DIFFERENTIAL GEOMETRY. LECTURES 7-8, 16-19.06.08

Vector bundles can be dealt with as vector spaces — one can perform with them the same basic operations: direct sum, tensor product, et cetera.

We will first recall the standard operations with vector spaces.

3.3. Operations with vector spaces.

3.3.1. Direct sum. If V, W are two vctor spaces, their direct sum is defined as the set of pairs (v, w) with $v \in V$, $w \in W$. The vector space operations, sum and multiplication by a scalar, are defined componentwise:

$$(v, w) + (v', w') = (v + v', w + w'), \quad c(v, w) = (cv, cw).$$

It is convenient to have also a "coordinate-dependent" description: if $X = \{x_1, \ldots, x_n\}$ is a basis of V and $Y = \{y_1, \ldots, y_m\}$ is a basis of W then $X \cup Y$ is a basis of $V \oplus W$.

3.3.2. The dual space

Let V be a vector space. The dual space V^{\vee} is defined as the set of linear maps $V \longrightarrow F$ to the base field F (we are mainly interested in the case $F = \mathbb{R}$ or \mathbb{C}). If V is finite dimensional than dim $V^{\vee} = \dim V$. Moreover, if x_1, \ldots, x_n is a basis in V, the collection of functionals x_i^* defined by the formulas $x_i^*(x_j) = \delta^{i,j}$ (Kronecker's delta) defines a basis in V^{*} called *the dual basis*. Note that the notation is slightly misleading since in order to define x_i^* one need all of x_j mato be chosen.

3.3.3. The space of linear maps

Given two vector spaces, V and W, one defines Hom(V, W) as the space of linear maps from V to W. In case W = F we get back the dual space, $\text{Hom}(V, F) = V^*$. The linear space operations are defined as usual:

$$(f+g)(v) = f(v) + g(v), \quad (cf)(v) = cf(v).$$

If $X = \{x_1, \ldots, x_m\}$ is a basis of V and $Y = \{y_1, \ldots, y_n\}$ is a basis of W then one can choose the following set $f_{i,j}$, $i = 1, \ldots, n$, $j = 1, \ldots, m$ as a basis for Hom(V, W):

$$f_{i,j}(x_k) = \delta^{j,k} y_i.$$

As we know well, linear maps between vector spaces can be written as matrices once one chooses bases here and there. In this way the map $f_{i,j}$ identifies with the matrix having 1 at line *i*, column *j*, and zero otherwise.

If dim V = m, dim W = n, one has dim Hom(V, W) = mn.

3.3.4. Tensor product

There is another operation with vector space, giving a vector spaces of the same "size" as $\operatorname{Hom}(V, W)$ for finite dimensional V, W, but with a equal role of V and W (recall that $\operatorname{Hom}(V, F) = V^*$ even though $\operatorname{Hom}(F, V) = V$ which is not really the same.

The definition goes as follows. First of all, for any triple of vector spaces, V, W, U, one defines a bilinear map $f : V \times W \longrightarrow U$ as a map satisfying the linearity property along each one of the arguments: for all $x \in V$ the map f(x,) is linear, as well as f(, y) is linear for all $y \in W$.

Denote the collection of bilinear maps from $V \times W$ to U as $\operatorname{Bil}(V, W; U)$. An important observation follows: if x_i and y_j are bases in V and W respectively, a bilinear map $f: V \times W \to U$ is uniquely defined by its value on pairs of basis elements $f(x_i, y_j)$.

If $f: V \times W \to U$ is bilinear and if $g: U \to U'$ is any linear map, the composition $g \circ f: V \times W \to U'$ is bilinear. Thus, any linear map $g: U \to U'$ defines a map

 $\operatorname{Bil}(V, W; U) \longrightarrow \operatorname{Bil}(V, W; U').$

Now we say that a bilinear map $F: V \times W \to X$ is universal if any bilinear map $f: V \times W \to U$ can be presented as $g \circ F$ for a *unique* linear map $g: X \to U$.

We will see in a moment that such universal bilinear map exists. But before we see this, let us check that (if it exists) it is essentially unique.

In fact, if $F: V \times W \to X$ and $G: V \times W \to Y$ are both universal bilinear maps, there exists a unique $f: X \to Y$ and a unique $g: Y \to X$ such that $f \circ F = G$, $g \circ G = F$. This implies that $g \circ f \circ F = F$ and, once more by uniqueness, that $g \circ f = \operatorname{id}_X$. Similarly, we get $f \circ g = \operatorname{id}_Y$ and this is precisely the sence of our phrase "essentially unique".

Let us present such universal bilinear map. Choose, as usual, the bases x_1, \ldots, x_m and y_1, \ldots, y_n in V and W respectively. Define $X = \text{Span}\{e_{i,j}, i = 1, \ldots, m, j = 1, \ldots, n\}$ and denote

$$F:V\times W\to X$$

by the formula

$$F(x_i, y_j) = e_{i,j}.$$

(The above formula uniquely extends to a bilinear map.)

Since the universal bilinear map is essentially unique, it deserves a special name. We denote $X = V \otimes W$ and the image F(v, w) by $v \otimes w$. If x_1, \ldots, x_m and y_1, \ldots, y_n are bases in V and in W respectively, the elements $x_i \otimes y_j$ for a basis of $V \otimes W$. Bilinearity means that if $u = \sum a_i x_i$ and $w = \sum b_j y_j$ then

$$v \otimes w = \sum_{i,j} a_i b_j x_i \otimes y_j.$$

3.3.5. Symmetric powers

If V is a vector space, one defines $T^d(V) = V \otimes \ldots \otimes V$ (d factors). If $\{x_i\}$ is a basis of V, the expressions

$$x_{i_1} \otimes \ldots \otimes x_{i_d}$$

form a basis of $T^d(V)$. If dim V = n, one has dim $T^d(V) = n^d$.

The space $T^{d}(V)$ has two interesting quotients, the symmetric and the exterior powers.

We define the *d*-th symmetric power of V, $S^d(V)$, as the quotient of $T^d(V)$ by the subspace generated by the differences

$$v_1 \otimes \ldots \otimes v_d - v_{s(1)} \otimes \ldots \otimes v_{s(d)}$$

for any v_i and all $s \in S_d$.

A linear basis for $S^d(V)$ can be described as follows. Let x_1, \ldots, x_n form a basis of V. A basis of $S^d(V)$ is formed by monomials

 $x_1^{d_a} \dots x_n^{d_n}$

satisfying the condition $d = d_1 + \ldots + d_n$.

An especially important for us is the symmetric square $S^2(V)$. It is easy to see that linear maps from $S^2(V)$ to U are the same as symmetric bilinear maps $V \times V \longrightarrow U$.

If x_1, \ldots, x_n form a basis of V, the products $x_i x_j = x_j x_i$ form a basis of $S^2(V)$. If dim V = n, one has dim $S^2(V) = \frac{n(n+1)}{2}$.

3.3.6. Exterior powers

Exterior powers $\wedge^d(V)$ are defined as the quotient of $T^d(V)$ by the vector subspace generated by the tensors

$$\ldots \otimes v \otimes \ldots \otimes v \otimes \ldots$$

If x_1, \ldots, x_n form a basis of V, the products $x_{i_1} \wedge \ldots \wedge x_{i_d}$ with $i_1 < \ldots < i_d$ form a basis of $\wedge^d(V)$. If dim V = n, one has dim $\wedge^d(V) = \binom{n}{d}$. In particular, dim $\wedge^n(V) = 1$.

3.3.7. Change of base.

All the constructions above are *functorial* in the sense that if one has a linear map $V \to V'$ (or a pair $V \to V'$ and $W \to W'$), this canonically defines a linear map of the resulting vector space.

In what follows we will assume, when needed, that V has a base $\{x_i\}$, W has a base $\{y_j\}$, and similarly for V', W' the bases are denoted $\{x'_i\}$, $\{y'_i\}$.

For instance, given linear maps $\alpha : V \to V'$ and $\beta : W \to W'$, one defines a linear map $\alpha \oplus \beta : V \oplus W \to V' \oplus W'$ by the formula

$$\alpha \oplus \beta(v, w) = (\alpha(v), \beta(w)).$$

If α and β are given, for a specific choice of the bases, by matrices A and B, the automorphism $\alpha \oplus \beta$ is defined by the block-diagonal matrix $\begin{pmatrix} A & 0 \\ \hline 0 & B \end{pmatrix}$. Similarly, a linear map $\alpha : V \to V'$ defines an adjoint map of $\alpha^{\vee} : V'^{\vee} \to V^{\vee}$; it

Similarly, a linear map $\alpha : V \to V'$ defines an adjoint map of $\alpha^{\vee} : V'^{\vee} \to V^{\vee}$; it is given in the dual bases by the transposed matrix A^t . Note that the assignment $\alpha \mapsto \alpha^{\vee}$ reverts compositions: one has

$$\alpha_1^{\vee} \circ \alpha_2^{\vee} = (\alpha_2 \circ \alpha_1)^{\vee}.$$

This is why it is more useful sometimes to use the inverse of the transpose: the assignment $\alpha \mapsto (\alpha^{\vee})^{-1}$ preserves compositions.

Of course, this is only possible if α is an isomorphism.

If $\alpha : V \to V'$ is an isomorphism and $\beta : W \to W'$ is arbitrary, a linear map $\operatorname{Hom}(V, W) \to \operatorname{Hom}(V', W')$ is defined, by assigning to $f : V \longrightarrow W$ the composition $\beta \circ f \circ \alpha^{-1}$. If $B = (b_{i,j}), A^{-1} = (c_{i,j})$ then the resulting automorphism of $\operatorname{Hom}(V, W)$ sends $f_{i,j}$ to

(1)
$$\sum b_{r,i}c_{j,s}f'_{r,s}.$$

Let us look what happens with the tensor product.

If $\alpha: V \to V'$ and $\beta: W \to W'$ are given, the bilinear map

 $V \times W \longrightarrow V' \otimes W'$

sending (v, w) to $\alpha(v) \otimes \beta(w)$, defines by universality a linear map $V \otimes W \longrightarrow V' \otimes W'$ sending $v \otimes w$ to $\alpha(v) \otimes \beta(w)$. We will denote this linear map by $\alpha \otimes \beta$. If α is given by a matrix A and β by B, the map $\alpha \otimes \beta$ carries $x_i \otimes y_j$ to

(2)
$$\alpha(x_i) \otimes \beta(y_j) = \sum_r a_{r,i} x'_r \otimes \sum_s b_{s,j} y'_s = \sum_{r,s} a_{r,i} b_{s,j} x'_r \otimes y'_s$$

Note the difference between the formulas (1) and (2)!

Iterating the above formulas, we can get a map $T^n(V) \to T^n(V')$ induced by a map $\alpha : V \to V'$. We denote the resulting map as $T^n(\alpha)$.

It is interesting to describe the map $\wedge^n V \to \wedge^n V$, $n = \dim V$, induced by an endomorphism $\alpha : V \to V$.

Note that the vector space $\wedge^n V$ is one-dimensional and if x_1, \ldots, x_n is a basis of $V, \wedge^n V$ has a basis consisting of the only element $x_1 \wedge x_2 \wedge \ldots \wedge x_n$. The image of this element under the map $\wedge^n \alpha$ is $\alpha(x_1) \wedge \alpha(x_2) \wedge \ldots \wedge \alpha(x_n)$. In order to understand what we got, we have to transform this expression using the standard properties, multilinearity and skew-symmetricity. Let α be given by a matrix A

4

in the basis of x_j . This means that $\alpha(x_j) = \sum_i a_{i,j} x_i$. Then, opening brackets we will have

$$\alpha(x_1) \wedge \ldots \wedge \alpha(x_n) = \sum_{s:[1,n] \to [1,n]} a_{s(1),1} a_{s(2),2} \ldots a_{s(n),n} \cdot x_{s(1)} \wedge \ldots \wedge x_{s(n)} =$$
$$\sum_{s \in S_n} \operatorname{sign}(s) a_{s(1),1} a_{s(2),2} \ldots a_{s(n),n} \cdot x_1 \wedge x_2 \wedge \ldots \wedge x_n = \det(A) x_1 \wedge x_2 \wedge \ldots \wedge x_n.$$

3.4. **Operations with vector bundles.** The operations with vector bundles are defined according to the same recipee.

Let, for instance, $\mathbb{V} \to X$ and $\mathbb{W} \to X$ be two vector bundles. Choose an open cover $X = \bigcup U_i$ such that the restrictions $\mathbb{V}|_{U_i}$ and $\mathbb{W}|_{U_i}$ are trivial. The latter means there exist isomorphisms

$$\eta_i: U_i \times V_i \longrightarrow \mathbb{V}|_{U_i}, \quad \zeta_i: U_i \times W_i \longrightarrow \mathbb{W}|_{U_i},$$

where V_i and W_i are vector spaces (all isomorphich to \mathbb{R}^m or to \mathbb{R}^n respectively). The vector bundles \mathbb{V} and \mathbb{W} are defined by the maps

$$\theta_{i,j}: U_{i,j} \longrightarrow \operatorname{Hom}(V_i, V_j), \quad \xi_{i,j}: U_{i,j} \longrightarrow \operatorname{Hom}(W_i, W_j)$$

satisfying the cocycle conditions.

Now we are ready to define, starting with these data, new vector bundles. For instance, the direct sum $\mathbb{V} \oplus \mathbb{W}$ is obtained gluing trivial bundles $U_i \times (V_i \oplus W_i)$ along the cocycles

$$\theta_{i,j} \oplus \xi_{i,j} : U_{i,j} \longrightarrow \operatorname{Hom}(V_i \oplus W_i, V_j \oplus W_j)$$

sending $x \in U_{i,j}$ to the linear map $\theta_{i,j}(x) \oplus \xi_{i,j}(x)$.

The three cocycle conditions for $\theta \oplus \xi$ are verified immediately.

Similar formulas define the operations $\mathbb{V} \otimes \mathbb{W}$, $S^n(\mathbb{V})$, $\wedge^n(\mathbb{V})$.

A minor difference appears in the definition of the dual vector bundle \mathbb{V}^{\vee} and the vector bundle $\operatorname{Hom}(\mathbb{V}, \mathbb{W})$ (which is the same as $\mathbb{V}^{\vee} \otimes \mathbb{W}$ in the case (we are only interested in) of finite-dimensional vector bundles. If \mathbb{V} is iven, as above, by and $\theta_{i,j}U_{i,j} \longrightarrow \operatorname{Hom}(V_i, V_j)$, then the cocycle defining \mathbb{V}^{\vee} is defined by the cocycle $(\theta_{i,j}^{\vee})^{-1}$.

3.4.1. Base change

There is a special operation with vector bundles which replaces the base manifold X.

Let $\pi : \mathbb{V} \to X$ be a vector bundle and let $f : Y \to X$ be a smooth map. We define a vector bundle $f^*(\mathbb{V})$ on Y as follows.

As a topological space, $f^*(\mathbb{V})$ is the subspace of the direct product $Y \times \mathbb{V}$ determined by the condition

(3)
$$f^*(\mathbb{V}) = \{(y,v) \in Y \times \mathbb{V} | f(y) = \pi(v)\}.$$

The procetion to the first factor defines a continuous map $\pi' : f^*(\mathbb{V}) \longrightarrow Y$. We will prove that $f^*(\mathbb{V})$ is a smooth manifold, that π' is a smooth map, simultaneously with presenting the map $\pi' : f^*(\mathbb{V}) \longrightarrow Y$ with the structure of a vector bundle. In fact, let U be an open subset on X such that $\mathbb{V}|U$ is trivial that is isomorphic to a direct product $U \times \mathbb{R}^n$. Then put $V = f^{-1}(U)$. This is an open subset of Y. The preimage ${\pi'}^{-1}(V)$ can be easily identified with $V \times \mathbb{R}^n$ and this proves simultaneously everything.

3.4.2. Standard tensor bundles.

The cotangent bundle T^*X is, by definition, the vector bundle dual to the tangent bundle T(X). The sections of T^*X are called *differential 1-forms*.

For given p, q the tensor product $T^p(TX) \otimes T^q(T^*X)$ is denoted $T^p_q(X)$. A section of T^p_q is called a (p,q) tensor field on X.

Thus, (1,0) tensor fields are vector fields, and (0,1) tensor fields are 1-forms.

Skew-symmetric (0, n) vector fields are called *n*-forms. They are the same as the sections of the bundle $\wedge^n T^*X$.

3.5. Morphisms of vector bundles versus local operators. Let \mathbb{V} , \mathbb{W} be two vector bundles. Any morphism $f : \mathbb{V} \longrightarrow \mathbb{W}$ of vector bundles induces a linear map of the spaces of sections

(4)
$$\Gamma(f): \Gamma(\mathbb{V}) \to \Gamma(\mathbb{W}).$$

Recall that one can multiply sections by smooth functions on X: if $s \in \Gamma(\mathbb{V})$ and $\alpha \in C^{\infty}(X)$ then αs is also a section of \mathbb{V} .

Remark. This makes $\Gamma(\mathbb{V})$ into a *module* over the commutative ring $C^{\infty}(X)$.

The map $\Gamma(f) : \Gamma(\mathbb{V}) \to \Gamma(\mathbb{W})$ induced by a morphism of vector bundles f preserves the multiplication by functions:

$$\Gamma(f)(\alpha s) = \alpha \Gamma(f)(s).$$

There are, however, very interesting maps $\Gamma(\mathbb{V}) \to \Gamma(\mathbb{W})$ which do not come from morphisms of vector bundles.

Here is a typical example.

Let **1** denote the trivial one-dimensional bundle $\mathbf{1} = X \times \mathbb{R}$. One has $\Gamma(\mathbf{1}) = C^{\infty}(X)$. We will define now a very interesting operator

$$d: C^{\infty}(X) \longrightarrow \Gamma(T^*X)$$

assigning, in local coordinates, to a function $f \in C\infty(X)$ the 1-form

(5)
$$df = \sum \frac{\partial f}{\partial x_i} dx_i,$$

where dx_i is the dual basis to $\frac{\partial}{\partial x_i}$.

There are two ways of proving the definition makes sense. The first, direct proof, is to check the formula above is compatible on intersection of the charts: we know the cocycle defining the vector bundle T^*X (the corresponding matrix is inverse to the adjoint of the Jacobi matrix) and we have to check the formula (5) changes similarly under a change of coordinates.

Another way (for the lazybones) is to prove that $\Gamma(T^*)$ can be expressed as $\operatorname{Hom}_{C^{\infty}}(\Gamma(TX), C^{\infty})$, the set of C^{∞} -linear map from ($\Gamma(TX)$ to C^{∞} and to take into account that each vector field acts on the functions.

3.6. De Rham complex. Let X be a manifold. We denote $\Omega^k = \Gamma(\wedge^k(T^*M))$ - this is the space of differential k-forms on X. In particular, $\Omega^0 = C^{\infty}(X)$.

We intend to define a collection of maps $d: \Omega^k \to \Omega^{k+1}$ satisfying some nice properties, in particular, $d \circ d = 0$, such that for k = 0 this amounts to the differential of a function defined above.

This collection of vector spaces and maps is called the *de Rham complex*. One defines *de Rham cohomology* by the formula

$$H^k_{DR}(X) = \operatorname{Ker}(d: \Omega^k \to \Omega^{k+1}) / \operatorname{Im}(d: \Omega^{k-1} \to \Omega^k).$$

We mimic the definition of d in the local coordinates. If x_1, \ldots, x_n are local coordinates given by a chart $\phi: D \longrightarrow U$, a general k-form has a basis consisting of expressions

$$dx_{i_1} \wedge \ldots \wedge dx_{i_k}$$

with coefficients from C^{∞} . Thus, it is enough to define what is

(6)
$$d(f dx_{i_1} \wedge \ldots \wedge dx_{i_k})$$

One should not be very astonished to have as an answer the following expression.

(7)
$$d(f)dx_{i_1} \wedge \ldots \wedge dx_{i_k} = \sum \frac{\partial f}{\partial x_i} dx_i \wedge dx_{i_1} \wedge \ldots \wedge dx_{i_k}.$$

Exercises.

1. Prove, using a local calculation, that $d \circ d = 0$.

2. Prove that a map $\mathbb{V} \to \mathbb{W}$ is the same as a global section of the bundle $\operatorname{Hom}(\mathbb{V}, \mathbb{W})$.

3. Calculate the de Rham cohomology H^0 and H^1 of the circle.