INTRODUCTION TO LIE ALGEBRAS. LECTURE 10.

10. Jordan decomposition: theme with variations

10.1. Recall that $f \in \operatorname{End}(V)$ is semisimple if f is diagonalizable (over the algebraic closure of the base field). Equivalently, this means that V admits a basis of eigenvectors. Equivalently, this means that the minimal polynomial for f has distinct roots. This formulation is convenient to prove that if W is an invariant subspace of V and f is semisimple, then $\left.f\right|_{W}$ is semisimple as well.

Proposition 10.1.1. Let $x \in \operatorname{End}(V)$.

1. There exist unique elements $s, n \in \operatorname{End}(V)$ such that $x=s+n$, s is semisimple, n is nilpotent and $[s, n]=0$.
2. There exist polynomials $p, q \in k[t]$ with no constant term, such that $s=p(x), n=q(x)$. Thus, s and n commute with every endomorphism commuting with x.
3. If $A \subseteq B \subseteq V$ and $x(B) \subseteq A$ then $s(B) \subseteq A$ and $n(B) \subseteq A$.

Proof. Existence in 1. follows from the standard linear algebra theorem (Jordan decomposition).

Let $a_{i}, i=1, \ldots, k$ be the eigenvalues of x with multiplicities m_{i}. Then $V=\sum V_{i}$ and the characteristic polynomial of $\left.x\right|_{V_{i}}$ is $\left(t-a_{i}\right)^{m_{i}}$. If we define s by the condition $\left.s\right|_{V_{i}}=a_{i}$ and $n=x-s$, we get a required decomposition.

The claim 2 seems to be ugly. It will, however, help us to prove the rest of the claims (including the uniqueness part of claim 1).

We claim there is a polynomial $p \in k[t]$ such that $p \equiv a_{i} \bmod \left(t-a_{i}\right)^{m_{i}}$ and $p \equiv 0 \bmod t$ (the proof see below; this claim is called Chinese remander theorem).

Then for each $i p(x)=a_{i}+\left(x-a_{i}\right)^{m_{i}}=a_{i}$. This proves that $p(x)=s$. If we put $q=t-p$, we get $q(x)=n$.

Thus, we have proven claim 2 for the specific decomposition $x=s+n$. Let us now prove uniqueness of the decomposition. Let $x=s+n=$ $s^{\prime}+n^{\prime}$. Since s^{\prime} and n^{\prime} commute with x and $s=p(x), n=q(x), s^{\prime}$ commutes with s and n^{\prime} commutes with n. Then one has

$$
s-s^{\prime}=n^{\prime}-n .
$$

The sum of two commuting nilpotent elements is nilpotent. The sum of two commuting semisimple elements is semisimple. A nilpotent semisimple element is zero. This together gives the uniqueness claim.

Finally, since p, q have no constant term, the claim 3 follows.
Here is Chinese Remainder theorem.
Lemma 10.1.2. Let f_{1}, \ldots, f_{k} be pairwise coprime polynomials in $k[t]$. Let $a_{i}, \ldots a_{k} \in k[t]$. Then there exists a polynomial $p \in k[t]$ satisfying the equality

$$
p \equiv a_{i} \quad \bmod \left(f_{i}\right)
$$

Proof. For each i we have a canonical homomorphism

$$
\pi_{i}: k[t] \rightarrow k[t] /\left(f_{i}\right) .
$$

Together they yield a homomorphism

$$
\pi: k[t] \longrightarrow \prod_{i} k[t] /\left(f_{i}\right) .
$$

The kernel of π consists of polynomials divisible by all f_{i}. Since all f_{i} are pairwise coprime, the kernel of π is the ideal generated by the product $f=\prod f_{i}$.

The map $\bar{\pi}: k[t] /(f) \rightarrow \prod_{i} k[t] /\left(f_{i}\right)$ induced by π is injective. Since the dimensions of the source and the target as vector spaces over k are the same, $\bar{\pi}$ is surjective. This implies there is a polynomial whose image under π_{i} is a_{i}.

Lemma 10.1.3. Let $x \in \operatorname{End}(V), x=s+n$. Then $\operatorname{ad}_{x}=\operatorname{ad}_{s}+\operatorname{ad}_{n}$ is the Jordan-Chevalley decomposition of ad_{x}.

Proof. ad_{s} is semisimple and ad_{n} is nilpotent (see Lemma in Engel theorem). They commute:

$$
\operatorname{ad}_{s} \circ \operatorname{ad}_{n}(f)=s n f-s f n-n f s+f n s=a d_{n} \circ \operatorname{ad}_{s}(f),
$$

since s and n commute.
10.2. Replicas. The following trick is difficult to grasp.

Let $\phi: k \longrightarrow k$ be a \mathbb{Q}-linear map.
Let $s: V \rightarrow V$ be a semisimple endomorphism. This means that V is uniquely decomposed as $V=\oplus V_{i}$ where V_{i} is the eigenspace for s with an eigenvalue λ_{i}. Then we define $\phi(s)$ as the semisimple endomorphism of V acting on V_{i} as $\phi\left(\lambda_{i}\right) \cdot \mathrm{id}$.

We will call $\phi(s)$ a replica of s. Choose a polynomial $P \in k[t]$ such that $P(0)=0, P\left(\lambda_{i}\right)=\phi\left(\lambda_{i}\right)$. This is always possible since $\phi(0)=0$. Then obviously $\phi(s)=P(s)$.

Lemma 10.2.1. Let $s \in \operatorname{End}(V)$ be semisimple. Then for each ϕ one has

$$
\phi\left(\mathrm{ad}_{s}\right)=\operatorname{ad}_{\phi(s)} .
$$

Proof. Choose a basis x_{1}, \ldots, x_{n} of eigenvectors in V. Then $\operatorname{End}(V)$ has a basis $e_{i j}$ defined by the formula $e_{i j}\left(x_{k}\right)=\delta_{j k} x_{i}$ (Kronecker's delta). If $s\left(x_{i}\right)=\lambda_{i} x_{i}$, then

$$
\operatorname{ad}_{s}\left(e_{i j}\right)=\left(\lambda_{i}-\lambda_{j}\right) e_{i j} .
$$

Since $\phi\left(\lambda_{i}-\lambda_{j}\right)=\phi\left(\lambda_{i}\right)-\phi\left(\lambda_{j}\right)$, the result follows.
Corollary 10.2.2. Let $u=s+n$ be the canonical decomposition of an endomorphism of V. Let $A \subset B \subset \operatorname{End}(V)$ be subspaces satisfying the condition $\operatorname{ad}_{u}(B) \subset A$. Then for each $\phi: k \rightarrow k$ over \mathbb{Q} one has $\operatorname{ad}_{\phi(s)}(B) \subset A$.
Proof. We already know that ad_{s} is the semisimple part of ad_{u}, so $\operatorname{ad}_{s}(B) \subset A$. Since $\phi\left(\operatorname{ad}_{s}\right)=\operatorname{ad}_{\phi(s)}$ is a polynomial without constant term of ad_{s}, we are done.

Lemma 10.2.3. Let $u=s+n$ be a decomposition of an endomorphism of V as above. If $\operatorname{Tr}_{V}(u \phi(s))=0$ for all $\phi: k \rightarrow k$ over \mathbb{Q}, then $s=0$ that is u is nilpotent.

Proof. Choose a basis of V so that s is diagonal and n is uppertriangular. The trace will be

$$
\operatorname{Tr}(u \phi(s))=\sum_{i} m_{i} \lambda_{i} \phi\left(\lambda_{i}\right),
$$

where m_{i} are the multiplicities of the respective eigenvalues. Choose ϕ whose image belongs to \mathbb{Q}. Then

$$
0=\phi(\operatorname{Tr}(u \phi(s)))=\sum m_{i} \phi\left(\lambda_{i}\right)^{2}
$$

which is possible only when $\phi\left(\lambda_{i}\right)=0$. If this is valid for all $\phi: k \rightarrow \mathbb{Q}$, all eigenvalues are equal to zero.

We are ready now to prove Cartan criterion.
Theorem 10.2.4. Let $L \subset \mathfrak{g l}(V)$ be a Lie subalgebra. The following conditions are equivalent:

- L is solvable.
- $\operatorname{Tr}_{V}(x y)=0$ for $x \in L, y \in[L, L]$.

Proof. First of all, we can assume that k is algebraically closed. If L is solvable, V admits a basis for which L consists of upper-triangulate matrices. Then $[L, L]$ consists of strictly upper-triangulate matrices, and the trace vanishes.

Let us now prove the converse. It suffices to check that $[L, L]$ consists of nilpotent elements: then by Engel theorem $[L, L]$ is a nilpotent Lie algebra and then L is solvable.

Let $u \in[L, L]$. Write $u=s+n$ as above. According to the lemma, it suffices to check that $\operatorname{Tr}_{V}(u \phi(s))=0$ for all ϕ.

Let $u=\sum c_{i}\left[x_{i}, y_{i}\right]$. We have

$$
\operatorname{Tr}(u \phi(s))=\sum c_{i} \operatorname{Tr}\left(\left[x_{i}, y_{i}\right] \phi(s)\right)=\sum c_{i} \operatorname{Tr}\left(y_{i}\left[\phi(s), x_{i}\right]\right) .
$$

It remains now to prove that the brackets $\left[\phi(s), x_{i}\right]$ belong to $[L, L]$. This follows from Proposition 10.1.1(3) applied to $A=[L, L]$ and $B=$ L.
10.3. Let L be a semisimple Lie algebra. Each element $x \in L$ defines an endomorphism $\operatorname{ad}_{x} \in \operatorname{End}(L)$ which has a unique semisimple and nilpotent part

$$
\operatorname{ad}_{x}=s+n .
$$

We will see later that the elements s and t can be also expressed (in a unique way) as

$$
s=\operatorname{ad}_{x_{s}} ; \quad n=\operatorname{ad}_{x_{n}} .
$$

The presentation $x=x_{s}+x_{n}$ is called the abstract Jordan decomposition.

The existence of such decomposition in a semisimple Lie algebra is a first step in the classification of semisimple Lie algebras.

Lemma 10.3.1. Let V be a finite dimensional algebra and $D=\operatorname{Der}(V)$. If $x=s+n \in D$ then $s \in D, n \in D$.

Proof. Let $V=\oplus_{a} V_{a}$ be the decomposition of V into generalized eigenspaces with respect to the eigenvalues of x. We claim that $V_{a} \cdot V_{b} \subseteq$ V_{a+b}. In fact, if $v \in V_{a}, \quad w \in V_{b}$, so that

$$
(x-a)^{i} v=0, \quad(x-b)^{j} w=0
$$

then

$$
\begin{equation*}
(x-a-b)^{i+j}(v w)=\sum_{k}\binom{i+j}{k}(x-a)^{i+j-k}(v)(x-b)^{k}(w)=0 . \tag{1}
\end{equation*}
$$

In formula (1) we used the identity

$$
\begin{equation*}
(x-a-b)^{n}(v w)=\sum_{k}\binom{n}{k}(x-a)^{n-k}(v)(x-b)^{k}(w) \tag{2}
\end{equation*}
$$

which can be easily proven by induction. In fact, For $n=1$ we have an obvious claim

$$
(x-a-b)(v w)=(x-a)(v) \cdot w+v \cdot(x-b)(w) .
$$

ASsuming it for n, we can apply it to $(x-a-b)(v w)$ and, using the standard binomial identities, get the required formula.

The endomorphism s has value a on V_{a}. Therefore, Leibniz identity is obvious for s.

Finally, since $x, s \in D, n=x-s$ is in D as well.
Proposition 10.3.2. Let L be semisimple. Then the map

$$
a d: L \longrightarrow \operatorname{Der}(L)
$$

is a Lie algebra isomorphism.
Proof. L is semisimple, therefore, has no center. Thus, ad : $L \longrightarrow D=$ $\operatorname{Der}(L)$ is injective. Identify L with $\operatorname{ad}(L)$. We claim L is an ideal in D. In fact, if $x \in L$ and $d \in D$ then $\left.\left[d, \operatorname{ad}_{x}\right]=\operatorname{ad}_{d(x)}\right]$.

Let us check that the Killing form of D restricted to L, gives the Killing form of L. Choose a base in L and complete it to a base in D. Then one sees that for $x, y \in L$ one has

$$
\operatorname{Tr}_{D}\left(\operatorname{ad}_{x} \mathrm{ad}_{y}\right)=\operatorname{Tr}_{L}\left(\operatorname{ad}_{x} \mathrm{ad}_{y}\right)
$$

since $\operatorname{ad}_{y}(D) \subseteq L$ and the trace depends on diagonal elements only.
Now, use that the Killing form of L is non-degenerate. This means that $L^{\perp} \cap L=0$ which implies $D=L \oplus L^{\perp}$. By invariantness of the Killing form, we deduce that L^{\perp} is an ideal. Therefore, $\left[L, L^{\perp}\right]=0$ that is $D=L \times L^{\perp}$.

Finally, if $d \in L^{\perp}$ and $x \in L$ then $\left[d, \mathrm{ad}_{x}\right]=\operatorname{ad}_{d(x)}$ which implies that $d(x)=0$. Thus, $d=0$ and we are done.
10.4. We are now ready to deduce the main result.

Proposition 10.4.1. Let L be a semisimple Lie algebra, $x \in L$. Then there exist unique elements $x_{s}, x_{n} \in L$ such that

- $x=x_{s}+x_{n}$, and the three elements commute with each other.
- $\mathrm{ad}_{x_{s}}$ is semisimple and $\mathrm{ad}_{x_{n}}$ is nilpotent.

Proof. ad_{x} is a derivation, therefore its semisimple and nilpotent parts are derivations by Lemma 10.3.1. Then by Proposition 10.3.2 the semisimple and nilpotent parts of ad_{x} come also from L.

Problem assignment, 8

1. Compute the basis in $\mathfrak{s l}_{2}$ dual to the standard basis e, f, h with respect to the Killing form.
2. Let $L=L_{1} \times L_{2}$ is a product of semisimple Lie algebras. Let $x \in L$ be presented $x=x^{1}+x^{2}$ with $x^{i} \in L_{i}$. Prove that $x_{s}=x_{s}^{1}+x_{s}^{2}$.
3. Calculate the KLilling form for the two-dimensional non-abelian Lie algebra.
