INTRODUCTION TO LIE ALGEBRAS. LECTURE 1.

1. Algebras. Derivations. Definition of Lie algebra

1.1. Algebras. Let k be a field. An algebra over k (or k-algebra) is a vector space A endowed with a bilinear operation

$$
a, b \in A \mapsto a \cdot b \in A .
$$

Recall that bilinearity means that for each $a \in A$ left and right multiplications by a are linear transformations of vector spaces (i.e. preserve sum and multiplication by a scalar).

1.1.1. Some extra properties

An algebra A is called associative if $a \cdot(b \cdot c)=(a \cdot b) \cdot c)$.
An algebra A is commutative if $a \cdot b=b \cdot a$.
Usually commutative algebras are supposed to be associative as well.

1.1.2. Example

If V is a vector space, $\operatorname{End}(V)$, the set of (linear) endomorphisms of V is an associative algebra with respect to composition. If $V=k^{n}$ $\operatorname{End}(V)$ is just the algebra of $n \times n$ matrices over k.
1.1.3. Example The ring of polynomials $k[x]$ over k is a commutative k-algebra. The same for $k\left[x_{1}, \ldots, x_{n}\right]$, the algebra of polynomials of n variables.

1.1.4. Example

If V is a vector space, define an operation by the formula

$$
a \cdot b=0 .
$$

This is an algebra operation.
1.2. Subalgebras, ideals, quotient algebras. A linear map f : $A \rightarrow B$ of k-algebras is called homomorphism if $f(a \cdot b)=f(a) \cdot f(b)$ for each $a, b \in A$.

The image of a homomorphism is a subalgebra (please, give a correct definition). Kernel of f defined as $\{a \in A \mid f(a)=0\}$ is an ideal in A. Here are the appropriate definitions.

Definition 1.2.1. A vector subspace $B \subseteq A$ is called a subalgebra if

$$
a, b \in B \Longrightarrow a \cdot b \in B
$$

Definition 1.2.2. A vector subspace $I \subseteq A$ is called an ideal if

$$
a \in A \& x \in I \Longrightarrow a \cdot x \in I \& x \cdot a \in I .
$$

Lemma 1.2.3. Let $f: A \rightarrow B$ be a homomorphism of algebras. Then $\operatorname{Ker}(f)$ is an ideal in A.

Proof. Exercise.
An important property of ideals is that one can form a quotient algebra "modulo I ". Here is the construction.

Let A be an algebra and I an ideal in A. We define the quotient algebra A / I as follows.

As a set this is the quotient of A modulo the equivalence relation

$$
a \sim b \text { iff } a-b \in I .
$$

Thus, this is the set of equivalence classes having form $a+I$, where $a \in A$.

Structure of vector space on A / I is given by the formulas

$$
(a+I)+(b+I)=(a+b)+I ; \quad \lambda(a+I)=\lambda a+I
$$

Algebra structure on A / I is given by the formula

$$
(a+I) \cdot(b+I)=a \cdot b+I .
$$

One has a canonical homomorphism

$$
\rho: A \longrightarrow A / I
$$

defined by the formula $\rho(a)=a+I$.
As usual, the following theorem (Theorem on homomorphism) is straighforward.

Theorem 1.2.4. Let $f: A \longrightarrow B$ be a homomorphism of algebras and let I be an ideal in A. Suppose that $I \subseteq \operatorname{Ker}(f)$. Then there exists a unique homomorphism $\bar{f}: A / I \longrightarrow B$ such that $f=\bar{f} \circ \rho$ where $\rho: A \longrightarrow A / I$ is the canonical homomorphism.

Moreover, \bar{f} is onto iff f is onto; \bar{f} is one-to-one iff $I=\operatorname{Ker}(f)$.
Proof. Exercise.
1.3. Derivations. A linear endomorphism $d: A \longrightarrow A$ is called derivation if the following Leibniz rule holds.

$$
d(a \cdot b)=d(a) \cdot b+a \cdot d(b) .
$$

The set of all derivations of A is denoted $\operatorname{Der}(A)$. This is clearly a vector subspace of $\operatorname{End}(A)$.
1.3.1. Composition Let $d, d^{\prime} \in \operatorname{Der}(A)$ let us check that the composition $d d^{\prime}$ is not a derivation.

$$
\begin{array}{r}
d d^{\prime}(a \cdot b)=d\left(d^{\prime}(a) \cdot b+a \cdot d^{\prime}(b)\right)=d\left(d^{\prime}(a) \cdot b\right)+d\left(a \cdot d^{\prime}(b)\right)= \tag{1}\\
d d^{\prime}(a) \cdot b+d^{\prime}(a) \cdot d(b)+d(a) \cdot d^{\prime}(b)+a \cdot d d^{\prime}(b)
\end{array}
$$

which is not exactly what we need.
1.3.2. Bracket Thus, we suggest another operation. Given $d, d^{\prime} \in$ $\operatorname{Der}(A)$, define $\left[d, d^{\prime}\right]=d d^{\prime}-d^{\prime} d$.

Theorem 1.3.3. If $d, d^{\prime} \in \operatorname{Der}(A)$ then $\left[d, d^{\prime}\right] \in \operatorname{Der}(A)$.
Proof. Direct calculation.

1.3.4. Properties of this bracket

1. $[x, x]=0$.
2. (Jacobi identity) $[[x y] z]+[[z x] y]+[[y z] x]=0$

Exercise: check this.
1.4. Definition of Lie algebra. First examples. A Lie algebra is an algebra with an operation satisfying the properties 1.3.

The operation in a Lie algebra is usually denoted [,] and called (Lie) bracket.
1.4.1. Anticommutativity The first property of a Lie algebra saying $[x x]=0$ is called anticommutativity. In fact, it implies that $[x y]=-[y x]$ for all x, y.

Proof: $0=[x+y, x+y]=[x x]+[x y]+[y x]+[y y]$. This implies $[x y]=-[y x]$. The converse is true if char $k \neq 2$. In fact, $[x x]=-[x x]$ implies that $2[x x]=0$ and, if the charactersitic of k is not 2 , this implies $[x x]=0$.
1.4.2. Example Let $k=\mathbb{R}, L=\mathbb{R}$. We are looking for possible Lie brackets on L. Bilinearity and anticommutativity require

$$
[a, b]=[a \cdot 1, b \cdot 1]=a b[1,1]=0
$$

Thus, there is only one Lie bracket on $L=\mathbb{R}$.
Definition 1.4.3. A Lie algebra L having a zero bracket is called a commutative Lie algebra.
1.4.4. Observation Fix a field k of characteristic $\neq 2$ and let $L=\left\langle e_{1}, \ldots, e_{n}\right\rangle$ be n-dimensional vector space over k. In order to define a bilinear operation, it is enough to define it on e_{i} :

$$
\left[e_{i}, e_{j}\right]=\sum_{k=1}^{n} c_{i j}^{k} e_{k} .
$$

(this is true for any type of algebra). Elements $c_{i j}^{k}$ are called structure constants of L.

Since we want the bracket to be anti-commutative, one has to have

$$
\left[e_{i}, e_{j}\right]=\left[e_{j}, e_{i}\right] .
$$

Bilinearity and this condition imply anti-commutativity of the bracket (check this formally!).

Suppose now we have checked already anticommutativity. To check Jacobi identity let us denote

$$
J(x, y, z)=[[x y] z]+[[z x] y]+[[y z] x] .
$$

One observes that J is trilinear (linear on each one of its three arguments) and antisymmetric (it changes sign if one interchanges any two arguments).

Thus, in order to check $J(x, y, z)$ is identically zero, it is enough to check

$$
J\left(e_{i}, e_{j}, e_{k}\right)=0 \text { for } 1 \leq i<j<k \leq n .
$$

1.4.5. Example Suppose $\operatorname{dim} L=2$. Suppose L is not commutative. Choose a basis $L=\left\langle e_{1}, e_{2}\right\rangle$. One has

$$
\left[e_{1}, e_{1}\right]=\left[e_{2}, e_{2}\right]=0 \text { and }\left[e_{1}, e_{2}\right]=-\left[e_{2}, e_{1}\right] .
$$

Let $\left[e_{1}, e_{2}\right]=y$. Then $y \neq 0$ and any bracket in L is proportional to y (by bilinearity).

Thus, it is convenient to take y as one of generators on L. Choose another one, say x. We have $L=\langle x, y\rangle$ and $[x, y]=\lambda y$. Since L
is not commutative, $\lambda \neq 0$. Thus change variables once more setting $x:=x / \lambda$.

We finally get

$$
\begin{equation*}
L=\langle x, y\rangle \text { and }[x, y]=y . \tag{2}
\end{equation*}
$$

We have therefore proven that there are only two two-dimensional Lie algebras over k up to isomorphism: a commutative Lie algebra and the one described in (2).
1.4.6. Example The set of $n \times n$ matrices over k is an associative algebra with respect to the matrix multiplication. It becomes a Lie algebra if we define a bracket by the formula

$$
[x, y]=x y-y x
$$

This Lie algebra is denoted $\mathfrak{g l}_{n}(k)$ (sometimes we do not mention the field k). Its dimension is, of course, n^{2}.

The Lie algebra $\mathfrak{g l}_{n}$ admits a remarkable Lie subalgebra.
Define $\mathfrak{s l}_{n}=\left\{a \in \mathfrak{g l}_{n} \mid \operatorname{tr}(a)=0\right\}$.
Here $\operatorname{tr}(a)=\sum a_{i i}$ is the trace of a, the sum of the diagonal elements of a.

We claim this is a Lie subalgebra.

1.4.7. Proof

Recall that for each pair of matrices a, b one has

$$
\operatorname{tr}(a b)=\operatorname{tr}(b a)
$$

(Proof is just a direct calculation: both sides are equal to $\sum_{i j} a_{i j} b_{j i}$.)
Then $\operatorname{tr}([a, b])=\operatorname{tr}(a b)-\operatorname{tr}(b a)=0$. This proves that $\mathfrak{s l}_{n}$ is closed under the bracket operation.

