
INTRODUCTION TO LIE ALGEBRAS.
LECTURE 10.

10. Jordan decomposition: theme with variations

10.1. Recall that f ∈ End(V ) is semisimple if f is diagonalizable (over
the algebraic closure of the base field). Equivalently, this means that V
admits a basis of eigenvectors. Equivalently, this means that the mini-
mal polynomial for f has distinct roots. This formulation is convenient
to prove that if W is an invariant subspace of V and f is semisimple,
then f |W is semisimple as well.

Proposition 10.1.1. Let x ∈ End(V ).

1. There exist unique elements s, n ∈ End(V ) such that x = s+n,
s is semisimple, n is nilpotent and [s, n] = 0.

2. There exist polynomials p, q ∈ k[t] with no constant term, such
that s = p(x), n = q(x). Thus, s and n commute with every
endomorphism commuting with x.

3. If A ⊆ B ⊆ V and x(B) ⊆ A then s(B) ⊆ A and n(B) ⊆ A.

Proof. Existence in 1. follows from the standard linear algebra theorem
(Jordan decomposition).

Let ai, i = 1, . . . , k be the eigenvalues of x with multiplicities mi.
Then V =

∑
Vi and the characteristic polynomial of x|Vi is (t− ai)mi .

If we define s by the condition s|Vi = ai and n = x−s, we get a required
decomposition.

The claim 2 seems to be ugly. It will, however, help us to prove the
rest of the claims (including the uniqueness part of claim 1).

We claim there is a polynomial p ∈ k[t] such that
p ≡ ai mod (t − ai)

mi and p ≡ 0 mod t (the proof see below; this
claim is called Chinese remander theorem).

Then for each i p(x) = ai+(x−ai)mi = ai. This proves that p(x) = s.
If we put q = t− p, we get q(x) = n.

Thus, we have proven claim 2 for the specific decomposition x = s+n.
Let us now prove uniqueness of the decomposition. Let x = s + n =
s′ + n′. Since s′ and n′ commute with x and s = p(x), n = q(x), s′

commutes with s and n′ commutes with n. Then one has

s− s′ = n′ − n.
1
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The sum of two commuting nilpotent elements is nilpotent. The sum
of two commuting semisimple elements is semisimple. A nilpotent
semisimple element is zero. This together gives the uniqueness claim.

Finally, since p, q have no constant term, the claim 3 follows. �

Here is Chinese Remainder theorem.

Lemma 10.1.2. Let f1, . . . , fk be pairwise coprime polynomials in k[t].
Let ai, . . . ak ∈ k[t]. Then there exists a polynomial p ∈ k[t] satisfying
the equality

p ≡ ai mod (fi).

Proof. For each i we have a canonical homomorphism

πi : k[t]→ k[t]/(fi).

Together they yield a homomorphism

π : k[t] -
∏
i

k[t]/(fi).

The kernel of π consists of polynomials divisible by all fi. Since all
fi are pairwise coprime, the kernel of π is the ideal generated by the
product f =

∏
fi.

The map π̄ : k[t]/(f)→
∏

i k[t]/(fi) induced by π is injective. Since
the dimensions of the source and the target as vector spaces over k
are the same, π̄ is surjective. This implies there is a polynomial whose
image under πi is ai. �

Lemma 10.1.3. Let x ∈ End(V ), x = s + n. Then adx = ads + adn
is the Jordan-Chevalley decomposition of adx.

Proof. ads is semisimple and adn is nilpotent (see Lemma in Engel
theorem). They commute:

ads ◦ adn(f) = snf − sfn− nfs+ fns = adn ◦ ads(f),

since s and n commute. �

10.2. Replicas. The following trick is difficult to grasp.
Let φ : k - k be a Q-linear map.
Let s : V → V be a semisimple endomorphism. This means that V is

uniquely decomposed as V = ⊕Vi where Vi is the eigenspace for s with
an eigenvalue λi. Then we define φ(s) as the semisimple endomorphism
of V acting on Vi as φ(λi) · id.

We will call φ(s) a replica of s. Choose a polynomial P ∈ k[t] such
that P (0) = 0, P (λi) = φ(λi). This is always possible since φ(0) = 0.
Then obviously φ(s) = P (s).
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Lemma 10.2.1. Let s ∈ End(V ) be semisimple. Then for each φ one
has

φ(ads) = adφ(s).

Proof. Choose a basis x1, . . . , xn of eigenvectors in V . Then End(V )
has a basis eij defined by the formula eij(xk) = δjkxi (Kronecker’s
delta). If s(xi) = λixi, then

ads(eij) = (λi − λj)eij.
Since φ(λi − λj) = φ(λi)− φ(λj), the result follows. �

Corollary 10.2.2. Let u = s + n be the canonical decomposition of
an endomorphism of V . Let A ⊂ B ⊂ End(V ) be subspaces satisfying
the condition adu(B) ⊂ A. Then for each φ : k → k over Q one has
adφ(s)(B) ⊂ A.

Proof. We already know that ads is the semisimple part of adu, so
ads(B) ⊂ A. Since φ(ads) = adφ(s) is a polynomial without constant
term of ads, we are done. �

Lemma 10.2.3. Let u = s+n be a decomposition of an endomorphism
of V as above. If TrV (uφ(s)) = 0 for all φ : k → k over Q, then s = 0
that is u is nilpotent.

Proof. Choose a basis of V so that s is diagonal and n is upper-
triangular. The trace will be

Tr(uφ(s)) =
∑
i

miλiφ(λi),

where mi are the multiplicities of the respective eigenvalues. Choose φ
whose image belongs to Q. Then

0 = φ(Tr(uφ(s))) =
∑

miφ(λi)
2

which is possible only when φ(λi) = 0. If this is valid for all φ : k → Q,
all eigenvalues are equal to zero. �

We are ready now to prove Cartan criterion.

Theorem 10.2.4. Let L ⊂ gl(V ) be a Lie subalgebra. The following
conditions are equivalent:

• L is solvable.
• TrV (xy) = 0 for x ∈ L, y ∈ [L,L].

Proof. First of all, we can assume that k is algebraically closed. If L
is solvable, V admits a basis for which L consists of upper-triangulate
matrices. Then [L,L] consists of strictly upper-triangulate matrices,
and the trace vanishes.
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Let us now prove the converse. It suffices to check that [L,L] consists
of nilpotent elements: then by Engel theorem [L,L] is a nilpotent Lie
algebra and then L is solvable.

Let u ∈ [L,L]. Write u = s + n as above. According to the lemma,
it suffices to check that TrV (uφ(s)) = 0 for all φ.

Let u =
∑
ci[xi, yi]. We have

Tr(uφ(s)) =
∑

ciTr([xi, yi]φ(s)) =
∑

ciTr(yi[φ(s), xi]).

It remains now to prove that the brackets [φ(s), xi] belong to [L,L].
This follows from Proposition 10.1.1(3) applied to A = [L,L] and B =
L.

�

10.3. Let L be a semisimple Lie algebra. Each element x ∈ L defines
an endomorphism adx ∈ End(L) which has a unique semisimple and
nilpotent part

adx = s+ n.

We will see later that the elements s and t can be also expressed (in a
unique way) as

s = adxs ; n = adxn .

The presentation x = xs + xn is called the abstract Jordan decomposi-
tion.

The existence of such decomposition in a semisimple Lie algebra is
a first step in the classification of semisimple Lie algebras.

Lemma 10.3.1. Let V be a finite dimensional algebra and D = Der(V ).
If x = s+ n ∈ D then s ∈ D, n ∈ D.

Proof. Let V = ⊕aVa be the decomposition of V into generalized
eigenspaces with respect to the eigenvalues of x. We claim that Va ·Vb ⊆
Va+b. In fact, if v ∈ Va, w ∈ Vb, so that

(x− a)iv = 0, (x− b)jw = 0,

then

(1) (x− a− b)i+j(vw) =
∑
k

(
i+ j

k

)
(x− a)i+j−k(v)(x− b)k(w) = 0.

In formula (1) we used the identity

(2) (x− a− b)n(vw) =
∑
k

(
n

k

)
(x− a)n−k(v)(x− b)k(w)
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which can be easily proven by induction. In fact, For n = 1 we have
an obvious claim

(x− a− b)(vw) = (x− a)(v) · w + v · (x− b)(w).

ASsuming it for n, we can apply it to (x − a − b)(vw) and, using the
standard binomial identities, get the required formula.

The endomorphism s has value a on Va. Therefore, Leibniz identity
is obvious for s.

Finally, since x, s ∈ D, n = x− s is in D as well. �

Proposition 10.3.2. Let L be semisimple. Then the map

ad : L - Der(L)

is a Lie algebra isomorphism.

Proof. L is semisimple, therefore, has no center. Thus, ad : L - D =
Der(L) is injective. Identify L with ad(L). We claim L is an ideal in
D. In fact, if x ∈ L and d ∈ D then [d, adx] = add(x)].

Let us check that the Killing form of D restricted to L, gives the
Killing form of L. Choose a base in L and complete it to a base in D.
Then one sees that for x, y ∈ L one has

TrD(adxady) = TrL(adxady)

since ady(D) ⊆ L and the trace depends on diagonal elements only.
Now, use that the Killing form of L is non-degenerate. This means

that L⊥ ∩ L = 0 which implies D = L ⊕ L⊥. By invariantness of the
Killing form, we deduce that L⊥ is an ideal. Therefore, [L,L⊥] = 0
that is D = L× L⊥.

Finally, if d ∈ L⊥ and x ∈ L then [d, adx] = add(x) which implies
that d(x) = 0. Thus, d = 0 and we are done. �

10.4. We are now ready to deduce the main result.

Proposition 10.4.1. Let L be a semisimple Lie algebra, x ∈ L. Then
there exist unique elements xs, xn ∈ L such that

• x = xs + xn, and the three elements commute with each other.
• adxs is semisimple and adxn is nilpotent.

Proof. adx is a derivation, therefore its semisimple and nilpotent parts
are derivations by Lemma 10.3.1. Then by Proposition 10.3.2 the
semisimple and nilpotent parts of adx come also from L. �
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Problem assignment, 8

1. Compute the basis in sl2 dual to the standard basis e, f, h with
respect to the Killing form.

2. Let L = L1 × L2 is a product of semisimple Lie algebras. Let
x ∈ L be presented x = x1 + x2 with xi ∈ Li. Prove that
xs = x1s + x2s.

3. Calculate the KLilling form for the two-dimensional non-abelian
Lie algebra.


