}_{n} \times k$ (k is the one-dimensional algebra). The map from the direct product to $\mathfrak{g l}_{n}$ is given by the formula $(a, \lambda) \mapsto a+\lambda I$ where I is the identity matrix.

2.3. Some calculations.

2.3.1. Ideals in \mathfrak{n}_{3}. Quotients Choose a basis for \mathfrak{n}_{3} as follows.

$$
x=\left(\begin{array}{lll}
0 & 1 & 0 \tag{2}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), y=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), z=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Multiplication is given by

$$
[x, y]=z,[x, z]=[y, z]=0
$$

Let us describe all ideals in \mathfrak{n}_{3}. If I is a non-zero ideal, let $t=$ $a x+b y+c z \in I$ be non-zero. Then $[x, t]=b z,[y, t]=a z,[z, t]=0$. Thus, if $a \neq 0$ or $b \neq 0$ then $z \in I$. If $a=b=0$ then once more $z \in I$. Therefore, z belongs to any non-zero ideal. Thus, the only onedimensional ideal is $\langle z\rangle$; any two-dimensional ideal has form $\langle z, a x+b y\rangle$. It is easy to see that all these formulas do define ideals.

The quotient algebra $\mathfrak{n}_{3} /\langle z\rangle$ has a basis \bar{x}, \bar{y} with the bracket $[\bar{x}, \bar{y}]=$ $\bar{z}=0$. Thus, the quotient is a commutative two-dimensional algebra.
2.4. Adjoint action. Let L be a Lie algebra, $x \in L$. Define a linear transformation

$$
\operatorname{ad}_{x}: L \longrightarrow L
$$

by the formula $\operatorname{ad}_{x}(y)=[x, y]$.
Lemma 2.4.1. ad_{x} is a linear transformation.
In fact, this follows from the linearity of [,] in the second argument.
Lemma 2.4.2. ad_{x} is a derivation.
In fact,

$$
\operatorname{ad}_{x}[y, z]=\left[\operatorname{ad}_{x}(y), z\right]+\left[y, \operatorname{ad}_{x}(z)\right]
$$

- this follows from the Jacobi identity.

Assembling together ad_{x} for all $x \in L$ we get therefore a map

$$
\operatorname{ad}: L \longrightarrow \operatorname{Der}(L) .
$$

Lemma 2.4.3. The map ad : $L \rightarrow \operatorname{Der}(L)$ is a homomorphism of Lie algebras.

One has to check that

$$
\operatorname{ad}_{[x, y]}=\operatorname{ad}_{x} \circ \operatorname{ad}_{y}-\operatorname{ad}_{y} \circ \operatorname{ad}_{x}
$$

This also follows from the Jacobi identity.
Definition 2.4.4. Center of a Lie algebra L is defined by the formula

$$
Z(L)=\{x \in L \mid \forall y \in L \quad[x, y]=0\}
$$

By definition of ad, one has $Z(L)=\operatorname{Ker}(\operatorname{ad})$.
For example, $Z\left(\mathfrak{n}_{3}\right)=\langle z\rangle$.

2.5. Simplicity of $\mathfrak{s l}_{2}$.

Definition 2.5.1. A Lie algebra L is simple if it is not one-dimensional and if it has no non-trivial ideals.

Our aim is to prove the following
Theorem 2.5.2. $\mathfrak{s l}_{2}$ is simple.

2.5.3. Some linear algebra

Let V be a finite dimensional vector space and $f \in \operatorname{End}(V)$.
Endomorphism f is called diagonalizable if V has a basis of eigenvectors.

If f is diagonalizable then $V=\oplus_{\lambda \in S} V_{\lambda}$ where $V_{\lambda}=\{x \in V \mid f(x)=$ $\lambda x\}$ is the eigenspace corresponding to the eigenvalue λ and S is the set of eigenvalues of f (spectrum of f).

Lemma 2.5.4. Let $f \in \operatorname{End}(V)$ be diagonalizable and let W be a f invariant subspace of V (i.e., $f(W) \subseteq W$). Then

$$
W=\oplus_{\lambda \in S} W_{\lambda} \text { where } W_{\lambda}=W \cap V_{\lambda}
$$

Proof. We have to prove that if $x \in W$ and if $x=\sum x_{\lambda}$ with $x_{\lambda} \in V_{\lambda}$ then $x_{\lambda} \in W$.

In fact, $W \ni f^{k}(x)=\sum f^{k}\left(x_{\lambda}\right)=\sum \lambda^{k} x_{\lambda}$ for each k.
Let $T=\left\{\lambda \in S \mid x_{\lambda} \neq 0\right\}$ and let $t=|T|$. This is the number of non-zero summands in the decomposition of x. The vectors $x, f(x), \ldots, f^{t-1}(x)$ can be expressed as linear combinations of t linearly independent vectors x_{λ}. The transition matrix has form

$$
\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\lambda_{1} & \lambda_{2} & \ldots & \lambda_{t} \\
\ldots & \ldots & \ldots & \ldots \\
\lambda_{1}^{t-1} & \lambda_{2}^{t-1} & \ldots & \lambda_{t}^{t-1}
\end{array}\right)
$$

This is Vandermonde matrix. Its determinant is

$$
\prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right) \neq 0
$$

This proves that x_{λ} can be expressed through $f^{k}(x)$ and therefore belong to W.

2.5.5. Proof of Theorem 2.5.2.

Consider endomorphism ad_{h} of $\mathfrak{s l}_{2}$. It is diagonalizable with eigenvalues $-2,0,2$. Any ideal I is invariant with respect to ad_{h}. Therefore, I should be spanned by a subset of f, h, g. It is easy to check that this is impossible for any nonempty proper subset of generators.

Problem assignment, 1

1. Derivations.
(a) Let $A=k[t]$ be the algebra of polynomials. Fix $f \in A$ and define $d: A \longrightarrow A$ by the formula

$$
d(g)=f g^{\prime} .
$$

Prove d is a derivation.
(b) The same A, f and $d: A \longrightarrow A$ is given by the formula

$$
d(g)=f g^{\prime}+g
$$

is this a derivation?
(c) Prove that any derivation of A is of form described in (a). Hint: consider the value of d on $1, t \in A$.
2. Find all ideals and all quotient algebras of the algebra

$$
L=\left\{a \in \mathfrak{g l}_{2} \mid a_{21}=0\right\} .
$$

Prove that L is isomorphic to the direct product of k (onedimensional algebra) and \mathfrak{b}_{2}.
3. (bonus). Let $L=\mathbb{R}^{3}$ with cross-product as a bracket. Prove that $L_{\mathbb{C}}$ is isomorphic to $\mathfrak{s l}_{2}(\mathbb{C})$.

Here $L_{\mathbb{C}}$ denotes the Lie algebra over \mathbb{C} having the base e_{1}, e_{2}, e_{3} with the bracket given by the formulas

$$
\left[e_{1}, e_{2}\right]=e_{3},\left[e_{2}, e_{3}\right]=e_{1},\left[e_{3}, e_{1}\right]=e_{2}
$$

