
INTRODUCTION TO LIE ALGEBRAS.
LECTURE 2.

2. More examples. Ideals. Direct products.

2.1. More examples.

2.1.1. Let k = R, L = R3. Define [x, y] = x×y — the cross-product.
Recall that the latter is defined by the formulas

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2.

2.1.2. It is convenient to choose a basis of sl2 as follows.

(1) e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

Than the bracket in sl2 is given by the formulas

[ef ] = h, [he] = 2e, [hf ] = −2f.

There are much more Lie subalgebras of gln. For instance,

2.1.3. bn = {a ∈ sln|aij = 0 for i > j} — upper-triangular matrices
of trace zero.

This algebra has dimension n(n+1)
2

− 1.

2.1.4. nn = {a ∈ gln|aij = 0 for i ≥ j} — strictly upper-triangular
matrices.

This algebra has dimension n(n−1)
2

.

2.2. Direct product. Let L and M be two Lie algebras. Define their
direct product L×M as follows. As a set, this is the Cartesian product
of L and M . The operations (multiplication by a scalar, sum and
bracket) are defined componentwise. For instance,

[(x, y), (x′, y′)] = ([x, x′], [y, y′]).

2.2.1. Example. If L is commutative of dimension n and L′ is
commutative of dimension n′ then L×L′ is commutative of dimension
n + n′.
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2.2.2. Example. The Lie algebra gln is isomorphic to the direct
product sln × k (k is the one-dimensional algebra). The map from the
direct product to gln is given by the formula (a, λ) 7→ a + λI where I
is the identity matrix.

2.3. Some calculations.

2.3.1. Ideals in n3. Quotients Choose a basis for n3 as follows.

(2) x =

 0 1 0
0 0 0
0 0 0

 , y =

 0 0 0
0 0 1
0 0 0

 , z =

 0 0 1
0 0 0
0 0 0

 .

Multiplication is given by

[x, y] = z, [x, z] = [y, z] = 0.

Let us describe all ideals in n3. If I is a non-zero ideal, let t =
ax + by + cz ∈ I be non-zero. Then [x, t] = bz, [y, t] = az, [z, t] = 0.
Thus, if a 6= 0 or b 6= 0 then z ∈ I. If a = b = 0 then once more
z ∈ I. Therefore, z belongs to any non-zero ideal. Thus, the only one-
dimensional ideal is 〈z〉; any two-dimensional ideal has form 〈z, ax+by〉.
It is easy to see that all these formulas do define ideals.

The quotient algebra n3/〈z〉 has a basis x, y with the bracket [x, y] =
z = 0. Thus, the quotient is a commutative two-dimensional algebra.

2.4. Adjoint action. Let L be a Lie algebra, x ∈ L. Define a linear
transformation

adx : L - L

by the formula adx(y) = [x, y].

Lemma 2.4.1. adx is a linear transformation.

In fact, this follows from the linearity of [, ] in the second argument.

Lemma 2.4.2. adx is a derivation.

In fact,

adx[y, z] = [adx(y), z] + [y, adx(z)]

— this follows from the Jacobi identity.
Assembling together adx for all x ∈ L we get therefore a map

ad : L - Der(L).

Lemma 2.4.3. The map ad : L → Der(L) is a homomorphism of Lie
algebras.
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One has to check that

ad[x,y] = adx ◦ ady − ady ◦ adx.

This also follows from the Jacobi identity.

Definition 2.4.4. Center of a Lie algebra L is defined by the formula

Z(L) = {x ∈ L|∀y ∈ L [x, y] = 0}.

By definition of ad, one has Z(L) = Ker(ad).
For example, Z(n3) = 〈z〉.

2.5. Simplicity of sl2.

Definition 2.5.1. A Lie algebra L is simple if it is not one-dimensional
and if it has no non-trivial ideals.

Our aim is to prove the following

Theorem 2.5.2. sl2 is simple.

2.5.3. Some linear algebra
Let V be a finite dimensional vector space and f ∈ End(V ).
Endomorphism f is called diagonalizable if V has a basis of eigen-

vectors.
If f is diagonalizable then V = ⊕λ∈SVλ where Vλ = {x ∈ V |f(x) =

λx} is the eigenspace corresponding to the eigenvalue λ and S is the
set of eigenvalues of f (spectrum of f).

Lemma 2.5.4. Let f ∈ End(V ) be diagonalizable and let W be a f -
invariant subspace of V (i.e., f(W ) ⊆ W ). Then

W = ⊕λ∈SWλ where Wλ = W ∩ Vλ.

Proof. We have to prove that if x ∈ W and if x =
∑

xλ with xλ ∈ Vλ

then xλ ∈ W .
In fact, W 3 fk(x) =

∑
fk(xλ) =

∑
λkxλ for each k.

Let T = {λ ∈ S|xλ 6= 0} and let t = |T |. This is the num-
ber of non-zero summands in the decomposition of x. The vectors
x, f(x), . . . , f t−1(x) can be expressed as linear combinations of t lin-
early independent vectors xλ. The transition matrix has form

1 1 . . . 1
λ1 λ2 . . . λt

. . . . . . . . . . . .
λt−1

1 λt−1
2 . . . λt−1

t

 .
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This is Vandermonde matrix. Its determinant is∏
i<j

(λi − λj) 6= 0.

This proves that xλ can be expressed through fk(x) and therefore be-
long to W . �

2.5.5. Proof of Theorem 2.5.2.
Consider endomorphism adh of sl2. It is diagonalizable with eigenval-

ues −2, 0, 2. Any ideal I is invariant with respect to adh. Therefore,
I should be spanned by a subset of f, h, g. It is easy to check that this
is impossible for any nonempty proper subset of generators.
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Problem assignment, 1

1. Derivations.
(a) Let A = k[t] be the algebra of polynomials. Fix f ∈ A

and define d : A - A by the formula

d(g) = fg′.

Prove d is a derivation.
(b) The same A, f and d : A - A is given by the formula

d(g) = fg′ + g.

is this a derivation?
(c) Prove that any derivation of A is of form described in (a).

Hint: consider the value of d on 1, t ∈ A.
2. Find all ideals and all quotient algebras of the algebra

L = {a ∈ gl2|a21 = 0}.
Prove that L is isomorphic to the direct product of k (one-
dimensional algebra) and b2.

3. (bonus). Let L = R3 with cross-product as a bracket. Prove
that LC is isomorphic to sl2(C).

Here LC denotes the Lie algebra over C having the base
e1, e2, e3 with the bracket given by the formulas

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.


