
INTRODUCTION TO LIE ALGEBRAS.
LECTURE 11.

11. Complete reducibility

11.1. The aim of this section is proving the following important theo-
rem.

Theorem 11.1.1. Let g be a semisimple Lie algebra. Then each finite
dimensional g-module is completely reducible.

Note that the theorem has already been proven for g = sl2. We
have as well seen that the complete reducibility fails for non-finitely
dimensional modules — nonsimple Verma modules are indecomposable
into a sum of irreduclible modules. Therefore, this theorem is as general
as possible. We will see later on that the converse of the theorem is
also correct: if g is a finite dimansional Lie algebra such that all finite
dimensional g-modules are completely reduclible, then g is semisimple.

The proof will result from a sequence of steps. One of the steps is a
long digression about tensor algebra of g-modules.

11.2. Step 1: Killing. Let g be semisimple and ρ : g → gl(V ) be
injective. Then the Killing form Bρ given by the formula Bρ(x, y) =
TrV (ρ(x)ρ(y)), is nondegenerate.

In effect, the I = Ker(Bρ) is an ideal. It is solvable by Cartan
criterion. Therefore, it vanishes.

11.3. Step 2: Casimir. Let B be a non-degenerate invariant sym-
metric bilinear form on g (here g is not required to be semisimple!).
Let x1, . . . , xn be a basis in g and let y1, . . . , yn be the dual basis:
B(xi, yj) = δij. We claim that the endomorphism

Q =
∑

xiyi : V - V

does not depend on the choice of the basis x1, . . . , xn, commutes with
any g-homomorphism of representations and with the action of g.

A proof via a direct calculation.
Let x′i =

∑
aijxj. Then yi =

∑
ajiy

′
j and∑

xiyi =
∑

ajixiy
′
j =

∑
x′iy
′
i.
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This means that the resulting operator does not depend on the
choice of a basis in g. The homomorphism Q commutes with any
g-homomorphism since this is true for any expression of this kind. Let
us check it commutes with the action of g. We have to prove that for
any z ∈ g one has ∑

i

zxiyi =
∑
i

xiyiz : V → V,

or, in other words, that one has the following identity

[z,
∑

xiyi] = 0

in endomorphisms of any g-module V . Note that

[z,
∑

xiyi] =
∑
i

[z, xi]yi +
∑
i

xi[z, yi].

Since the form is invariant,

B([z, xi], yj) +B(xi, [z, yj]) = 0,

which implies that

[z, xi] =
∑

B([z, xi], yj)xj = −
∑

B(xi, [z, yj])xj

and similarly

[z, yi] =
∑

B([z, yi], xj)yj.

Therefore,∑
i

[z, xi]yi+
∑
i

xi[z, yi] = −
∑

B(xi, [z, yj])xjyi+
∑

B([z, yi], xj)xiyj = 0.

We will present later on a more “scientific” explanation of this fact.

11.4. Step 3: Calculation. Let B = Bρ as in Step 1 and Q be the
corresponding Casimir endomorphism of V . Then TrV (Q) = dim g.

11.5. Step 4: V simple. Assume now that V is simple. Then by
Schur lemma Q is an isomorphism since it is nonzero.

11.6. Step 5: A special case. Assume there is a pair V ⊂ W of
g-modules so that W/V is one-dimensional. We claim that in this
case W is isomorphic to the direct sum V ⊕ k where k is the trivial
one-dimensional nmodule.

First of all, any one-dimensional moduleM is defined by a Lie algebra
homomorphism g - k which sends [g, g] = g to zero. Thus, M is
trivial.

We will prove by induction on the dimension of V that the embedding
V ⊂ W splits, that is W is isomorphic to V ⊕ k. The splitting of
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the embedding is equivalent to esistence of element w ∈ W such that
xw = 0 for each x ∈ g and W = V + kw.

First of all, we will show that V can be assumed to be irreducible. In
effect, if V ′ is a nontrivial submodule of V , we can factor both V and
W by V ′ and get an embedding V̄ = V/V ′ ⊂ W̄ = W/V ′ of representa-
tions of codimension one, having smaller dimension of the submodule
V̄ . Then by the inductive assumption there exists an element w̄ ∈ W̄
with xw̄ = 0 for all x ∈ g such that W̄ = V̄ + kw̄. Look at the natural
projection π : W → W̄ of g-modules. The submodule kw̄ is a trivial
subrepresentation of W̄ , so W ′ := π−1(kw̄) is a subrepresentation of
W containing V ′ = Ker(π). Since W ′/V ′ = kw̄ has dimension one, we
can use induction to lift w̄ to W . The above reasoning shows that we
can assume V is irreducible.

Now we will show we can assume that the map g→ gl(V ) is injective.
In effect, let I be the kernel of this map. This means that any x ∈ I
annihilates V . Also any x ∈ g carries W to V since the quotient is the
trivial representation. Therefore, [I, I] annihilates W . Since an ideal
of a semisimple Lie algebra is semisimple, [I, I] = I and therefore both
V and W are g/I-modules. The latter is also semisimple, so we can
reduce the problem to the case I = 0.

After all reductions made, we have the following. A simple g module
V is a submodule of W such that the quotient is the trivial represen-
tation. The map ρ : g → gl(V ) is injective. Look now at the Casimir
Qρ : W → W . Its restriction to V is multiplication by a nonzero con-
stant, and its action on W/V is zero. Therefore, Qρ is degenerate and
KerQρ is one-dimensional. This is a g-submodule, so this is precisely
what we were looking for.

11.7. The general case. We wish to prove that any g-submodule
V of a finite dimensional g-module W is a direct summand. In other
words, that there is another submodule U of W so that W = V ⊕ U .
This will imply complete reducibility.

We already know this in the special case V has codimension one in
W . We will prove the general claim deducing it from the special case.

The idea of the proof goes as follows. In order to find the direct
summand U , we have to find a g-homomorphism π : W → V whose
restriction on V is identity. Then U := Ker(π) would solve the problem.

This can be encoded as follows. Denote Hom(W,V ) the set of linear
transformations from W to V . Let H ⊂ Hom(W,V ) be the collection
of transformations φ : W → V such that their restriction to V is a
multiplication by a scalar. The map p : H → k assigns to any φ ∈ H
this scalar.
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The kernel of this map is the collection of φ : W → V such that
φ(V ) = 0. It identifies with the set of linear maps Hom(W/V, V ).

Thus, the vector space Hom(W/V, V ) is a subspace of H having
codimension 1. We will now show that H has a natural structure of
g-module and the map π : H → k is a morphism of g-modules (where
k has the trivial g-module structure). Then by the previous step there
is an element π ∈ H such that xπ = 0 for all x ∈ g and p(π) = 1. This
is the map π : W → V we were looking for.

11.8. Digression: Operations with g-modules. Let V and W be
g-modules. In this subsection we will define the tensor product V ⊗W
and the module Hom(V,W ). Then we will study various connections
with the objects defined.

11.8.1. Hom
Let V, W be g-modules. Define on the vector space Hom(V,W ) of

the linear maps from V to W a structure of g-module as follows.
Given f :∈ Hom(V,W ) and x ∈ g we define xf : V → W by the

formula

(xf)(v) = x(f(v))− f(x(v)).

The construction being obviously linear in x and in f , we have only to
check that [x, y](f) = x(y(f))− y(x(f)). We leave this as an exercise.

An obvious special case: if V = k is the trivial representation, the
assignment

f ∈ Hom(k,W ) 7→ f(1) ∈ W
defines a bijection between Hom(k,W ) and W ; this bijection is an
isomorphism of g-modules.

Another special case — the g-module structure on the dual space
V ∗ = Hom(V, k). Here the action of g on the second argument k is
assumed to be trivial. We have here

(xf)v = −f(xv).

Lemma 11.8.2. The invariant elements of Hom(V,W ) are precisely
the g-maps f : V → W of modules.

�

11.8.3. Tensor product Reall first of all what is the tensor product
of vector spaces. Given V, W two vector spaces. Let U be a third
vector space. A bilinear map φ : V ×W → U is a map which is linear
in each argument. Given a bilinear map φ as above, and a linear map
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f : U → U ′, the composition f ◦φ : V ×W → U ′ is also bilinear. Thus,
a map

f∗ : Bil(V,W : U)→ Bil(V,W : U ′)

is induced where Bil(V,W : U) denotes the set of bilinear maps V ×
W → U .

A bilinear map Φ : V ×W → Z is called universal if the map

Hom(Z,U)→ Bil(U, V : U)

sending f to f ◦ Φ, is a bijection.

Lemma 11.8.4. If Φ : V ×W → Z and Φ′ : V ×W → Z ′ are both
universal, there exists a unique isomorphism θ : Z → Z ′ such that

Φ′ = θ ◦ Φ.

Proof. By universality of Φ there exists a unique θ satisfying the above
property. By the uniqueness of Φ′, there exists a unique θ′ : Z ′ → Z
such that Φ = θ′ ◦ Φ′. This implies that Φ′ = θ ◦ θ′ ◦ Φ. Once more by
the universality of Φ we deduce that θ ◦ θ′ is identity. �

We have proven that a universal bilinear map is essentially unique,
if it exists. We will now prove the existence.

Chooce a basis v1, . . . , vn in V and a basis w1, . . . , wm in W . Define
a vector space Z as the one spanned by a basis {zij} where i runs from
1 to n and j from 1 to m. Define the bilinear map Φ : V ×W → Z by
the formula

Φ(vi, wj) = zi,j.

In a more detail, if v =
∑
civi and w =

∑
djwj, we have

Φ(v, w) =
∑

cidjzi,j.

Now any bilinear map φ : V ×W → U is uniquely defined by the linear
map f : Z → U given by f(zi,j) = φ(vi, wj).

Notation. Let Φ : V ×W → Z be a universal bilinear map. The
veector space Z is denoted V ⊗ W : the element Φ(v, w) is denoted
v⊗w. Note that a general element of V ⊗W does not necessarily have
form v ⊗ w; it is a linear combination of such elements.

11.8.5. Tensor product of g-modules
Let now V, W be g-modules. For each x ∈ g we define a map

x : V ⊗W → V ⊗W as the one defined uniquely by the bilinear map

V ×W → V ⊗W
given by the formula x(v, w) = xv ⊗ w + v ⊗ xw.
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11.8.6. Some identities A bilinear map φ : V ×W → U can be
equally interpreted as a linear map from V ⊗W → U or as a linear
map from V to Hom(W,U). This defined a canonical isomorphism

Hom(V ⊗W,U) = Hom(V,Hom(W,U)).

If the vector spaces are g-modules, the above isomorphism is an iso-
morphism of g-modules.

A linear transformation V ∗ ⊗ W → Hom(V,W ) is defined by the
formula

f ⊗ w 7→ u, u(v) = f(v)w.

One can easily see that it is an isomorphism provided V or W is finite
dimensional. In case V and W are g-modules, this isomorphism is an
isomorphism of g-modules.

Finally, it is worthwhile to mention that the g-invarirant part of
Hom(V,W ) is precisely the set of g-homomorphisms from V to W . In
effect, let f ∈ Hom(V,W ), x ∈ g. Then (xf)(v) = x(f(v))− f(xv), so
xf = 0 iff f commutes with the action of x. Thus, xf = 0 for all x iff
f commutes with the action of g.


