
DIFFERENTIAL GEOMETRY. LECTURES 9-10, 23-26.06.08

Let us provide some more details to the definintion of the de Rham differential.
Let V, W be two vector bundles and assume we want to define an operator

(1) a : Γ(V) → Γ(W).

Assume s ∈ Γ(V). In order to define a section a(s) of W, it is enough to define
a collection of sections a(s)i of W over open subsets Ui of X covering X, so that
the restrictions a(s)i|Ui,j

and a(s)j|Ui,j
coincide. This is usually what one does in

order to construct an operator (1).
Let us construct in this way the de Rham differential

d : C∞(X) - Ω1(X).

In our case V = 1, W = T ∗X and we choose the cover of X by the charts of an
atlas.

If φ : D - U ⊂ X is a map and s ∈ C∞(X) the function s|U is a function

of the standard variables x1, . . . , xn in Rn and we put ds =
∑

i
∂(sφ)
∂xi

dxi.
Let us check that the section of T ∗X over U so obtained coincide at the inter-

sections of the charts.
If φ1 and φ2 are two charts as above, we will have

ω1 =
∑

j

∂(s ◦ φ1)

∂xj

,(2)

ω2 =
∑

j

∂(s ◦ φ2)

∂x′j
,(3)

— two sections of T ∗X over U1 and U2 respectively, written in the coordinates
of φ1 and φ2. Compatibility means that the transition function θ = φ−1

2 ◦ φ1

expressing the dependence of x′j on xj, carries ω1 to ω2. Since s ◦ φ1 = s ◦ φ2 ◦ θ,
one has

ω1 =
∑

j

∂(s ◦ φ2 ◦ θ)

∂xj

dxj ==
∑

j

∑
i

∂(s ◦ φ2)

∂x′i

∂x′i
∂xj

dxj

and this is exactly what is supposed to be.

3.7. More about tensors. Similarly to the above, one can check that the op-
erator d : Ωk → Ωk+1 defined in the previous lecture, makes sense.

It is, however, more clear what happens, if one uses a multiplicative structure
of the de Rham complex.
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Note two “algebraic” operations with tensors. Let us agree to use the following
notation. T p

q (X) or just T p
q is the bundle of (p, q)-tensors. The sections of this

bundle are called the (p, q)-tensors; we denote Tp
q = Γ(T p

q ). We have already had

special cases of this notion: T1
0 is just T and T0

1 is Ω1.
1. Product. Since T p

q = T p(TX) ⊗ T q(T ∗X), there is an obvious map

T p
q ⊗ T p′

q′
- T p+p′

q+q′ . This gives a product operation

Tp
q × T

p′

q′
- T

p+p′

q+q′ .

2. Contraction. The map T ∗X ⊗ TX - 1 is defined by pairing T ∗
x (X)

with TxX. This allows one to define a collection of maps T p
q

- T p−1
q−1 , for each

choice of a vector and a covector argument.
Passing to the sections, we have contraction operations

c : Tp
q

- T
p−1
q−1 .

The exterior power ∧kV can be identified with the antisymmetric part of T kV :
the natural projection T kV - ∧k V is split by the map

(4) x1 ∧ . . . ∧ xk 7→
∑
σ∈Sk

sign(σ)xσ(1) ⊗ . . .⊗ xσ(k).

The natural map ∧kV ⊗ ∧lV - ∧k+l V is defined so that the projection
from T kV to ∧kV preserves the multiplication.

Exercise. Check that the map (4) does not preserve the multiplication.
Now we can formulate the property characterizing the de Rham differential.

3.7.1. Theorem. There is a unique collection of linear maps d : Ωk - Ωk+1

satisfying the following properties.

• Its restriction to Ω0 = C∞ is as described above.
• It satisfies a (skew) Leibniz formula

d(ω · ω′) = d(ω) · ω′ + (−1)kω · d(ω′),

where ω ∈ Ωk.
• d ◦ d = 0.

Proof. Let us prove first of all uniqueness. Assume such collection of operators
exists. Then in local coordinates one has to have

(5) d(fdxi1 ∧ . . . ∧ dxik) = df ∧ dxi1 ∧ . . . ∧ dxik

— because of Leibniz formula and the condition dd = 0. This proves uniqueness.
Let us prove existence. It consists of two parts. First of all, we present formulas
in local coordinates satisfying the required properties. Then we have to prove
that the formulas agree at the intersections of the charts. Fortunately, we do
not have to do this since the formulas have to agree because of the uniqueness
property we have already proven.
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Let us now define the differential in the local coordinates by the formula (5)
and let us check it satisfies the required properties. First of all, Leibniz formula.
One has

fdxi1 ∧ . . . ∧ dxik ∧ gdxj1 ∧ . . . ∧ dxjl
= fgdxi1 ∧ . . . ∧ dxik ∧ dxj1 ∧ . . . ∧ dxjl

so that it is enough to check the Leibniz formula for k = l = 0, that is to check

d(fg) = df · g + fdg.

This is a standard calculus claim. Exercise. Find out why did we need the
mysterious sign (−1)k to appear.

Now, let us check dd = 0. Recall that df =
∑ ∂f

∂xi
dxi so

dd(fdxi1 ∧ . . . ∧ dxik) = d(
∑ ∂f

∂xi

dxi ∧ dxi1 ∧ . . . ∧ dxik) =(6) ∑
i,j

∂2f

∂xi∂xj

dxj ∧ dxi ∧ dxi1 ∧ . . . ∧ dxik = 0,(7)

�

since dxi ∧ dxi = 0 and
∂2f

∂xi∂xj

=
∂2f

∂xj∂xi

.

3.8. Morphisms of vector bundles, continued. This is a second attempt to
start telling this topic.

Let F : V → W be a morphism of vector bundles over X. Recall that this
means that F is a smooth map commuting with the projection to X and such
that for each x ∈ X the map of fibers Vx → Wx is linear (recall that the fibers
are vector spaces).

The map F defines by composition the map of the corresponding sections which
we will denote

Γ(F ) : Γ(V) - Γ(W).

Note that one can multiply sections by smooth functions, and that Γ(F ) obviously
preserves this structure

(8) Γ(F )(fs) = fΓ(F )s.

As we already know, there are interesting maps Γ(V) → Γ(W) which do not
satisfy this property, and, therefore, they do not come from morphisms of vector
bundles. Such is, for instance, the de Rham differential.

Today we will see more examples of this sort. Still, interesting examples of
operators satisfy the following property which we call locality.

3.8.1. Definition. An operator f : Γ(V) → Γ(W) is local if for each s ∈ Γ(V)
and for each open subset U ⊂ X the equality s|U = 0 implies f(s)|U = 0.
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De Rham differential is obviously local since zero function has zero derivatives.
In what follows we need the following basic fact which we leave without proof.

3.8.2. Lemma. Let U ′, U be two open subsets of X such that Ū ′ ⊂ U . Then there
exists a smooth function α on X having support in U such that α|U ′ = 1.

Recall that support of a function f is defined as the closure of the set {x|f(x) 6=
0}.

3.8.3. Corollary. Let U ′ ⊂ U be open subsets of X, so that Ū ′ ⊂ U and let V be
a vector bundle on X. For any section s ∈ Γ(V|U) there exists a section t ∈ Γ(V)
such that s|U ′ = t|U ′.

Proof. Choose a function α as in Lemma 3.8.2 and define t(y) = α(y)s(y) for
y ∈ U and t(y) = 0 for y 3 U . �

3.8.4. Lemma. Assume that an operator f : Γ(V) - Γ(W) is C∞-linear.
Then f is local.

Proof. Let s|U = 0. We want to check that f(s)|U = 0. It is sufficient to prove
that for each x ∈ U there exists a neighborhood U ′ 3 x such that f(s)|U ′ = 0.
We can assume Ū ′ ⊂ U . Then there exists a smooth function α on X such that
α|U ′ = 1 and the support of α is in U . Under these conditions αs = 0 therefore
f(αs) = αf(s) = 0. Thus, f(s)|U ′ = 0 as required. �

Local operators f : Γ(V) → Γ(W) satisfy a very special property: one can
uniquely extend them to sections over open subsets, see the following theorem.

3.8.5. Theorem. Let f : Γ(V) - Γ(W) be a local operator. There is a unique
collection of operators

fU : Γ(V|U) - Γ(W|U)

compatible with the restrictions.

Of course, this is precisely the property which makes local operators so impor-
tant.

Proof. Let U, U ′ be two open subsets of X such that Ū ′ ⊂ U . We define an
operator fU,U ′ : Γ(V|U) - Γ(W|U ′) as follows. Let s ∈ Γ(V|U). By 3.8.3 there
exists a section t ∈ Γ(V) such that t|U ′ = s|U ′ . We define

fU,U ′(s) := f(t)|U ′ .

The definition makes sense since, if t′|U ′ = t|U ′ , then by locality of f one has
f(t′)|U ′ = f(t)|U ′ . By the construction, fU,U ′ is the only operator compatible
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with f , that is making the diagram below

(9)

Γ(V)
f - Γ(W)

Γ(V|U)
?

fU,U′
- Γ(W|U ′)

?

commutative.
We can now present U as a union of subsets U ′ as above. The maps fU,U ′

1
and

fU,U ′
2

coincide on the intersection U ′
1∩U ′

2 because of uniqueness property. Gluing
the sections fU,U ′(s) for various U ′ we get a section over U which we denote fU(s).
The uniqueness of the construction is obvious. �

We will now prove the following.

3.8.6. Theorem. An operator f : Γ(V) → Γ(W) comes from a morphism of
vector bundles if and only if it is C∞-linear, that is it satisfies (8).

Proof. We will first of all prove the claim in case V is a trivial bundle, and then
will use a trivialization of V. In the second part we will use Theorem 3.8.5.

Assume V is trivial, that is isomorphic to X × Rk for some k. Let si, i =
1, . . . , k, be constant sections of V corresponding to a fixed basis of Rk. Any
section of V can be uniquely presented as a linear componation

s =
∑

aisi

where ai ∈ C∞(X). Thus, a C∞-linear map f : Γ(V) → Γ(W) is uniquely defined
by k sections ti = f(si) ∈ Γ(W). These sections uniquely define a morphism
X × Rk → W by the formula

F (x,
∑

cisi(x)) = (x,
∑

citi(x)).

Choose a trivialization X = ∪Ui of V. On each one of Ui we have by Theorem
3.8.5 an operator fUi

: V|Ui
→ W|Ui

. By the first part of the proof this gives rise
to a unique map Fi : V|Ui

→ W|Ui
for each i. The maps Fi are compatible on the

intersections by uniqueness. That gives the result. �

3.9. Integral curves. Vector fields are just sections of the tangent bundle. How-
ever, they have a special meaning (since the tangent bundle is a very special
bundle).

Let s be a vector field on a manifold X. One can look for a curve γ :
(a, b) - X satisfying the equation

(10) γ′(t) = s(γ(t)).

The theory of ODE claims the following.
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3.9.1. Theorem. For any x ∈ X there exists an interval (a, b) containing zero
and a unique curve γ : (a, b) - X satisfying the equation (10) and γ(0) = x.

The size of the segment (a, b) may depend on x. However, for each x there exists
a neighborhood U 3 x and a common segment (a, b) such that the the differental
equation (10) has solution in (a, b) for any initial condition γ(0) = y, y ∈ U .

Fix such U and (a, b). Uniqueness of the solution of the differential equation
allows one to define a smooth map Θ : (a, b) × U - X. We will write Θt(x)
instead of Θ(t, x).

3.9.2. Theorem. Assume t, s, t + s belong to (a, b). Then the maps Θt+s and
Θt ◦Θs coincide at the common doman of definition. In particular, Θt is a local
diffeomorphism for small t.

Proof. Θs(x) is defined as γ(s) where γ satisfes the differential equation 10 with
the initial condition γ(0) = x. Therefore Θt ◦ Θs(x) is δ(t) where δ satisfies
the same equation with initial condition δ(0) = γ(s). By the uniqueness of the
solution of ODE the functions δ(t) and γ(t + s) coincide.

In particular, for small t one has Θt ◦Θ−t = Θ1 = id. �

3.10. Lie derivative. In this subsection we define, for each vector field s ∈ T,
a local operator

Ls : Tp
q

- Tp
q .

This operator is called Lie derivative.

3.10.1. The case p = q = 0 As we know, any vector field s ∈ T defines a
derivation on the space of smooth functions. This is Ls in the case p = q = 0.

3.10.2. The case p = 1, q = 0 We have T1
0 = T and the operator Ls is defined

by the formula
Ls(t) = [s, t].

3.10.3. Theorem. There exists a unique collection of operators

Ls : Tp
q

- Tp
q

satisfying the following conditions

• Ls is as defined above in the cases p = q = 0 (on functions) and p =
1, q = 0 (on vector fields).

• Ls satisfies Leibniz rule:

Ls(u · v) = Ls(u) · v + u · Ls(v).

• Ls commutes with (all) contractions: if c : Tp
q

- T
p−1
q−1 is a contraction,

one has
Ls(c(u)) = c(Ls(u)).
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Proof. As usual, we will first prove uniqueness, and then take care of existence.
Let us first of all show that the contraction axiom allows one to determine the
action of Ls on 1-forms.

Let ω ∈ T0
1 = Ω1 and let t ∈ T. One has to have Ls(t ·ω) = [s, t] ·ω + t ·Ls(ω),

so by contraction condition

s(〈t, ω〉) = 〈[s, t], ω〉+ 〈t, Ls(ω)〉
We claim that Ls(ω) is uniquely defined by this formula. In fact, Ls(ω) is

a section of T ∗X = Hom(TX,1) that is (by Exercise 2 of Lecture 7) a map
TX - 1 that is a C∞-linear map from T to C∞. The formula precisely defines
this map.

Now, having defined Ls on C∞, T and Ω1, we have it (locally) for all tensors.
This proves Ls (if exists) is defined uniquely.

The best way to prove existence of Ls is to present another definition and
then check that it satisfies the required properties. We will sketch this definition
without entering into details.

The vector field s ∈ T defines a collection of diffeomorphisms Θt of X for small
t. Any diffeomorphism Θ : X → Y defines a map Θ∗ : Tp

q (Y ) - Tp
q (X).

In particular, for u ∈ Tp
q the assignment t 7→ Θ∗

t (u) defines a path in Tp
q . The

tangent vector at t = 0 is an element of Tp
q which is denoted Ls(u).

Let us calculate Ls(f) where f is a smooth function. By definitnion, Θt(f) is
a function assigning to x ∈ X the value f(Θ(t, x)). By definition this coincides
with 〈f, s〉(x).

In this way one can check that Ls satisfies all the requirements (we will not do
this).

Alternatively, one can follow the way we used in dealing with de Rham differ-
ential. This means that one has to make explicit calculations in order to check
that in the local coordinates the operators Ls defined as in the first part of the
proof, satisfy all requirements. Then uniqueness would imply that the formulas
coincide on the intersection of the charts.

We leave this to an interested reader. We will just indicate that if s =
∑

si
∂

∂xi

then Ls(
∂

∂xi
) = −

∑
j

∂sj

∂xi

∂
∂xj

and Ls(dxi) =
∑

j
∂si

∂xj
dxj. This allows one (after

very lengthy calculations) to prove the existence locally, and, because of the
uniqueness, also globally.
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