INTRODUCTION TO LIE ALGEBRAS.
LECTURE 10.

10. JORDAN DECOMPOSITION: THEME WITH VARIATIONS

10.1. Recall that f € End(V) is semisimple if f is diagonalizable (over
the algebraic closure of the base field). Equivalently, this means that 1/
admits a basis of eigenvectors. Equivalently, this means that the mini-
mal polynomial for f has distinct roots. This formulation is convenient
to prove that if W is an invariant subspace of V' and f is semisimple,
then f|y is semisimple as well.

Proposition 10.1.1. Let x € End(V).

1. There exist unique elements s,n € End(V') such that x = s+mn,
s is semisimple, n is nilpotent and [s,n] = 0.

2. There exist polynomials p,q € k[t] with no constant term, such
that s = p(x), n = q(x). Thus, s and n commute with every

endomorphism commuting with x.
3. fACBCV and x(B) C A then s(B) C A and n(B) C A.

Proof. Existence in 1. follows from the standard linear algebra theorem
(Jordan decomposition).

Let a;, © = 1,...,k be the eigenvalues of x with multiplicities m;.
Then V = > V; and the characteristic polynomial of x|y, is (¢t — a;)™:.
If we define s by the condition s|y; = a; and n = z—s, we get a required
decomposition.

The claim 2 seems to be ugly. It will, however, help us to prove the
rest of the claims (including the uniqueness part of claim 1).

We claim there is a polynomial p € k[t] such that
p = a; mod (t —a;)™ and p = 0 mod t (the proof see below; this
claim is called Chinese remander theorem).

Then for each i p(x) = a;+(r—a;)™ = a;. This proves that p(z) = s.
If we put ¢ =t — p, we get q(z) = n.

Thus, we have proven claim 2 for the specific decomposition z = s+n.
Let us now prove uniqueness of the decomposition. Let x = s+ n =
s+ n'. Since s’ and n’ commute with  and s = p(z), n = ¢(x),
commutes with s and n’ commutes with n. Then one has

s—s =n"—n.
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The sum of two commuting nilpotent elements is nilpotent. The sum
of two commuting semisimple elements is semisimple. A nilpotent
semisimple element is zero. This together gives the uniqueness claim.

Finally, since p, ¢ have no constant term, the claim 3 follows. 0]

Here is Chinese Remainder theorem.

Lemma 10.1.2. Let fi,. .., fr be pairwise coprime polynomials in klt].
Let a;, . ..ay € k[t]. Then there exists a polynomial p € k[t] satisfying
the equality

p=a; mod (f;).
Proof. For each i we have a canonical homomorphism

™ 2 k[t] = E[t]/(fi).
Together they yield a homomorphism

w o k] — [LR/(5).

The kernel of 7 consists of polynomials divisible by all f;. Since all
fi are pairwise coprime, the kernel of 7 is the ideal generated by the
product f =] fi-

The map 7 : k[t]/(f) — 1, k[t]/(f;) induced by 7 is injective. Since
the dimensions of the source and the target as vector spaces over k
are the same, 7 is surjective. This implies there is a polynomial whose
image under 7; is a;. O

Lemma 10.1.3. Let x € End(V), x = s +n. Then ad, = ad, + ad,
is the Jordan-Chevalley decomposition of ad,.

Proof. ady is semisimple and ad,, is nilpotent (see Lemma in Engel
theorem). They commute:

ads o ad,(f) =snf —sfn—nfs+ fns = ad, o ad,(f),

since s and n commute. O

10.2. Replicas. The following trick is difficult to grasp.

Let ¢ : k —— k be a Q-linear map.

Let s : V' — V be a semisimple endomorphism. This means that V' is
uniquely decomposed as V' = @V, where V; is the eigenspace for s with
an eigenvalue \;. Then we define ¢(s) as the semisimple endomorphism
of V acting on V; as ¢(\;) - id.

We will call ¢(s) a replica of s. Choose a polynomial P € k[t] such
that P(0) = 0, P(\;) = ¢(\;). This is always possible since ¢(0) = 0.
Then obviously ¢(s) = P(s).
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Lemma 10.2.1. Let s € End(V') be semisimple. Then for each ¢ one
has

¢(ads) = add)(s)
Proof. Choose a basis xy,...,x, of eigenvectors in V. Then End(V)
has a basis e;; defined by the formula e;;(x;) = d;z2; (Kronecker’s
delta). If s(z;) = A\jz;, then
ads(eij) = (/\z — )\j)eij.
Since ¢(A; — A;) = @(Ai) — &(A\;), the result follows. O
Corollary 10.2.2. Let u = s + n be the canonical decomposition of
an endomorphism of V. Let A C B C End(V) be subspaces satisfying

the condition ad,(B) C A. Then for each ¢ : k — k over Q one has
ad¢(s)(B) C A.

Proof. We already know that ad, is the semisimple part of ad,, so
ads(B) C A. Since ¢(ads) = ady(s is a polynomial without constant
term of ad,, we are done. O

Lemma 10.2.3. Let u = s+n be a decomposition of an endomorphism
of V as above. If Try(ug(s)) =0 for all ¢ : k — k over Q, then s =0
that is u is nilpotent.

Proof. Choose a basis of V' so that s is diagonal and n is upper-
triangular. The trace will be

Tr(ug(s Zmz e

where m; are the multiplicities of the respective eigenvalues. Choose ¢
whose image belongs to Q. Then

0= ¢(Tr(ug(s Z m;o(A
which is possible only when ¢(\ l) = 0. If this is valid for all ¢ : k — Q,
all eigenvalues are equal to zero. U
We are ready now to prove Cartan criterion.
Theorem 10.2.4. Let L C gl(V') be a Lie subalgebra. The following
conditions are equivalent:
e [ is solvable.

o Try(xy) =0 forz e L, ye[L, L]

Proof. First of all, we can assume that k is algebraically closed. If L
is solvable, V' admits a basis for which L consists of upper-triangulate
matrices. Then [L, L] consists of strictly upper-triangulate matrices,
and the trace vanishes.



Let us now prove the converse. It suffices to check that [L, L] consists
of nilpotent elements: then by Engel theorem [L, L] is a nilpotent Lie
algebra and then L is solvable.

Let u € [L, L]. Write u = s + n as above. According to the lemma,
it suffices to check that Try (u¢(s)) = 0 for all ¢.

Let u =Y ¢;[zs, yi]. We have

Tr(ug(s)) = Y e Te(fzs yilé(s) = Y e Tr(yild(s), z.)-

It remains now to prove that the brackets [¢(s), x;] belong to [L, L].
This follows from Proposition 10.1.1(3) applied to A = [L, L] and B =
L.

U

10.3. Let L be a semisimple Lie algebra. Each element z € L defines
an endomorphism ad, € End(L) which has a unique semisimple and
nilpotent part

ad, = s + n.
We will see later that the elements s and ¢ can be also expressed (in a
unique way) as
s=ad,,; n=ad,,.
The presentation x = x; + x,, is called the abstract Jordan decomposi-
tion.

The existence of such decomposition in a semisimple Lie algebra is
a first step in the classification of semisimple Lie algebras.

Lemma 10.3.1. Let V be a finite dimensional algebra and D = Der(V).
Ifr=s+neDthense D, neD.

Proof. Let V. = &¢,V, be the decomposition of V into generalized
eigenspaces with respect to the eigenvalues of x. We claim that V-V, C
Voap. In fact, if v € V,,  w €V, so that

(x—a)v=0, (v—0bw=0,
then

W) (o= a=ow) =3 (77 ) 0 - e - bt o

k

In formula (1) we used the identity

@ wmamvren =% (76 -0t - 04w)

k



5

which can be easily proven by induction. In fact, For n = 1 we have
an obvious claim

(x —a—>b)(vw) = (x—a)(v) - w+wv-(z—>0)(w).

ASsuming it for n, we can apply it to (x — a — b)(vw) and, using the
standard binomial identities, get the required formula.

The endomorphism s has value a on V,. Therefore, Leibniz identity
is obvious for s.

Finally, since x,s € D, n =z — s is in D as well. O

Proposition 10.3.2. Let L be semisimple. Then the map
ad : L — Der(L)
15 a Lie algebra isomorphism.

Proof. L is semisimple, therefore, has no center. Thus, ad : L — D =
Der(L) is injective. Identify L with ad(L). We claim L is an ideal in
D. In fact, if x € L and d € D then [d, ad,] = adg)].

Let us check that the Killing form of D restricted to L, gives the
Killing form of L. Choose a base in L and complete it to a base in D.
Then one sees that for x,y € L one has

Trp(adyad,) = Try(ad,ad,)

since ad, (D) C L and the trace depends on diagonal elements only.
Now, use that the Killing form of L is non-degenerate. This means
that L+ N L = 0 which implies D = L & L*. By invariantness of the
Killing form, we deduce that L+ is an ideal. Therefore, [L, L1] = 0
that is D = L x L.
Finally, if d € L+ and « € L then [d,ad,] = ady) which implies
that d(z) = 0. Thus, d = 0 and we are done. O

10.4. We are now ready to deduce the main result.

Proposition 10.4.1. Let L be a semisimple Lie algebra, x € L. Then
there exist unique elements xs, x, € L such that

e v =ux,+ x,, and the three elements commute with each other.
e ad,, is semisimple and ad,, is nilpotent.

Proof. ad, is a derivation, therefore its semisimple and nilpotent parts
are derivations by Lemma 10.3.1. Then by Proposition 10.3.2 the
semisimple and nilpotent parts of ad, come also from L. 0



Problem assignment, 8

1. Compute the basis in sly dual to the standard basis e, f, h with
respect to the Killing form.

2. Let L = Ly x Ly is a product of semisimple Lie algebras. Let
r € L be presented x = z' + 2% with 2* € L;. Prove that
Ts = x; + arg

3. Calculate the KLilling form for the two-dimensional non-abelian
Lie algebra.



