
INTRODUCTION TO LIE ALGEBRAS.
LECTURE 1.

1. Algebras. Derivations. Definition of Lie algebra

1.1. Algebras. Let k be a field. An algebra over k (or k-algebra) is a
vector space A endowed with a bilinear operation

a, b ∈ A 7→ a · b ∈ A.
Recall that bilinearity means that for each a ∈ A left and right

multiplications by a are linear transformations of vector spaces (i.e.
preserve sum and multiplication by a scalar).

1.1.1. Some extra properties
An algebra A is called associative if a · (b · c) = (a · b) · c).
An algebra A is commutative if a · b = b · a.
Usually commutative algebras are supposed to be associative as well.

1.1.2. Example
If V is a vector space, End(V ), the set of (linear) endomorphisms

of V is an associative algebra with respect to composition. If V = kn

End(V ) is just the algebra of n× n matrices over k.

1.1.3. Example The ring of polynomials k[x] over k is a commutative
k-algebra. The same for k[x1, . . . , xn], the algebra of polynomials of n
variables.

1.1.4. Example
If V is a vector space, define an operation by the formula

a · b = 0.

This is an algebra operation.

1.2. Subalgebras, ideals, quotient algebras. A linear map f :
A → B of k-algebras is called homomorphism if f(a · b) = f(a) · f(b)
for each a, b ∈ A.

The image of a homomorphism is a subalgebra (please, give a correct
definition). Kernel of f defined as {a ∈ A|f(a) = 0} is an ideal in A.
Here are the appropriate definitions.

1



2

Definition 1.2.1. A vector subspace B ⊆ A is called a subalgebra if

a, b ∈ B =⇒ a · b ∈ B.

Definition 1.2.2. A vector subspace I ⊆ A is called an ideal if

a ∈ A&x ∈ I =⇒ a · x ∈ I&x · a ∈ I.

Lemma 1.2.3. Let f : A→ B be a homomorphism of algebras. Then
Ker(f) is an ideal in A.

Proof. Exercise. �

An important property of ideals is that one can form a quotient
algebra “modulo I”. Here is the construction.

Let A be an algebra and I an ideal in A. We define the quotient
algebra A/I as follows.

As a set this is the quotient of A modulo the equivalence relation

a ∼ b iff a− b ∈ I.

Thus, this is the set of equivalence classes having form a + I, where
a ∈ A.

Structure of vector space on A/I is given by the formulas

(a+ I) + (b+ I) = (a+ b) + I; λ(a+ I) = λa+ I.

Algebra structure on A/I is given by the formula

(a+ I) · (b+ I) = a · b+ I.

One has a canonical homomorphism

ρ : A - A/I

defined by the formula ρ(a) = a+ I.
As usual, the following theorem (Theorem on homomorphism) is

straighforward.

Theorem 1.2.4. Let f : A - B be a homomorphism of algebras
and let I be an ideal in A. Suppose that I ⊆ Ker(f). Then there exists
a unique homomorphism f : A/I - B such that f = f ◦ ρ where
ρ : A - A/I is the canonical homomorphism.

Moreover, f is onto iff f is onto; f is one-to-one iff I = Ker(f).

Proof. Exercise. �
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1.3. Derivations. A linear endomorphism d : A - A is called
derivation if the following Leibniz rule holds.

d(a · b) = d(a) · b+ a · d(b).

The set of all derivations of A is denoted Der(A). This is clearly a
vector subspace of End(A).

1.3.1. Composition Let d, d′ ∈ Der(A) let us check that the com-
position dd′ is not a derivation.

(1) dd′(a · b) = d(d′(a) · b+ a · d′(b)) = d(d′(a) · b) + d(a · d′(b)) =

dd′(a) · b+ d′(a) · d(b) + d(a) · d′(b) + a · dd′(b)

which is not exactly what we need.

1.3.2. Bracket Thus, we suggest another operation. Given d, d′ ∈
Der(A), define [d, d′] = dd′ − d′d.

Theorem 1.3.3. If d, d′ ∈ Der(A) then [d, d′] ∈ Der(A).

Proof. Direct calculation. �

1.3.4. Properties of this bracket
1. [x, x] = 0.
2. (Jacobi identity) [[xy]z] + [[zx]y] + [[yz]x] = 0
Exercise: check this.

1.4. Definition of Lie algebra. First examples. A Lie algebra is
an algebra with an operation satisfying the properties 1.3.

The operation in a Lie algebra is usually denoted [, ] and called (Lie)
bracket.

1.4.1. Anticommutativity The first property of a Lie algebra
saying [xx] = 0 is called anticommutativity. In fact, it implies that
[xy] = −[yx] for all x, y.

Proof: 0 = [x + y, x + y] = [xx] + [xy] + [yx] + [yy]. This implies
[xy] = −[yx]. The converse is true if char k 6= 2. In fact, [xx] = −[xx]
implies that 2[xx] = 0 and, if the charactersitic of k is not 2, this
implies [xx] = 0.
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1.4.2. Example Let k = R, L = R. We are looking for possible Lie
brackets on L. Bilinearity and anticommutativity require

[a, b] = [a · 1, b · 1] = ab[1, 1] = 0.

Thus, there is only one Lie bracket on L = R.

Definition 1.4.3. A Lie algebra L having a zero bracket is called a
commutative Lie algebra.

1.4.4. Observation Fix a field k of characteristic 6= 2 and let
L = 〈e1, . . . , en〉 be n-dimensional vector space over k. In order to
define a bilinear operation, it is enough to define it on ei:

[ei, ej] =
n∑

k=1

ckijek.

(this is true for any type of algebra). Elements ckij are called structure
constants of L.

Since we want the bracket to be anti-commutative, one has to have

[ei, ej] = [ej, ei].

Bilinearity and this condition imply anti-commutativity of the bracket
(check this formally!).

Suppose now we have checked already anticommutativity. To check
Jacobi identity let us denote

J(x, y, z) = [[xy]z] + [[zx]y] + [[yz]x].

One observes that J is trilinear (linear on each one of its three argu-
ments) and antisymmetric (it changes sign if one interchanges any two
arguments).

Thus, in order to check J(x, y, z) is identically zero, it is enough to
check

J(ei, ej, ek) = 0 for 1 ≤ i < j < k ≤ n.

1.4.5. Example Suppose dimL = 2. Suppose L is not commutative.
Choose a basis L = 〈e1, e2〉. One has

[e1, e1] = [e2, e2] = 0 and [e1, e2] = −[e2, e1].

Let [e1, e2] = y. Then y 6= 0 and any bracket in L is proportional to y
(by bilinearity).

Thus, it is convenient to take y as one of generators on L. Choose
another one, say x. We have L = 〈x, y〉 and [x, y] = λy. Since L



5

is not commutative, λ 6= 0. Thus change variables once more setting
x := x/λ.

We finally get

(2) L = 〈x, y〉 and [x, y] = y.

We have therefore proven that there are only two two-dimensional
Lie algebras over k up to isomorphism: a commutative Lie algebra and
the one described in (2).

1.4.6. Example The set of n × n matrices over k is an associative
algebra with respect to the matrix multiplication. It becomes a Lie
algebra if we define a bracket by the formula

[x, y] = xy − yx.
This Lie algebra is denoted gln(k) (sometimes we do not mention the
field k). Its dimension is, of course, n2.

The Lie algebra gln admits a remarkable Lie subalgebra.
Define sln = {a ∈ gln|tr(a) = 0}.
Here tr(a) =

∑
aii is the trace of a, the sum of the diagonal elements

of a.
We claim this is a Lie subalgebra.

1.4.7. Proof
Recall that for each pair of matrices a, b one has

tr(ab) = tr(ba).

(Proof is just a direct calculation: both sides are equal to
∑

ij aijbji.)

Then tr([a, b]) = tr(ab) − tr(ba) = 0. This proves that sln is closed
under the bracket operation.


