
INTRODUCTION TO LIE ALGEBRAS.
LECTURE 13.

13. Study of semisimple Lie algebras

We assume here that the base field is algebraically closed.
Let L be a semisimple Lie algebra.

13.1. Maximal toral subalgebras and roots. If L does not contain
ad-semisimple elements, all its elements are ad-nilpotent by Jordan-
Chevalley theorem and L is nilpotent by Engel theorem.

Since this is not the case, L contains semisimple elements.
A Lie subalgebra of L is called toral if it consists of semisimple el-

ements. The above reasoning implies that any semisimple Lie algebra
contains nontrivial toral subalgebras.

One has

Lemma 13.1.1. (For k algebraically closed) Any toral subalgebra is
commutative.

Proof. Let T be a toral subalgebra and x ∈ T . Observe that (adx)T ⊂
T and denote the restriction of adx to T by adTx. We need to show
that adTx = 0. Obviously adTx is semisimple.

Let y0 ∈ T be an eigenvector of adTx that is (adx)y0 = cy0 for some
c ∈ k. We have to prove c = 0.

Since adTy0 is semisimple, T admits a basis y0, y1, . . . , yr of eigen-
vectors of adTy. One has (ady0)T ⊂ {y1, . . . , yr} because (ady0)y0 = 0.
Now the equality (adx)y0 = −(ady0)x gives c = 0. �

Example 13.1.2. In the case k = R, a linear operator ψ ∈ End(V ) is
called semisimple if it complexification ψC ∈ End(V ⊗R C) is diagonal-
izable.

Let L = Vect be a three dimensional Lie algebra over R with respect
to vector product: [v, w] := v × w. This algebra is simple (see Lecture
2) since an ideal containing a given non-zero element v contains also
all vectors which are orthogonal to v and so coincides with Vect. Any
element x ∈ L is ad-semisimple since all eigenvalues of adx are distinct
(0, i,−i). However L is not commutative. Thus, the condition k = k
is very important.
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13.1.3. Fix a maximal toral subalgebra H in L. Since H consists of
commuting semisimple elements, L has a basis for which all matrices
adx : x ∈ H are diagonal. Let v be a non-zero common eigenvector of
the linear operators adx : x ∈ H. An element µ of the dual space H∗

is called the weight of v if (adx)(v) = µ(x)v for all x ∈ H. One has

L = ⊕µ∈∆Lµ ⊕ L0

where

Lµ := {x ∈ L| (adh)(x) = µ(h)x, ∀h ∈ H}, ∆ := {µ ∈ H∗\{0}| Lµ 6= 0}.
The elements of ∆ are called the roots of L.

Denote by K the Killing form of L.

Lemma 13.1.4. i) [Lµ, Lν ] ⊂ Lµ+ν,
ii) for α ∈ ∆ all elements of Lα are nilpotent,
iii) if α + β 6= 0 then ∀x ∈ Lα, y ∈ Lβ one has K(x, y) = 0,
iv) the restriction of K to L0 is non-degenerate.

Proof. (i) follows from the Jacobi identity. (ii) follows from (i) and the
fact that the set of weights of L with respect to H is a finite set (it is
equal to ∆ ∪ {0}). (iii) follows from ad-invariance of K. Finally, (iv)
is an immediate consequence of non-degeneracy of K and (iii). �

Corollary 13.1.5. For any α ∈ ∆ one has dimLα = dimL−α.

Proof. Combining the non-degeneracy of K and (iii), we conclude that
for any non-zero x ∈ Lα there exists y ∈ L−α such that K(x, y) 6= 0.
Therefore the formula x 7→ fx : fx(y) := K(x, y), ∀y ∈ L−α defines
an embedding Lα → L∗−α. In particular, dimLα ≤ dimL−α. Applying
the last inequality for α′ := −α, one concludes dimLα = dimL−α. �

Since any toral subalgebra is commutative, L0 ⊇ H.

Proposition 13.1.6. One has L0 = H that is a maximal toral subal-
gebra coincides with its centralizer.

Proof. Note that by definition L0 = {x ∈ L|[h, x] = 0 ∀ h ∈ H} is the
centralizer of H.

Step 1. Let x = s+ n be the Jordan-Chevalley decomposition of an
element x ∈ L0. Then s and n are in L0.

In effect, L0 = {x ∈ L|adx(H) = 0}. Thus, by the property of
Jordan decomposition, both ads and adn satisfy the same property.

Step 2. If x ∈ L0 is semisimple then x ∈ H. This follows from
maximality of H: x commutes with H, therefore H ⊕ k · x consists of
semisimple elements.
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Step 3. The restriction of K to H is nondegenerate. Let h ∈ H and
let K(h,H) = 0. We have to prove that h = 0. We will first check that
K(h, L0) = 0 and then we deduce h = 0 from the nondegeneracy of
K|L0 . For a general x ∈ L0 one has x = s+ n where s ∈ H by Step 2.
Obviously, Tr(adh ·adn) = 0 since h and n commute and n is nilpotent.
Thus, K(h, x) = K(h, s) +K(h, n) = 0 for all x.

Step 4. L0 is nilpotent. By Engel theorem it suffices to check that
adx is nilpotent for all x ∈ L0. This is true for ads since s ∈ H so
ads = 0 and this is true for adn. Therefore, this is true for adx.

Step 5. H ∩ [L0, L0] = 0. In effect, K(H, [L0, L0]) = 0 since K is
invariant. If h ∈ H∩[L0, L0], K(h,H) would vanish, therefore, h would
vanish since K|H is nondegenerate.

Step 6. L0 is commutative. Otherwise there would exist x ∈ [L0, L0]∩
Z(L0). Let x = n + s be the Jordan decomposition. One has n 6= 0
since otherwise x would be semisimple, which is impossible by Steps
2 and 5. The nilpotent element n belongs to L0 and therefore to the
center of L0 by the properties of the Jordan decomposition. Then
K(n, x) = Tr(adn · adx) = 0 for all x ∈ L0 which contradicts to the
nondegeneracy of K|L0 .

Step 7. Finally, assume L0 6= H. Then there exists a nonzero nilpo-
tent element x ∈ L0 by Steps 1,2. Then K(x, y) = Tr(adx · ady) = 0
for all y ∈ L0 since adx is nilpotent and commutes with ady. This
contradicts nondegeneracy of K|L0 .

�

13.2. Root space decomposition. Let g be a semisimple complex
Lie algebra. Recall that the Killing form

K(x, y) := Tr(adx · ady)

is a non-degenerate invariant bilinear form on g.

13.2.1. Recall that a subalgebra h ⊂ g is called toral if it consists
of semisimple elements:

∀x ∈ h adx : g→ g is a semsimple linear operator.

We have shown that any toral subalgebra is commutative and that
a maximal toral subalgebra coincides with its centralizer. Moreover
the restriction of the Killing form K to a maximal toral subalgebra is
non-degenerate.

Note the following fact without proof: All maximal toral subalgebras
are conjugate: if h, h′ are maximal toral subalgebras of g then there
exists an automorphism ψ : g→ g such that ψ(h) = h′.
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13.2.2. Fix a maximal toral subalgebra h in g and denote by ∆ the
set of roots:

g = h⊕ (⊕α∈∆gα).

Recall that the restriction of K to h is nondegenerate. This means
that for each α ∈ h∗ there exists a unique element tα ∈ h such that
K(tα, h) = α(h) for h ∈ h.

The set of roots ∆ satisfies the following properties.

Proposition 13.2.3. 1. The set ∆ ⊂ h∗ spans h∗.
2. α ∈ ∆ iff −α ∈ ∆.
3. If α ∈ ∆ then [gα, g−α] is one-dimensional spanned by tα.
4. α(tα) = K(tα, tα) 6= 0 for α ∈ ∆.
5. Let α ∈ ∆, 0 6= x ∈ gα. There exists an element y ∈ g−α such

the triple (x, y, h = [x, y]) generate a subalgebra isomorphic to
sl2 and h = 2tα

K(tα,tα)
.

Proof. 1. If ∆ does not span g∗, there exists a non-zero element h ∈ h
such that α(h) = 0 for all α ∈ ∆. This implies that h commutes with
elements of gα for all α ∈ ∆. Then h is central. Since the center of g
is trivial, this leads to a contradiction.

2. Since K(gα, gβ) = 0 for β 6= −α and since K is nondegenerate, ∆
is symmetric with respect to α 7→ −α.

3. Let x ∈ gα, y ∈ g−α and let h ∈ h. One has

K(h, [x, y]) = K([h, x], y) = α(h)K(x, y) = K(tα, h)K(x, y) = K(K(x, y)tα, h).

This implies that h is orthogonal to [x, y] − K(x, y)tα which in turn
yields

[x, y] = K(x, y)tα.

4. Assume α(tα) = K(tα, tα) = 0. Choose x ∈ gα and y ∈ g−α
such that K(x, y) = 1 so that [x, y] = tα and [tα, x] = [tα, y] = 0.
One can consider Span{x, y, tα} as a solvable subalgebra of gl(g); thus,
its commutator containing tα is nilpotent; since it is in h, it is as well
semisimple, that is adtα = 0 or tα is in the center of g.

5. If x ∈ gα and y ∈ g−α so that K(x, y) = c, we have

[x, y] = ctα, [ctα, x] = cα(tα)x, [ctα, y] = −cα(tα)y.

Thus, if we set c = 2
K(tα,tα)

, we get the required sl2-triple. �

13.2.4.
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Let Sα be the Lie subalgebra of g spanned by an element x ∈ gα,
y ∈ g−α such that [x, y] = hα := 2tα

K(tα,tα)
and hα. Note that we cannot,

at the moment, claim that Sα so defined is unique.
The map Sα - g is a map of Lie algebras and Sα acts on g via

the adjoint action. The elements of gβ have weight β(hα) = 2
K(tα,tβ)

K(tα,tα)
.

In particular, α(hα) = 2.
We know that g decomposes, as Sα-module, into a direct sum of irre-

ducible modules whose structure we can read off the occuring weights.
Consider the vector subspace M of g of the form

M = h⊕c∈k∗ gcα.
This is a Sα-submodule since [gα, gβ] ⊂ gα+β. Since the weights of M
with respect to Sα are even ( hα(kα) = 2k!), M is a sum of simple
Sα-modules having even highest weight. Each such simple module has
precisely one-dimensional zero weight space, so the number of such
components is dim h. But h = k · hα⊕ h′ where h′ = {h ∈ h|α(h) = 0},
and each element of h′ generates a one-dimensional Sα-submodule. This
allows us to completely determine the decomposition of M as a Sα-
module: M = Sα ⊕ h′.

This immediately implies the following property of the root systems
and corresponding Lie algebras:

Proposition.

1. Let α and cα belong to a root system ∆. Then c = ±1.
2. For each α ∈ ∆ one has dim gα = 1.

13.2.5. Let us now fix β ∈ ∆ and put

M = ⊕c∈Z gβ+cα.

Once more, M is an Sα-submodule of g. For each c ∈ Z such that
β + cα ∈ ∆ the space gβ+cα is a one-dimensional subspace of M of
weight (β + cα)(hα) = β(hα) + 2c. These numbers have to be integers
since the module M is finite dimensional. Thus, β(hα) ∈ Z for all α
and β.

Since there are no multiplicities, M is simple. This has a far-reaching
implication.

Proposition 13.2.6. Let I = {c ∈ Z|β+ cα ∈ ∆} be nonempty. Then
I has form [−m,n] where m,n ∈ Z and n −m = −β(hα). Moreover,
if α, β and α + β are in ∆ then [gα, gβ] = gα+β.

The segment I defined above is called the α-string through β.
We are now ready to prove the main property of root systems.
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For α, β ∈ ∆ define (α, β) = K(tα, tβ). This is the scalar product on
h∗ obtained from K via the isomorphism h→ h∗ induced (once more)
by K.

For α ∈ ∆ denote by sα the reflection of h∗ with respect to the
hyperplane orthogonal to α. The formula for sα reads

sα(x) = x− x(hα)α = x− 2
(x, α)

(α, α)
α.

In particular, sα(α) = −α and for β ∈ ∆ one has sα(β) = β − β(hα)α.
Note tat β(hα) is integer and always belongs to the segment I describing
the α-string passing through β. In effect, if I = [−m,n], one has
n−m = −β(hα) so −m ≤ −β(hα) ≤ n as required.

13.2.7. The habe proven that the set ∆ ∈ h∗ spans the whole h∗

and is symmetric with respect to any hyperplane orthogonal to α ∈ ∆.
It is easy to check that the base field k plays no role in the story as

the vectors ∆ lie in a certain real (or even rational) vector space of the
same dimension. This observation is important since it allows usage of
positively definite forms and this turn out to help in classification.

Definition 13.2.8. A finite subset ∆ of a real vector space V is called
a root system if it spans V and if for any α ∈ ∆ the reflection with
respect to a hyperplane orthogonal to α, carries ∆ to ∆.

13.3. Example: sl(n). To describe a root system of sl(n), it is con-
vinient to start from gl(n). The latter is reductive: gl(n) = sl(n)×Cz
and we can define a maximal toral subalgebra in the same manner; it
is easy to check that such a subalgebra is of the form h′ = h×Cz where
h is a maximal toral subalgebra of sl(n).

The natural choice for h′ is the set of diagonal matrices

h′ := {
∑

aiEi,i, ai ∈ C}.

The natural choice for h is the set of traceless diagonal matrices

h := {
∑

aiEi,i|
∑

ai = 0}.

Let {εi}ni=1 be a basis of (h′)∗ which is dual to the basis Ei,i. Since
h is a subspace of h′, the dual space h∗ may be naturally viewed as a
factor space

h∗ = span{εi}ni=1/
n∑
i=1

εi.

In this notation, one has

∆ := {εi − εj}i 6=j.
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The sl(2) triple corresponing to (εi − εj) is

Ei,j, hεi−εj := Ei,i − Ej,j, Ej,i.
The (εi − εj)-strings take form

εk − εi; εk − εj.
Therefore the integers β(hα) are

(εk − εi)(hεi−εj) = −1

(εi − εj)(hεi−εj) = 2

(εk − εj)(hεi−εj) = 1

where k 6= i, j and zero for all remaining cases.

13.4. Example: sp(n) (n = 2l). This is a Lie subalgebra of gl(n)
which consists of all matrices T satisfying TA+ AT t = 0 where

A =

 0 | Il
−− − −−
−Il | 0


and Il stands for the identity l × l matrix.

The matrices in sp(n) are of the form

Tx,y,z :=

 x | y
−− − −−
z | −xt


where x, y, x are l × l matrices and y, z are symmetric: yt = y, zt = z.
We have a natural embedding gl(l) ⊂ sp(2l) (x 7→ Tx,0,0).

Let h be the set of diagonal matrices

h := {
l∑

i=1

ai(Ei,i − El+i,l+i)}

(it corresponds to h′ in the previous example). Retain notation for the
dual basis.

Obviously this is a commutative Lie subalgebra. To check that h is a
maximal toral subalgebra, let us show that it consists of ad-semisimple
elements and coincides with the own centralizer (so it is a maximal
commutative subalgebra).

Indeed, if x = Ei,j, y = z = 0 then Tx,0,0 has weight εi − εj (in this
example i, j are assumed to be distinct integeres from 1 to l).

If x = 0, y = Ei,i then T0,y,0 = Ei,l+i and has weight 2εi.
Similarly, if x = 0, z = Ei,i then T0,0,z = El+i,i and has weight −2εi.
If x = 0, y = Ei,j + Ej,i then T0,y,0 has weight εi + εj.
If x = 0, z = Ei,j + Ej,i then T0,0,z has weight −(εi + εj).
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Thus h is a maximal toral subalgebra and

∆ := {εi − εj;±(εi + εj);±2εi}.
We have the following sl(2)-triples. The sl(2) triple corresponing to

(εi − εj) comes from gl(l) ⊂ sp(2l) and takes form

Ei,j−El+j,l+i, hεi−εj := (Ei,i−Ej,j)−(El+i,l+i−El+j,l+j), Ej,i−El+i,l+j.
The sl(2) triple corresponing to 2εi is

Ei,l+i, hεi+εj := Ei,i − El+i,l+i, El+i,i
Finally, the sl(2) triple corresponing to (εi + εj) is

Ei,l+j+Ej,l+i, hεi+εj := (Ei,i+Ej,j)−(El+i,l+i+El+j,l+j), El+j,i+El+i,j.

Examples of strings:

2ε2 − string : ε1 − ε2, ε1 + ε2;

(ε1 − ε2)− string : 2ε2, ε1 + ε2, 2ε1;

(ε1 + ε2)− string : −2ε2, ε1 − ε2, 2ε1.

The numbers < α, β >= α(hβ):

< ε1 − ε2, 2ε2 >= −1, < ε1 + ε2, 2ε2 >= 1

< 2ε2, ε1 − ε2 >= −2, < 2ε2, ε1 + ε2 >= 2


