INTRODUCTION TO LIE ALGEBRAS. LECTURE 10.

10. Jordan decomposition: theme with variations

10.1. Recall that $f \in \text{End}(V)$ is semisimple if f is diagonalizable (over the algebraic closure of the base field). Equivalently, this means that V admits a basis of eigenvectors. Equivalently, this means that the minimal polynomial for f has distinct roots. This formulation is convenient to prove that if W is an invariant subspace of V and f is semisimple, then $f|_W$ is semisimple as well.

Proposition 10.1.1. Let $x \in End(V)$.

- 1. There exist unique elements $s, n \in \text{End}(V)$ such that x = s + n, s is semisimple, n is nilpotent and [s, n] = 0.
- 2. There exist polynomials $p, q \in k[t]$ with no constant term, such that s = p(x), n = q(x). Thus, s and n commute with every endomorphism commuting with x.
- 3. If $A \subseteq B \subseteq V$ and $x(B) \subseteq A$ then $s(B) \subseteq A$ and $n(B) \subseteq A$.

Proof. Existence in 1. follows from the standard linear algebra theorem (Jordan decomposition).

Let a_i , i = 1, ..., k be the eigenvalues of x with multiplicities m_i . Then $V = \sum V_i$ and the characteristic polynomial of $x|_{V_i}$ is $(t - a_i)^{m_i}$. If we define s by the condition $s|_{V_i} = a_i$ and n = x - s, we get a required decomposition.

The claim 2 seems to be ugly. It will, however, help us to prove the rest of the claims (including the uniqueness part of claim 1).

We claim there is a polynomial $p \in k[t]$ such that

 $p \equiv a_i \mod (t - a_i)^{m_i}$ and $p \equiv 0 \mod t$ (the proof see below; this claim is called Chinese remander theorem).

Then for each $i p(x) = a_i + (x - a_i)^{m_i} = a_i$. This proves that p(x) = s. If we put q = t - p, we get q(x) = n.

Thus, we have proven claim 2 for the specific decomposition x = s+n. Let us now prove uniqueness of the decomposition. Let x = s + n = s' + n'. Since s' and n' commute with x and s = p(x), n = q(x), s' commutes with s and n' commutes with n. Then one has

$$s - s' = n' - n.$$

The sum of two commuting nilpotent elements is nilpotent. The sum of two commuting semisimple elements is semisimple. A nilpotent semisimple element is zero. This together gives the uniqueness claim.

Finally, since p, q have no constant term, the claim 3 follows. \Box

Here is Chinese Remainder theorem.

Lemma 10.1.2. Let f_1, \ldots, f_k be pairwise coprime polynomials in k[t]. Let $a_i, \ldots a_k \in k[t]$. Then there exists a polynomial $p \in k[t]$ satisfying the equality

$$p \equiv a_i \mod (f_i).$$

Proof. For each i we have a canonical homomorphism

$$\pi_i: k[t] \to k[t]/(f_i).$$

Together they yield a homomorphism

$$\pi: k[t] \longrightarrow \prod_i k[t]/(f_i).$$

The kernel of π consists of polynomials divisible by all f_i . Since all f_i are pairwise coprime, the kernel of π is the ideal generated by the product $f = \prod f_i$.

The map $\bar{\pi} : k[t]/(f) \to \prod_i k[t]/(f_i)$ induced by π is injective. Since the dimensions of the source and the target as vector spaces over kare the same, $\bar{\pi}$ is surjective. This implies there is a polynomial whose image under π_i is a_i .

Lemma 10.1.3. Let $x \in End(V)$, x = s + n. Then $ad_x = ad_s + ad_n$ is the Jordan-Chevalley decomposition of ad_x .

Proof. ad_s is semisimple and ad_n is nilpotent (see Lemma in Engel theorem). They commute:

$$\operatorname{ad}_s \circ \operatorname{ad}_n(f) = snf - sfn - nfs + fns = ad_n \circ \operatorname{ad}_s(f),$$

since s and n commute.

10.2. Replicas. The following trick is difficult to grasp.

Let $\phi: k \longrightarrow k$ be a \mathbb{Q} -linear map.

Let $s: V \to V$ be a semisimple endomorphism. This means that V is uniquely decomposed as $V = \bigoplus V_i$ where V_i is the eigenspace for s with an eigenvalue λ_i . Then we define $\phi(s)$ as the semisimple endomorphism of V acting on V_i as $\phi(\lambda_i) \cdot id$.

We will call $\phi(s)$ a replica of s. Choose a polynomial $P \in k[t]$ such that P(0) = 0, $P(\lambda_i) = \phi(\lambda_i)$. This is always possible since $\phi(0) = 0$. Then obviously $\phi(s) = P(s)$.

 $\mathbf{2}$

$$\phi(\mathrm{ad}_s) = \mathrm{ad}_{\phi(s)}.$$

Proof. Choose a basis x_1, \ldots, x_n of eigenvectors in V. Then End(V) has a basis e_{ij} defined by the formula $e_{ij}(x_k) = \delta_{jk}x_i$ (Kronecker's delta). If $s(x_i) = \lambda_i x_i$, then

$$\operatorname{ad}_{s}(e_{ij}) = (\lambda_{i} - \lambda_{j})e_{ij}.$$

Since $\phi(\lambda_i - \lambda_j) = \phi(\lambda_i) - \phi(\lambda_j)$, the result follows.

has

Corollary 10.2.2. Let u = s + n be the canonical decomposition of an endomorphism of V. Let $A \subset B \subset \text{End}(V)$ be subspaces satisfying the condition $ad_u(B) \subset A$. Then for each $\phi : k \to k$ over \mathbb{Q} one has $ad_{\phi(s)}(B) \subset A$.

Proof. We already know that ad_s is the semisimple part of ad_u , so $ad_s(B) \subset A$. Since $\phi(ad_s) = ad_{\phi(s)}$ is a polynomial without constant term of ad_s , we are done.

Lemma 10.2.3. Let u = s+n be a decomposition of an endomorphism of V as above. If $\operatorname{Tr}_V(u\phi(s)) = 0$ for all $\phi : k \to k$ over \mathbb{Q} , then s = 0that is u is nilpotent.

Proof. Choose a basis of V so that s is diagonal and n is upper-triangular. The trace will be

$$\operatorname{Tr}(u\phi(s)) = \sum_{i} m_i \lambda_i \phi(\lambda_i),$$

where m_i are the multiplicities of the respective eigenvalues. Choose ϕ whose image belongs to \mathbb{Q} . Then

$$0 = \phi(Tr(u\phi(s))) = \sum m_i \phi(\lambda_i)^2$$

which is possible only when $\phi(\lambda_i) = 0$. If this is valid for all $\phi : k \to \mathbb{Q}$, all eigenvalues are equal to zero.

We are ready now to prove Cartan criterion.

Theorem 10.2.4. Let $L \subset \mathfrak{gl}(V)$ be a Lie subalgebra. The following conditions are equivalent:

- L is solvable.
- $\operatorname{Tr}_V(xy) = 0$ for $x \in L, y \in [L, L]$.

Proof. First of all, we can assume that k is algebraically closed. If L is solvable, V admits a basis for which L consists of upper-triangulate matrices. Then [L, L] consists of strictly upper-triangulate matrices, and the trace vanishes.

Let us now prove the converse. It suffices to check that [L, L] consists of nilpotent elements: then by Engel theorem [L, L] is a nilpotent Lie algebra and then L is solvable.

Let $u \in [L, L]$. Write u = s + n as above. According to the lemma, it suffices to check that $\operatorname{Tr}_V(u\phi(s)) = 0$ for all ϕ .

Let $u = \sum c_i[x_i, y_i]$. We have

$$\operatorname{Tr}(u\phi(s)) = \sum c_i \operatorname{Tr}([x_i, y_i]\phi(s)) = \sum c_i \operatorname{Tr}(y_i[\phi(s), x_i]).$$

It remains now to prove that the brackets $[\phi(s), x_i]$ belong to [L, L]. This follows from Proposition 10.1.1(3) applied to A = [L, L] and B = L.

10.3. Let *L* be a semisimple Lie algebra. Each element $x \in L$ defines an endomorphism $ad_x \in End(L)$ which has a unique semisimple and nilpotent part

$$\operatorname{ad}_x = s + n.$$

We will see later that the elements s and t can be also expressed (in a unique way) as

$$s = \operatorname{ad}_{x_s}; \quad n = \operatorname{ad}_{x_n}.$$

The presentation $x = x_s + x_n$ is called the abstract Jordan decomposition.

The existence of such decomposition in a semisimple Lie algebra is a first step in the classification of semisimple Lie algebras.

Lemma 10.3.1. Let V be a finite dimensional algebra and D = Der(V). If $x = s + n \in D$ then $s \in D$, $n \in D$.

Proof. Let $V = \bigoplus_a V_a$ be the decomposition of V into generalized eigenspaces with respect to the eigenvalues of x. We claim that $V_a \cdot V_b \subseteq V_{a+b}$. In fact, if $v \in V_a$, $w \in V_b$, so that

$$(x-a)^{i}v = 0, \quad (x-b)^{j}w = 0,$$

then

(1)
$$(x-a-b)^{i+j}(vw) = \sum_{k} {i+j \choose k} (x-a)^{i+j-k}(v)(x-b)^{k}(w) = 0.$$

In formula (1) we used the identity

(2)
$$(x-a-b)^n(vw) = \sum_k \binom{n}{k} (x-a)^{n-k} (v) (x-b)^k(w)$$

which can be easily proven by induction. In fact, For n = 1 we have an obvious claim

$$(x-a-b)(vw) = (x-a)(v) \cdot w + v \cdot (x-b)(w).$$

Assuming it for n, we can apply it to (x - a - b)(vw) and, using the standard binomial identities, get the required formula.

The endomorphism s has value a on V_a . Therefore, Leibniz identity is obvious for s.

Finally, since $x, s \in D$, n = x - s is in D as well.

Proposition 10.3.2. Let L be semisimple. Then the map

$$ad: L \longrightarrow Der(L)$$

is a Lie algebra isomorphism.

Proof. L is semisimple, therefore, has no center. Thus, $\operatorname{ad} : L \longrightarrow D = \operatorname{Der}(L)$ is injective. Identify L with $\operatorname{ad}(L)$. We claim L is an ideal in D. In fact, if $x \in L$ and $d \in D$ then $[d, \operatorname{ad}_x] = \operatorname{ad}_{d(x)}]$.

Let us check that the Killing form of D restricted to L, gives the Killing form of L. Choose a base in L and complete it to a base in D. Then one sees that for $x, y \in L$ one has

$$\operatorname{Tr}_D(\operatorname{ad}_x \operatorname{ad}_y) = \operatorname{Tr}_L(\operatorname{ad}_x \operatorname{ad}_y)$$

since $\operatorname{ad}_{u}(D) \subseteq L$ and the trace depends on diagonal elements only.

Now, use that the Killing form of L is non-degenerate. This means that $L^{\perp} \cap L = 0$ which implies $D = L \oplus L^{\perp}$. By invariantness of the Killing form, we deduce that L^{\perp} is an ideal. Therefore, $[L, L^{\perp}] = 0$ that is $D = L \times L^{\perp}$.

Finally, if $d \in L^{\perp}$ and $x \in L$ then $[d, ad_x] = ad_{d(x)}$ which implies that d(x) = 0. Thus, d = 0 and we are done.

10.4. We are now ready to deduce the main result.

Proposition 10.4.1. Let L be a semisimple Lie algebra, $x \in L$. Then there exist unique elements x_s , $x_n \in L$ such that

- $x = x_s + x_n$, and the three elements commute with each other.
- ad_{x_s} is semisimple and ad_{x_n} is nilpotent.

Proof. ad_x is a derivation, therefore its semisimple and nilpotent parts are derivations by Lemma 10.3.1. Then by Proposition 10.3.2 the semisimple and nilpotent parts of ad_x come also from L.

Problem assignment, 8

- 1. Compute the basis in \mathfrak{sl}_2 dual to the standard basis e,f,h with respect to the Killing form.
- Let L = L₁ × L₂ is a product of semisimple Lie algebras. Let x ∈ L be presented x = x¹ + x² with xⁱ ∈ L_i. Prove that x_s = x_s¹ + x_s².
 Calculate the KLilling form for the two-dimensional non-abelian Limit and all x
- Lie algebra.

6