
INTRODUCTION TO LIE ALGEBRAS.
LECTURE 12.

12. Levi theorem. Reductive algebras

12.1. Levi theorem. Recall that a Lie algebra g is semisimple if it
has no solvable ideals. Recall as well that any Lie algebra has a max-
imal solvable ideal R (called the radical). Thus, the quotient g/R is
semisimple (prove this!).

We will prove today that (to some extent) g is defined by R and
g/R. More precisely, we will prove the following Levy theorem.

Theorem 12.1.1. Let f : g→ L be a surjective Lie algebra homomor-
phism with L semisimple. Then there exists a Lie algebra homomor-
phism s : L→ g splitting f , that is satisfying f ◦ s = idL.

Let I = Ker(f). One has obviously g = I ⊕ s(L) as vector spaces;
I is an ideal in g and s(L) is a Lie subalgebra. Since I is an ideal,
[s(x), y] ∈ I for all x ∈ L and y ∈ I, so the formula

x(y) := [s(x), y]

define as action of L on I. Moreover, adx|I is obviously a derivation
of I for all x ∈ L. Vice versa, given a Lie algebra homomorphism
a : L→ Der(I), one reconstructs the Lie algebra structure on g := I⊕I
by the formula

[(x, y), (x′, y′)] = ([x, x′], [y, y′] + a(x)(y′)− a(x′)(y)).

The above construction is called semidirect product of L and I. In
case a = 0 this is just a direct product of Lie algebras.

Corollary 12.1.2. Any Lie algebra is a semidirect product of its radical
with a semisimple Lie algebra.

An image s(L) of the quotient L of a Lie algebra by the radical is
called a Levi factor. Note that Levi factor is not unique as there is a
freedom in the choice of the section s.

12.1.3. Proof of Levy theorem
Step 1. Reduce the problem to the case I is a simple g-module.

This is done by induction in dimension of I.
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If I is not commutative, I contains an ideal J of smaller (nonzero)
dimension. By induction, the projection g/J → L splits, so that there
exists t : L → g/J with g/J = t(L) ⊕ I/J . Let h be the preimage of
t(L) in g. This is a subalgebra in g having a projection h→ L with the
kernel J . Once more by induction there is a splitting of this projection.

Step 2. Let R be the radical of g. Since f(R) is solvable ideal
in L (f is surjective so the image of an ideal is ideal), f(R) = 0 so
R ⊂ I. Since I has no submodules, R = 0 or R = I. If R = 0, g is
semisimple and any ideal in it is a direct factor. Thus, we can assume
R = I. Therefore [I, I] = 0 since I 6= [I, I] and I has no submodules.
Therefore, I is commutative.

Step 3. Consider the case g acts trivially on I. Then I is the center
of g and belongs to the kerner of the adjoint action (of g on g). This
means that g is g/I = L-module and therefore by complete reducibility
I has a direct complement which is automatically an ideal isomorphic
to L.

Step 4. From now on we asume I is simple nontrivial g-module and
[I, I] = 0.

We have to find a Lie subalgebra K in g isomorphic to L and com-
plement to I: I ⊕ K = g. The idea of doing so is the following. We
will present a g-module W and an element w ∈ W such that K will
appear as the stabilizer of w, that is K = {x ∈ g|xw = 0}.

Then, in order to have K ⊕ I = g, we will require that the linear
map

a : g→ W, a(x) = xw

satisfy the following properties.

• a|I is injective.
• a(g) = a(I).

Stabilizer of any element is always a Lie subalgebra; the isomorphism
K → L will immediately follow from the isomorphism theorem.

Let us construct W and w. Put W = Hom(g, g) with the action
induced by the adjoint action on g. Define the following subspaces in
W .

P = {adg(a), a ∈ I}.
Q = {φ ∈ W |φ(g) ⊂ I&φ(I) = 0}.

R = {φ ∈ W |φ(g) ⊂ I & φ|I = λ · idI , λ ∈ k}.
The subspaces P,Q,R are g-submodules of W .
For instance, the equality x · ada = ad[x,a] proves that P is a g-

submodule. The fact that Q and R are g-submodules can be also
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checked by a calculation. Otherwise, one can identify the subspace Q
with Hom(g/I, I) and R with the fiber product

R = Hom(g, I)×Hom(I,I) k,

which proves Q and R are g-submodules.
One has a short exact sequence of g-modules

0→ Q→ R→ k → 0

where k is the trivial representation.
Furthermore, P ⊂ Q and one deduces the following short exact se-

quence

0→ Q/P → R/P → k → 0.

Note that I acts trivially on the quotients, so this is a short exact
sequence of L-modules. Therefore, it splits, so that there exists an
element w̄ in R/P such that R/P = Q/P ⊕ kw̄. We choose w ∈ R
to be the preimage of w̄. The element w so chosen is a linear map
g → I spliting whose restriction on I is identity and such that any
x ∈ g carries it to an element of form ada with a ∈ I. Note that
x(w) = [adx, w].

Let us check this is precisely what we wanted to find. If a ∈ I and
aw = 0, we have [ada, w] = 0 that is ada ◦ w(x) = w ◦ ada(x) that is

w([a, x]) = [a, w(x)] = 0

for all x. Since [a, x] ∈ I and w|I = id, this gives that [x, a] = 0 for
all x, which is possible only if a = 0 since I does not contain trivial
subrepresentation.

It remains to check the second property. It says that for any x ∈ g
there exists a ∈ I such that xw = aw. We know that xw = ada

for some a ∈ I. But aw(x) = [ada, w](x) = [a, w(x)] − w([a, x]) =
−w([a, x]) = −[a, x] since w|I = id. Thus, xw = −aw.

Theorem is proven.

12.2. Reductive Lie algebras. A finite dimensional algebra g is called
reductive if g considered as the g-module via the adjoint action, is com-
pletely reducible.

A semisimple algebra is reductive. A commutative algebra is reduc-
tive.

Lemma 12.2.1. A product of two reductive algebras is reductive.

Theorem 12.2.2. Any reductive Lie algebra is a direct product of a
semisimple and of a commutative algebra.
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Proof. Submodules of g are just ideals. If I and J are two ideals such
that I ∩ J = 0, then [I, J ] = 0 since [I, J ] ⊂ I ∩ J . This implies that
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