INTRODUCTION TO LIE ALGEBRAS.
LECTURE 1.

1. ALGEBRAS. DERIVATIONS. DEFINITION OF LIE ALGEBRA

1.1. Algebras. Let k be a field. An algebra over k (or k-algebra) is a
vector space A endowed with a bilinear operation

a,be Ar—a-be A

Recall that bilinearity means that for each a € A left and right
multiplications by a are linear transformations of vector spaces (i.e.
preserve sum and multiplication by a scalar).

1.1.1. Some extra properties
An algebra A is called associative if a - (b-¢) = (a-b) - ¢).
An algebra A is commutative if a - b =10 - a.
Usually commutative algebras are supposed to be associative as well.

1.1.2. Example

If V is a vector space, End(V'), the set of (linear) endomorphisms
of V' is an associative algebra with respect to composition. If V = k"
End(V) is just the algebra of n x n matrices over k.

1.1.3. Example The ring of polynomials k[z] over k is a commutative
k-algebra. The same for k[zy,...,x,], the algebra of polynomials of n
variables.

1.1.4. Example
If V' is a vector space, define an operation by the formula

a-b=0.
This is an algebra operation.

1.2. Subalgebras, ideals, quotient algebras. A linear map f :
A — B of k-algebras is called homomorphism if f(a-b) = f(a) - f(b)
for each a,b € A.

The image of a homomorphism is a subalgebra (please, give a correct
definition). Kernel of f defined as {a € A|f(a) = 0} is an ideal in A.

Here are the appropriate definitions.
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Definition 1.2.1. A vector subspace B C A is called a subalgebra if
a,be B=—=a-be B.
Definition 1.2.2. A vector subspace I C A is called an ideal if
acAkr el —=a-zvel&r-acl.

Lemma 1.2.3. Let f: A — B be a homomorphism of algebras. Then
Ker(f) is an ideal in A.

Proof. Exercise. 0

An important property of ideals is that one can form a quotient
algebra “modulo I”. Here is the construction.

Let A be an algebra and I an ideal in A. We define the quotient
algebra A/I as follows.

As a set this is the quotient of A modulo the equivalence relation

a~biffa—becl.

Thus, this is the set of equivalence classes having form a + I, where
a€ A
Structure of vector space on A/ is given by the formulas

(a+ D)+ b+1)=(a+b)+1I; MNa+I)=Xa+I.
Algebra structure on A/I is given by the formula
(a+1)-b+1)=a-b+1.
One has a canonical homomorphism
p: A— A/l

defined by the formula p(a) = a + I.
As usual, the following theorem (Theorem on homomorphism) is
straighforward.

Theorem 1.2.4. Let f : A B be a homomorphism of algebras
and let I be an ideal in A. Suppose that I C Ker(f). Then there exists
a unique homomorphism f : A/I —— B such that f = f o p where
p: A—— A/l is the canonical homomorphism.

Moreover, f is onto iff f is onto; f is one-to-one iff I = Ker(f).

Proof. Exercise. 0
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1.3. Derivations. A linear endomorphism d : A —— A is called
deriwation if the following Leibniz rule holds.

d(a-b)=d(a)-b+a-d(b).

The set of all derivations of A is denoted Der(A). This is clearly a
vector subspace of End(A).

1.3.1. Composition Let d,d" € Der(A) let us check that the com-
position dd’ is not a derivation.

(1) dd(a-b) =d(d(a)-b+a-db)=dd(a) b)+dla-db) =
dd'(a) - b+ d(a) - d(b) + d(a) - d'(b) + a - dd'(b)

which is not exactly what we need.

1.3.2. Bracket Thus, we suggest another operation. Given d,d €
Der(A), define [d,d'] = dd — d'd.

Theorem 1.3.3. Ifd,d € Der(A) then [d,d'] € Der(A).

Proof. Direct calculation. U

1.3.4. Properties of this bracket
L. [x,z] =0.
2. (Jacobi identity) [[zy]z] + [[zz]y] + [[yz]z] = 0
Exercise: check this.

1.4. Definition of Lie algebra. First examples. A Lie algebra is
an algebra with an operation satisfying the properties 1.3.

The operation in a Lie algebra is usually denoted [, ] and called (Lie)
bracket.

1.4.1. Anticommutativity The first property of a Lie algebra

saying [zz] = 0 is called anticommutativity. In fact, it implies that
[zy] = —[yz] for all x,y.

Proof: 0 = [z +y,x +y| = [2z] + [xy] + [yx] + [yy]. This implies
[zy] = —[yz]. The converse is true if char k # 2. In fact, [z2] = —[2z]

implies that 2[zz] = 0 and, if the charactersitic of k is not 2, this
implies [zz] = 0.
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1.4.2. Example Let k =R, L = R. We are looking for possible Lie
brackets on L. Bilinearity and anticommutativity require

la,b] =[a-1,b-1] = ab[1,1] = 0.
Thus, there is only one Lie bracket on L = R.

Definition 1.4.3. A Lie algebra L having a zero bracket is called a
commutative Lie algebra.

1.4.4. Observation Fix a field k of characteristic # 2 and let
L = (ey,...,e,) be n-dimensional vector space over k. In order to
define a bilinear operation, it is enough to define it on e;:

n
lei, e;] = Z cfjek.
k=1

(this is true for any type of algebra). Elements cf; are called structure
constants of L.
Since we want the bracket to be anti-commutative, one has to have

[e:, 5] = e, ed].
Bilinearity and this condition imply anti-commutativity of the bracket
(check this formally!).

Suppose now we have checked already anticommutativity. To check
Jacobi identity let us denote

J(z,y,2) = [[vy]z] + [[22]y] + [[yz]z].

One observes that J is trilinear (linear on each one of its three argu-
ments) and antisymmetric (it changes sign if one interchanges any two
arguments).
Thus, in order to check J(z,v, 2) is identically zero, it is enough to
check
J(ei,ej,ex) =0for 1 <i<j<k<n.

1.4.5. Example Suppose dim L = 2. Suppose L is not commutative.
Choose a basis L = (e, e3). One has

[e1,€1] = [e2,e2] = 0 and [ey, ea] = —[ea, e1].
Let [e1, es] = y. Then y # 0 and any bracket in L is proportional to y
(by bilinearity).
Thus, it is convenient to take y as one of generators on L. Choose
another one, say x. We have L = (z,y) and [z,y] = Ay. Since L
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is not commutative, A # 0. Thus change variables once more setting
ri=x/A
We finally get

(2) L = (z,y) and [z,y] = y.
We have therefore proven that there are only two two-dimensional

Lie algebras over k up to isomorphism: a commutative Lie algebra and
the one described in (2).

1.4.6. Example The set of n x n matrices over k is an associative
algebra with respect to the matrix multiplication. It becomes a Lie
algebra if we define a bracket by the formula

[z,y] = 2y — ya.

This Lie algebra is denoted gl, (k) (sometimes we do not mention the
field k). Its dimension is, of course, n?.

The Lie algebra gl,, admits a remarkable Lie subalgebra.

Define sl,, = {a € gl,|tr(a) = 0}.

Here tr(a) = > ay; is the trace of a, the sum of the diagonal elements
of a.

We claim this is a Lie subalgebra.

1.4.7. Proof
Recall that for each pair of matrices a, b one has
tr(ab) = tr(ba).
(Proof is just a direct calculation: both sides are equal to _,; ai;bji.)

Then tr([a,b]) = tr(ab) — tr(ba) = 0. This proves that sl,, is closed
under the bracket operation.



