INTRODUCTION TO LIE ALGEBRAS.
LECTURE 10.

10. JORDAN DECOMPOSITION: THEME WITH VARIATIONS

10.1. Recall that \(f \in \text{End}(V) \) is semisimple if \(f \) is diagonalizable (over the algebraic closure of the base field). Equivalently, this means that \(V \) admits a basis of eigenvectors. Equivalently, this means that the minimal polynomial for \(f \) has distinct roots. This formulation is convenient to prove that if \(W \) is an invariant subspace of \(V \) and \(f \) is semisimple, then \(f|_W \) is semisimple as well.

Proposition 10.1.1. Let \(x \in \text{End}(V) \).

1. There exist unique elements \(s, n \in \text{End}(V) \) such that \(x = s + n \), \(s \) is semisimple, \(n \) is nilpotent and \([s, n] = 0\).
2. There exist polynomials \(p, q \in k[t] \) with no constant term, such that \(s = p(x) \), \(n = q(x) \). Thus, \(s \) and \(n \) commute with every endomorphism commuting with \(x \).
3. If \(A \subseteq B \subseteq V \) and \(x(B) \subseteq A \) then \(s(B) \subseteq A \) and \(n(B) \subseteq A \).

Proof. Existence in 1. follows from the standard linear algebra theorem (Jordan decomposition).

Let \(a_i, i = 1, \ldots, k \) be the eigenvalues of \(x \) with multiplicities \(m_i \). Then \(V = \sum V_i \) and the characteristic polynomial of \(x|_{V_i} \) is \((t - a_i)^{m_i}\). If we define \(s \) by the condition \(s|_{V_i} = a_i \) and \(n = x - s \), we get a required decomposition.

The claim 2 seems to be ugly. It will, however, help us to prove the rest of the claims (including the uniqueness part of claim 1).

We claim there is a polynomial \(p \in k[t] \) such that \(p \equiv a_i \mod (t - a_i)^{m_i} \) and \(p \equiv 0 \mod t \) (the proof see below; this claim is called Chinese remainder theorem).

Then for each \(i \) \(p(x) = a_i + (x - a_i)^{m_i} = a_i \). This proves that \(p(x) = s \). If we put \(q = t - p \), we get \(q(x) = n \).

Thus, we have proven claim 2 for the specific decomposition \(x = s + n \). Let us now prove uniqueness of the decomposition. Let \(x = s + n = s' + n' \). Since \(s' \) and \(n' \) commute with \(x \) and \(s = p(x), n = q(x) \), \(s' \) commutes with \(s \) and \(n' \) commutes with \(n \). Then one has

\[s - s' = n' - n. \]
The sum of two commuting nilpotent elements is nilpotent. The sum of two commuting semisimple elements is semisimple. A nilpotent semisimple element is zero. This together gives the uniqueness claim.

Finally, since \(p, q \) have no constant term, the claim 3 follows. □

Here is Chinese Remainder theorem.

Lemma 10.1.2. Let \(f_1, \ldots, f_k \) be pairwise coprime polynomials in \(k[t] \). Let \(a_1, \ldots, a_k \in k[t] \). Then there exists a polynomial \(p \in k[t] \) satisfying the equality

\[
p \equiv a_i \mod (f_i).
\]

Proof. For each \(i \) we have a canonical homomorphism

\[
\pi_i : k[t] \to k[t]/(f_i).
\]

Together they yield a homomorphism

\[
\pi : k[t] \to \prod_i k[t]/(f_i).
\]

The kernel of \(\pi \) consists of polynomials divisible by all \(f_i \). Since all \(f_i \) are pairwise coprime, the kernel of \(\pi \) is the ideal generated by the product \(f = \prod f_i \).

The map \(\bar{\pi} : k[t]/(f) \to \prod_i k[t]/(f_i) \) induced by \(\pi \) is injective. Since the dimensions of the source and the target as vector spaces over \(k \) are the same, \(\bar{\pi} \) is surjective. This implies there is a polynomial whose image under \(\pi_i \) is \(a_i \). □

Lemma 10.1.3. Let \(x \in \text{End}(V), \; x = s + n \). Then \(\text{ad}_x = \text{ad}_s + \text{ad}_n \) is the Jordan-Chevalley decomposition of \(\text{ad}_x \).

Proof. \(\text{ad}_s \) is semisimple and \(\text{ad}_n \) is nilpotent (see Lemma in Engel theorem). They commute:

\[
\text{ad}_s \circ \text{ad}_n (f) = snf - sf n - nfs + fns = \text{ad}_n \circ \text{ad}_s (f),
\]

since \(s \) and \(n \) commute. □

10.2. Replicas. The following trick is difficult to grasp.

Let \(\phi : k \to k \) be a \(\mathbb{Q} \)-linear map.

Let \(s : V \to V \) be a semisimple endomorphism. This means that \(V \) is uniquely decomposed as \(V = \oplus V_i \) where \(V_i \) is the eigenspace for \(s \) with an eigenvalue \(\lambda_i \). Then we define \(\phi(s) \) as the semisimple endomorphism of \(V \) acting on \(V_i \) as \(\phi(\lambda_i) \cdot \text{id} \).

We will call \(\phi(s) \) a replica of \(s \). Choose a polynomial \(P \in k[t] \) such that \(P(0) = 0, \; P(\lambda_i) = \phi(\lambda_i) \). This is always possible since \(\phi(0) = 0 \). Then obviously \(\phi(s) = P(s) \).
Lemma 10.2.1. Let $s \in \text{End}(V)$ be semisimple. Then for each ϕ one has
\[\phi(\text{ad}_s) = \text{ad}_{\phi(s)}. \]

Proof. Choose a basis x_1, \ldots, x_n of eigenvectors in V. Then $\text{End}(V)$ has a basis e_{ij} defined by the formula $e_{ij}(x_k) = \delta_{jk}x_i$ (Kronecker’s delta). If $s(x_i) = \lambda_i x_i$, then
\[\text{ad}_s(e_{ij}) = (\lambda_i - \lambda_j)e_{ij}. \]

Since $\phi(\lambda_i - \lambda_j) = \phi(\lambda_i) - \phi(\lambda_j)$, the result follows. \hfill \square

Corollary 10.2.2. Let $u = s + n$ be the canonical decomposition of an endomorphism of V. Let $A \subset B \subset \text{End}(V)$ be subspaces satisfying the condition $\text{ad}_u(B) \subset A$. Then for each $\phi : k \rightarrow k$ over \mathbb{Q} one has $\text{ad}_{\phi(s)}(B) \subset A$.

Proof. We already know that ad_s is the semisimple part of ad_u, so $\text{ad}_s(B) \subset A$. Since $\phi(\text{ad}_s) = \text{ad}_{\phi(s)}$ is a polynomial without constant term of ad_s, we are done. \hfill \square

Lemma 10.2.3. Let $u = s + n$ be a decomposition of an endomorphism of V as above. If $\text{Tr}_V(u\phi(s)) = 0$ for all $\phi : k \rightarrow k$ over \mathbb{Q}, then $s = 0$ that is u is nilpotent.

Proof. Choose a basis of V so that s is diagonal and n is upper-triangular. The trace will be
\[\text{Tr}(u\phi(s)) = \sum_i m_i \lambda_i \phi(\lambda_i), \]
where m_i are the multiplicities of the respective eigenvalues. Choose ϕ whose image belongs to \mathbb{Q}. Then
\[0 = \phi(\text{Tr}(u\phi(s))) = \sum_i m_i \phi(\lambda_i)^2 \]
which is possible only when $\phi(\lambda_i) = 0$. If this is valid for all $\phi : k \rightarrow \mathbb{Q}$, all eigenvalues are equal to zero. \hfill \square

We are ready now to prove Cartan criterion.

Theorem 10.2.4. Let $L \subset \mathfrak{gl}(V)$ be a Lie subalgebra. The following conditions are equivalent:

- L is solvable.
- $\text{Tr}_V(xy) = 0$ for $x \in L$, $y \in [L, L]$.

Proof. First of all, we can assume that k is algebraically closed. If L is solvable, V admits a basis for which L consists of upper-triangular matrices. Then $[L, L]$ consists of strictly upper-triangular matrices, and the trace vanishes.
Let us now prove the converse. It suffices to check that \([L, L]\) consists of nilpotent elements: then by Engel theorem \([L, L]\) is a nilpotent Lie algebra and then \(L\) is solvable.

Let \(u \in [L, L]\). Write \(u = s + n\) as above. According to the lemma, it suffices to check that \(\text{Tr}_V(u\phi(s)) = 0\) for all \(\phi\).

Let \(u = \sum c_i[x_i, y_i]\). We have

\[
\text{Tr}(u\phi(s)) = \sum c_i \text{Tr}([x_i, y_i]\phi(s)) = \sum c_i\text{Tr}(y_i[\phi(s), x_i]).
\]

It remains now to prove that the brackets \([\phi(s), x_i]\) belong to \([L, L]\).

This follows from Proposition 10.1.1(3) applied to \(A = [L, L]\) and \(B = L\).

\[\square\]

10.3. Let \(L\) be a semisimple Lie algebra. Each element \(x \in L\) defines an endomorphism \(\text{ad}_x \in \text{End}(L)\) which has a unique semisimple and nilpotent part

\[
\text{ad}_x = s + n.
\]

We will see later that the elements \(s\) and \(t\) can be also expressed (in a unique way) as

\[
s = \text{ad}_{x_s}; \quad n = \text{ad}_{x_n}.
\]

The presentation \(x = x_s + x_n\) is called the abstract Jordan decomposition.

The existence of such decomposition in a semisimple Lie algebra is a first step in the classification of semisimple Lie algebras.

Lemma 10.3.1. Let \(V\) be a finite dimensional algebra and \(D = \text{Der}(V)\). If \(x = s + n \in D\) then \(s \in D, \ n \in D\).

Proof. Let \(V = \bigoplus a V_a\) be the decomposition of \(V\) into generalized eigenspaces with respect to the eigenvalues of \(x\). We claim that \(V_a \cdot V_b \subseteq V_{a+b}\). In fact, if \(v \in V_a, \ w \in V_b\), so that

\[(x - a)^i v = 0, \quad (x - b)^j w = 0,
\]

then

\[(1) \quad (x - a - b)^{i+j}(vw) = \sum_k \binom{i+j}{k} (x - a)^{i-k}(v)(x - b)^k(w) = 0.
\]

In formula (1) we used the identity

\[(2) \quad (x - a - b)^n(vw) = \sum_k \binom{n}{k} (x - a)^{n-k}(v)(x - b)^k(w)
\]
which can be easily proven by induction. In fact, for \(n = 1 \) we have
an obvious claim
\[
(x - a - b)(vw) = (x - a)(v) \cdot w + v \cdot (x - b)(w).
\]
Assuming it for \(n \), we can apply it to \((x - a - b)(vw)\) and, using the
standard binomial identities, get the required formula.

The endomorphism \(s \) has value \(a \) on \(V_a \). Therefore, Leibniz identity
is obvious for \(s \).

Finally, since \(x, s \in D, n = x - s \) is in \(D \) as well.

Proposition 10.3.2. Let \(L \) be semisimple. Then the map
\[
ad : L \longrightarrow \text{Der}(L)
\]
is a Lie algebra isomorphism.

Proof. \(L \) is semisimple, therefore, has no center. Thus, \(\text{ad} : L \longrightarrow D = \text{Der}(L) \) is injective. Identify \(L \) with \(\text{ad}(L) \). We claim \(L \) is an ideal in
\(D \). In fact, if \(x \in L \) and \(d \in D \) then \([d, \text{ad}_x] = \text{ad}_{d(x)}\].

Let us check that the Killing form of \(D \) restricted to \(L \), gives the
Killing form of \(L \). Choose a base in \(L \) and complete it to a base in \(D \).
Then one sees that for \(x, y \in L \) one has
\[
\text{Tr}_D(\text{ad}_x \text{ad}_y) = \text{Tr}_L(\text{ad}_x \text{ad}_y)
\]
since \(\text{ad}_y(D) \subseteq L \) and the trace depends on diagonal elements only.

Now, use that the Killing form of \(L \) is non-degenerate. This means
that \(L^\perp \cap L = 0 \) which implies \(D = L \oplus L^\perp \). By invariantness of the
Killing form, we deduce that \(L^\perp \) is an ideal. Therefore, \([L, L^\perp] = 0 \)
that is \(D = L \times L^\perp \).

Finally, if \(d \in L^\perp \) and \(x \in L \) then \([d, \text{ad}_x] = \text{ad}_{d(x)}\] which implies
that \(d(x) = 0 \). Thus, \(d = 0 \) and we are done.

\(\square \)

10.4. We are now ready to deduce the main result.

Proposition 10.4.1. Let \(L \) be a semisimple Lie algebra, \(x \in L \). Then
there exist unique elements \(x_s, x_n \in L \) such that

- \(x = x_s + x_n \), and the three elements commute with each other.
- \(\text{ad}_{x_s} \) is semisimple and \(\text{ad}_{x_n} \) is nilpotent.

Proof. \(\text{ad}_x \) is a derivation, therefore its semisimple and nilpotent parts
are derivations by Lemma 10.3.1. Then by Proposition 10.3.2 the
semisimple and nilpotent parts of \(\text{ad}_x \) come also from \(L \).

\(\square \)
Problem assignment, 8

1. Compute the basis in \mathfrak{sl}_2 dual to the standard basis e, f, h with respect to the Killing form.

2. Let $L = L_1 \times L_2$ is a product of semisimple Lie algebras. Let $x \in L$ be presented $x = x^1 + x^2$ with $x^i \in L_i$. Prove that $x_s = x^1_s + x^2_s$.

3. Calculate the Killing form for the two-dimensional non-abelian Lie algebra.