
DIFFERENTIAL GEOMETRY. LECTURES 7-8, 16-19.06.08

Vector bundles can be dealt with as vector spaces — one can perform with
them the same basic operations: direct sum, tensor product, et cetera.

We will first recall the standard operations with vector spaces.

3.3. Operations with vector spaces.

3.3.1. Direct sum. If V, W are two vctor spaces, their direct sum is defined
as the set of pairs (v, w) with v ∈ V, w ∈ W . The vector space operations, sum
and multiplication by a scalar, are defined componentwise:

(v, w) + (v′, w′) = (v + v′, w + w′), c(v, w) = (cv, cw).

It is convenient to have also a “coordinate-dependent” description: if X =
{x1, . . . , xn} is a basis of V and Y = {y1, . . . , ym} is a basis of W then X ∪ Y is
a basis of V ⊕W .

3.3.2. The dual space
Let V be a vector space. The dual space V ∨ is defined as the set of linear

maps V - F to the base field F (we are mainly interested in the case F = R
or C). If V is finite dimensional than dim V ∨ = dim V . Moreover, if x1, . . . , xn is
a basis in V , the collection of functionals x∗i defined by the formulas x∗i (xj) = δi,j

(Kronecker’s delta) defines a basis in V ∗ called the dual basis. Note that the
notation is slightly misleading since in order to define x∗i one need all of xj mato
be chosen.

3.3.3. The space of linear maps
Given two vector spaces, V and W , one defines Hom(V, W ) as the space

of linear maps from V to W . In case W = F we get back the dual space,
Hom(V, F ) = V ∗. The linear space operations are defined as usual:

(f + g)(v) = f(v) + g(v), (cf)(v) = cf(v).

If X = {x1, . . . , xm} is a basis of V and Y = {y1, . . . , yn} is a basis of W then
one can choose the following set fi,j, i = 1, . . . , n, j = 1, . . . ,m as a basis for
Hom(V, W ):

fi,j(xk) = δj,kyi.

As we know well, linear maps between vector spaces can be written as matrices
once one chooses bases here and there. In this way the map fi,j identifies with
the matrix having 1 at line i, column j, and zero otherwise.

If dim V = m, dim W = n, one has dim Hom(V, W ) = mn.
1
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3.3.4. Tensor product
There is another operation with vector space, giving a vector spaces of the

same “size” as Hom(V, W ) for finite dimensional V, W , but with a equal role of
V and W (recall that Hom(V, F ) = V ∗ even though Hom(F, V ) = V which is
not really the same.

The definition goes as follows. First of all, for any triple of vector spaces,
V, W, U , one defines a bilinear map f : V × W - U as a map satisfying the
linearity property along each one of the arguments: for all x ∈ V the map f(x, )
is linear, as well as f( , y) is linear for all y ∈ W .

Denote the collection of bilinear maps from V ×W to U as Bil(V, W ; U). An
important observation follows: if xi and yj are bases in V and W respectivewly,
a bilinear map f : V ×W → U is uniquely defined by its value on pairs of basis
elements f(xi, yj).

If f : V × W → U is bilinear and if g : U → U ′ is any linear map, the
composition g ◦ f : V ×W → U ′ is bilinear. Thus, any linear map g : U → U ′

defines a map
Bil(V, W ; U) - Bil(V, W ; U ′).

Now we say that a bilinear map F : V ×W → X is universal if any bilinear
map f : V ×W → U can be presented as g◦F for a unique linear map g : X → U .

We will see in a moment that such universal bilinear map exists. But before
we see this, let us check that (if it exists) it is essentially unique.

In fact, if F : V × W → X and G : V × W → Y are both universal bilinear
maps, there exists a unique f : X → Y and a unique g : Y → X such that
f ◦ F = G, g ◦ G = F . This implies that g ◦ f ◦ F = F and, once more by
uniqueness, that g ◦ f = idX . Similarly, we get f ◦ g = idY and this is precisely
the sence of our phrase “essentially unique”.

Let us present such universal bilinear map. Choose, as usual, the bases
x1, . . . , xm and y1, . . . , yn in V and W respectively. Define X = Span{ei,j, i =
1, . . . ,m, j = 1, . . . , n} and denote

F : V ×W → X

by the formula
F (xi, yj) = ei,j.

(The above formula uniquely extends to a bilinear map.)
Since the universal bilinear map is essentially unique, it deserves a special

name. We denote X = V ⊗ W and the image F (v, w) by v ⊗ w. If x1, . . . , xm

and y1, . . . , yn are bases in V and in W respectively, the elements xi ⊗ yj for a
basis of V ⊗W . Bilinearity means that if u =

∑
aixi and w =

∑
bjyj then

v ⊗ w =
∑
i,j

aibjxi ⊗ yj.
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3.3.5. Symmetric powers
If V is a vector space, one defines T d(V ) = V ⊗ . . .⊗ V (d factors). If {xi} is

a basis of V , the expressions

xi1 ⊗ . . .⊗ xid

form a basis of T d(V ). If dim V = n, one has dim T d(V ) = nd.
The space T d(V ) has two interesting quotients, the symmetric and the exterior

powers.
We define the d-th symmetric power of V , Sd(V ), as the quotient of T d(V ) by

the subspace generated by the differences

v1 ⊗ . . .⊗ vd − vs(1) ⊗ . . .⊗ vs(d)

for any vi and all s ∈ Sd.
A linear basis for Sd(V ) can be described as follows. Let x1, . . . , xn form a

basis of V . A basis of Sd(V ) is formed by monomials

xda
1 . . . xdn

n

satisfying the condition d = d1 + . . . + dn.
An especially important for us is the symmetric square S2(V ). It is easy to

see that linear maps from S2(V ) to U are the same as symmetric bilinear maps
V × V - U .

If x1, . . . , xn form a basis of V , the products xixj = xjxi form a basis of S2(V ).

If dim V = n, one has dim S2(V ) = n(n+1)
2

.

3.3.6. Exterior powers
Exterior powers ∧d(V ) are defined as the quotient of T d(V ) by the vector

subspace generated by the tensors

. . .⊗ v ⊗ . . .⊗ v ⊗ . . .

If x1, . . . , xn form a basis of V , the products xi1 ∧ . . . ∧ xid with i1 < . . . < id

form a basis of ∧d(V ). If dim V = n, one has dim∧d(V ) =

(
n
d

)
. In particular,

dim∧n(V ) = 1.

3.3.7. Change of base.
All the constructions above are functorial in the sense that if one has a linear

map V → V ′ (or a pair V → V ′ and W → W ′), this canonically defines a linear
map of the resulting vector space.

In what follows we will assume, when needed, that V has a base {xi}, W has
a base {yj}, and similarly for V ′, W ′ the bases are denoted {x′i}, {y′j}.
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For instance, given linear maps α : V → V ′ and β : W → W ′, one defines a
linear map α⊕ β : V ⊕W → V ′ ⊕W ′ by the formula

α⊕ β(v, w) = (α(v), β(w)).

If α and β are given, for a specific choice of the bases, by matrices A and B,

the automorphism α⊕ β is defined by the block-diagonal matrix

(
A 0
0 B

)
.

Similarly, a linear map α : V → V ′ defines an adjoint map of α∨ : V ′∨ → V ∨; it
is given in the dual bases by the transposed matrix At. Note that the assignment
α 7→ α∨ reverts compositions: one has

α∨1 ◦ α∨2 = (α2 ◦ α1)
∨.

This is why it is more useful sometimes to use the inverse of the transpose: the
assignment α 7→ (α∨)−1 preserves compositions.

Of course, this is only possible if α is an isomorphism.
If α : V → V ′ is an isomorphism and β : W → W ′ is arbitrary, a linear

map Hom(V, W ) → Hom(V ′, W ′) is defined, by assigning to f : V - W the
composition β◦f◦α−1. If B = (bi,j), A−1 = (ci,j) then the resulting automorphism
of Hom(V, W ) sends fi,j to

(1)
∑

br,icj,sf
′
r,s.

Let us look what happens with the tensor product.
If α : V → V ′ and β : W → W ′ are given, the bilinear map

V ×W - V ′ ⊗W ′

sending (v, w) to α(v)⊗β(w), defines by universality a linear map V⊗W - V ′⊗
W ′ sending v⊗w to α(v)⊗ β(w). We will denote this linear map by α⊗ β. If α
is given by a matrix A and β by B, the map α⊗ β carries xi ⊗ yj to

(2) α(xi)⊗ β(yj) =
∑

r

ar,ix
′
r ⊗

∑
s

bs,jy
′
s =

∑
r,s

ar,ibs,jx
′
r ⊗ y′s.

Note the difference between the formulas (1) and (2)!
Iterating the above formulas, we can get a map T n(V ) → T n(V ′) induced by

a map α : V → V ′. We denote the resulting map as T n(α).
It is interesting to describe the map ∧nV → ∧nV, n = dim V, induced by an

endomorphism α : V → V .
Note that the vector space ∧nV is one-dimensional and if x1, . . . , xn is a basis

of V , ∧nV has a basis consisting of the only element x1∧x2∧ . . .∧xn. The image
of this element under the map ∧nα is α(x1) ∧ α(x2) ∧ . . . ∧ α(xn). In order to
understand what we got, we have to transform this expression using the standard
properties, multilinearity and skew-symmetricity. Let α be given by a matrix A
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in the basis of xj. This means that α(xj) =
∑

i ai,jxi. Then, opening brackets we
will have

α(x1) ∧ . . . ∧ α(xn) =
∑

s:[1,n]→[1,n]

as(1),1as(2),2 . . . as(n),n · xs(1) ∧ . . . ∧ xs(n) =

∑
s∈Sn

sign(s)as(1),1as(2),2 . . . as(n),n · x1 ∧ x2 ∧ . . . ∧ xn = det(A)x1 ∧ x2 ∧ . . . ∧ xn.

3.4. Operations with vector bundles. The operations with vector bundles
are defined according to the same recipee.

Let, for instance, V → X and W → X be two vector bundles. Choose an open
cover X = ∪Ui such that the restrictions V|Ui

and W|Ui
are trivial. The latter

means there exist isomorphisms

ηi : Ui × Vi
- V|Ui

, ζi : Ui ×Wi
- W|Ui

,

where Vi and Wi are vector spaces (all isomorphich to Rm or to Rn respectively).
The vector bundles V and W are defined by the maps

θi,j : Ui,j
- Hom(Vi, Vj), ξi,j : Ui,j

- Hom(Wi, Wj)

satisfying the cocycle conditions.
Now we are ready to define, starting with these data, new vector bundles. For

instance, the direct sum V⊕W is obtained gluing trivial bundles Ui × (Vi ⊕Wi)
along the cocycles

θi,j ⊕ ξi,j : Ui,j
- Hom(Vi ⊕Wi, Vj ⊕Wj)

sending x ∈ Ui,j to the linear map θi,j(x)⊕ ξi,j(x).
The three cocycle conditions for θ ⊕ ξ are verified immediately.
Similar formulas define the operations V⊗W, Sn(V), ∧n(V).
A minor difference appears in the definition of the dual vector bundle V∨ and

the vector bundle Hom(V, W) (which is the same as V∨ ⊗W in the case (we are
only interested in) of finite-dimensional vector bundles. If V is iven, as above,
by and θi,jUi,j

- Hom(Vi, Vj), then the cocycle defining V∨ is defined by the
cocycle (θ∨i,j)

−1.

3.4.1. Base change
There is a special operation with vector bundles which replaces the base man-

ifold X.
Let π : V → X be a vector bundle and let f : Y → X be a smooth map. We

define a vector bundle f ∗(V) on Y as follows.
As a topological space, f ∗(V) is the subspace of the direct product Y × V

determined by the condition

(3) f ∗(V) = {(y, v) ∈ Y × V|f(y) = π(v)}.
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The procetion to the first factor defines a continuous map π′ : f ∗(V) - Y .
We will prove that f ∗(V) is a smooth manifold, that π′ is a smooth map,

simultaneously with presenting the map π′ : f ∗(V) - Y with the structure of
a vector bundle. In fact, let U be an open subset on X such that V|U is trivial
that is isomorphic to a direct product U × Rn. Then put V = f−1(U). This is
an open subset of Y . The preimage π′−1(V ) can be easily identified with V ×Rn

and this proves simultaneously everything.

3.4.2. Standard tensor bundles.
The cotangent bundle T ∗X is, by definition, the vector bundle dual to the

tangent bundle T (X). The sections of T ∗X are called differential 1-forms.
For given p, q the tensor product T p(TX) ⊗ T q(T ∗X) is denoted T p

q (X). A
section of T p

q is called a (p, q) tensor field on X.
Thus, (1, 0) tensor fields are vector fields, and (0, 1) tensor fields are 1-forms.
Skew-symmetric (0, n) vector fields are called n-forms. They are the same as

the sections of the bundle ∧nT ∗X.

3.5. Morphisms of vector bundles versus local operators. Let V, W be
two vector bundles. Any morphism f : V - W of vector bundles induces a
linear map of the spaces of sections

(4) Γ(f) : Γ(V) → Γ(W).

Recall that one can multiply sections by smooth functions on X: if s ∈ Γ(V) and
α ∈ C∞(X) then αs is also a section of V.

Remark. This makes Γ(V) into a module over the commutative ring C∞(X).

The map Γ(f) : Γ(V) → Γ(W) induced by a morphism of vector bundles f
preserves the multiplication by functions:

Γ(f)(αs) = αΓ(f)(s).

There are, however, very interesting maps Γ(V) → Γ(W) which do not come
from morphisms of vector bundles.

Here is a typical example.
Let 1 denote the trivial one-dimensional bundle 1 = X × R. One has Γ(1) =

C∞(X). We will define now a very interesting operator

d : C∞(X) - Γ(T ∗X)

assigning, in local coordinates, to a function f ∈ C∞(X) the 1-form

(5) df =
∑ ∂f

∂xi

dxi,

where dxi is the dual basis to ∂
∂xi

.
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There are two ways of proving the definition makes sense. The first, direct
proof, is to check the formula above is compatible on intersection of the charts:
we know the cocycle defining the vector bundle T ∗X (the corresponding matrix is
inverse to the adjoint of the Jacobi matrix) and we have to check the formula (5)
changes similarly under a change of coordinates.

Another way (for the lazybones) is to prove that Γ(T ∗) can be expressed as
HomC∞(Γ(TX), C∞), the set of C∞-linear map from (Γ(TX) to C∞ and to take
into account that each vector field acts on the functions.

3.6. De Rham complex. Let X be a manifold. We denote Ωk = Γ(∧k(T ∗M))
- this is the space of differential k-forms on X. In particular, Ω0 = C∞(X).

We intend to define a collection of maps d : Ωk → Ωk+1 satisfying some nice
properties, in particular, d ◦ d = 0, such that for k = 0 this amounts to the
differential of a function defined above.

This collection of vector spaces and maps is called the de Rham complex.
One defines de Rham cohomology by the formula

Hk
DR(X) = Ker(d : Ωk → Ωk+1)/ Im(d : Ωk−1 → Ωk).

We mimic the definition of d in the local coordinates. If x1, . . . , xn are local
coordinates given by a chart φ : D - U , a general k-form has a basis consisting
of expressions

dxi1 ∧ . . . ∧ dxik ,

with coefficients from C∞. Thus, it is enough to define what is

(6) d(fdxi1 ∧ . . . ∧ dxik).

One should not be very astonished to have as an answer the following expres-
sion.

(7) d(f)dxi1 ∧ . . . ∧ dxik =
∑ ∂f

∂xi

dxi ∧ dxi1 ∧ . . . ∧ dxik .

Exercises.
1. Prove, using a local calculation, that d ◦ d = 0.
2. Prove that a map V → W is the same as a global section of the bundle

Hom(V, W).
3. Calculate the de Rham cohomology H0 and H1 of the circle.


