DIFFERENTIAL GEOMETRY. LECTURES 7-8, 16-19.06.08

Vector bundles can be dealt with as vector spaces — one can perform with
them the same basic operations: direct sum, tensor product, et cetera.
We will first recall the standard operations with vector spaces.

3.3. Operations with vector spaces.

3.3.1. Direct sum. If V. W are two vctor spaces, their direct sum is defined
as the set of pairs (v, w) with v € V, w € W. The vector space operations, sum
and multiplication by a scalar, are defined componentwise:

(v,w) + (V,w') = v+, w+w), clv,w)=(cv,cw).

It is convenient to have also a “coordinate-dependent” description: if X =
{z1,...,2z,} isabasis of Vand Y = {y1,...,yn} is a basis of W then X UY is
a basis of V& W.

3.3.2. The dual space

Let V be a vector space. The dual space V'V is defined as the set of linear
maps V' —— F' to the base field F' (we are mainly interested in the case F' =R
or C). If V is finite dimensional than dim VY = dim V. Moreover, if 1, ..., z, is
a basis in V, the collection of functionals x} defined by the formulas 7} (z;) = §/
(Kronecker’s delta) defines a basis in V* called the dual basis. Note that the
notation is slightly misleading since in order to define =} one need all of z; mato
be chosen.

3.3.3. The space of linear maps

Given two vector spaces, V and W, one defines Hom(V,W) as the space
of linear maps from V to W. In case W = F we get back the dual space,
Hom(V, F') = V*. The linear space operations are defined as usual:

(f+9)(v) = fv) +g(v), (cf)(v)=cf(v).

If X ={xy,...,x}isabasis of Vand Y = {y1,...,yn} is a basis of W then
one can choose the following set f;;, « = 1,...,n, j = 1,...,m as a basis for
Hom(V, W):

fig(an) = 5J’kyi~

As we know well, linear maps between vector spaces can be written as matrices
once one chooses bases here and there. In this way the map f;; identifies with
the matrix having 1 at line ¢, column j, and zero otherwise.

If dimV =m, dim W = n, one has dim Hom(V, W) = mn.
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3.3.4. Tensor product

There is another operation with vector space, giving a vector spaces of the
same “size” as Hom(V, W) for finite dimensional V, W, but with a equal role of
V and W (recall that Hom(V, F') = V* even though Hom(F,V) = V which is
not really the same.

The definition goes as follows. First of all, for any triple of vector spaces,
V,W, U, one defines a bilinear map f : V x W —— U as a map satisfying the
linearity property along each one of the arguments: for all x € V' the map f(x, )
is linear, as well as f( ,y) is linear for all y € W.

Denote the collection of bilinear maps from V' x W to U as Bil(V,W;U). An
important observation follows: if x; and y; are bases in V' and W respectivewly,
a bilinear map f : V x W — U is uniquely defined by its value on pairs of basis
elements f(x;,y;).

If f:V xW — U is bilinear and if ¢ : U — U’ is any linear map, the
composition go f : V x W — U’ is bilinear. Thus, any linear map ¢g : U — U’
defines a map

Bil(V,W;U) — Bil(V,W;U").

Now we say that a bilinear map F': V x W — X is universal if any bilinear
map f : VxW — U can be presented as go F' for a unique linear map g : X — U.

We will see in a moment that such universal bilinear map exists. But before
we see this, let us check that (if it exists) it is essentially unique.

In fact, it FF: V xW — X and G : V x W — Y are both universal bilinear
maps, there exists a unique f : X — Y and a unique g : ¥ — X such that
foF =G, goG = F. This implies that go f o FF = F and, once more by
uniqueness, that g o f = idyx. Similarly, we get f o g = idy and this is precisely
the sence of our phrase “essentially unique”.

Let us present such universal bilinear map. Choose, as usual, the bases
T1,...,Tm and yy,...,y, in V and W respectively. Define X = Span{e;;,i =
1,...,m, j=1,...,n} and denote

F:VxW-—-=X

by the formula
F(;, yj) = €55
(The above formula uniquely extends to a bilinear map.)

Since the universal bilinear map is essentially unique, it deserves a special
name. We denote X = V ® W and the image F(v,w) by v @ w. If x1,..., 2,
and yi,...,y, are bases in V and in W respectively, the elements z; ® y; for a
basis of V' ® W. Bilinearity means that if u = ) a;z; and w = ) b;y; then

VR W = Zazb]xl@)y]

i?j



3.3.5. Symmetric powers
If V is a vector space, one defines T*(V) =V @ ...® V (d factors). If {x;} is
a basis of V', the expressions

$21®®xld

form a basis of T4(V). If dim V = n, one has dim T%(V) = n.

The space T%(V) has two interesting quotients, the symmetric and the exterior
powers.

We define the d-th symmetric power of V, S4(V), as the quotient of T¢(V) by
the subspace generated by the differences

vl®...®vd—vs(1)®...®vs(d)

for any v; and all s € Sy.

A linear basis for S¢(V) can be described as follows. Let zy,...,z, form a
basis of V. A basis of S¢(V) is formed by monomials

xf“ e xi"
satisfying the condition d = dy + ...+ d,,.

An especially important for us is the symmetric square S?(V). It is easy to
see that linear maps from S?(V) to U are the same as symmetric bilinear maps
VxV—U.

If z1,...,x, form a basis of V, the products x;z; = z;z; form a basis of S*(V).
If dim V' = n, one has dim S*(V) = @

3.3.6. Exterior powers

Exterior powers A%(V) are defined as the quotient of T%(V) by the vector
subspace generated by the tensors

L RUR ... QUK ...
If zq,..., 2, form a basis of V', the products z;, A ... Ax;, with i, < ... <14
form a basis of AY(V). If dim V = n, one has dim A%(V) = ( "

d > . In particular,
dim A"(V) = 1.
3.3.7. Change of base.

All the constructions above are functorial in the sense that if one has a linear
map V' — V' (or a pair V' — V' and W — W’), this canonically defines a linear
map of the resulting vector space.

In what follows we will assume, when needed, that V' has a base {x;}, W has
a base {y;}, and similarly for V', W’ the bases are denoted {}}, {y}.



For instance, given linear maps o : V. — V' and  : W — W’ one defines a
linear map a® 5 : VoW — V' @ W' by the formula

a® fv,w) = (a(v), B(w)).
If a and (3 are given, for a specific choice of the bases, by matrices A and B,

the automorphism « @ [ is defined by the block-diagonal matrix ( jé g )

Similarly, a linear map « : V' — V’ defines an adjoint map of ¥ : V'V — V'V, it
is given in the dual bases by the transposed matrix A’. Note that the assignment
a — o reverts compositions: one has

aj oay = (agoaq)”.

This is why it is more useful sometimes to use the inverse of the transpose: the
assignment a — () ™! preserves compositions.

Of course, this is only possible if « is an isomorphism.

If « : V — V' is an isomorphism and § : W — W’ is arbitrary, a linear
map Hom(V, W) — Hom(V’, W’) is defined, by assigning to f : V —— W the
composition Jofoa™ . If B = (b;;), A~' = (¢; ;) then the resulting automorphism
of Hom(V, W) sends f; ; to

(1) > bricjafl

Let us look what happens with the tensor product.
Ifa:V —V and g: W — W' are given, the bilinear map

VXW—V W

sending (v, w) to a(v)®[(w), defines by universality a linear map VW — V'®
W’ sending v ® w to a(v) ® f(w). We will denote this linear map by a® 5. If «
is given by a matrix A and 3 by B, the map a ® 3 carries z; ® y; to

(2) ar;) ® B(y;) = Z piTy @ Z bs s = Z Qyibs ;T @ Y.

r r,s

Note the difference between the formulas (1) and (2)!

Iterating the above formulas, we can get a map 7"(V) — T™(V"') induced by
amap «:V — V’. We denote the resulting map as 7" («).

It is interesting to describe the map A"V — A"V, n = dim V| induced by an
endomorphism o : V — V.

Note that the vector space A"V is one-dimensional and if z1,...,z, is a basis
of V., A"V has a basis consisting of the only element z; Azs A...Ax,. The image
of this element under the map A"« is a(z1) A a(x2) A ... A a(z,). In order to
understand what we got, we have to transform this expression using the standard
properties, multilinearity and skew-symmetricity. Let a be given by a matrix A
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in the basis of z;. This means that a(x;) = >, a; jx;. Then, opening brackets we
will have

alz)) A AN alxy,) = Z As(1),105(2),2 - - - As(n)n * Ts(1) A\ - A Ts(n) =

s:[1,n]—[1,n]

Z SIgN(S)as(1)1Gs(2),2 - - - sy - T1 A T2 A ... Ay = det(A)zy Az AL A x,.
sESn

3.4. Operations with vector bundles. The operations with vector bundles
are defined according to the same recipee.

Let, for instance, V — X and W — X be two vector bundles. Choose an open
cover X = UU; such that the restrictions V|y, and W]y, are trivial. The latter
means there exist isomorphisms

n; : Uy X ‘/i_'V|Uia G Ui x Wi_'W|Uia

where V; and W, are vector spaces (all isomorphich to R™ or to R™ respectively).
The vector bundles V and W are defined by the maps

GM : Ui,j — I‘IOIH(‘/z V)’ é’i,j . Ui,j — Hom(Wi, W])

> v

satisfying the cocycle conditions.

Now we are ready to define, starting with these data, new vector bundles. For
instance, the direct sum V& W is obtained gluing trivial bundles U; x (V; & W;)
along the cocycles

0i; ® &5 Uiy — Hom(V; & Wi, V; & Wj)

sending x € U; ; to the linear map 6, ;(z) ® & ;(x).

The three cocycle conditions for 6 @ £ are verified immediately.

Similar formulas define the operations V@ W, S™*(V), A™(V).

A minor difference appears in the definition of the dual vector bundle V¥ and
the vector bundle Hom(V, W) (which is the same as V¥ ® W in the case (we are
only interested in) of finite-dimensional vector bundles. If V is iven, as above,
by and 6, ;U; ; —— Hom(V;, V), then the cocycle defining V" is defined by the
cocycle (6);)7".

3.4.1. Base change

There is a special operation with vector bundles which replaces the base man-
ifold X.

Let 7 : V — X be a vector bundle and let f : Y — X be a smooth map. We
define a vector bundle f*(V) on Y as follows.

As a topological space, f*(V) is the subspace of the direct product ¥ x V
determined by the condition

(3) F (V) ={(y,v) € Y x V[f(y) = 7(v)}.



The procetion to the first factor defines a continuous map 7’ : f*(V) — Y.

We will prove that f*(V) is a smooth manifold, that 7’ is a smooth map,
simultaneously with presenting the map 7’ : f*(V) —— Y with the structure of
a vector bundle. In fact, let U be an open subset on X such that V|U is trivial
that is isomorphic to a direct product U x R™. Then put V = f~1(U). This is
an open subset of Y. The preimage 7'~ (V) can be easily identified with V x R™
and this proves simultaneously everything.

3.4.2. Standard tensor bundles.

The cotangent bundle T*X is, by definition, the vector bundle dual to the
tangent bundle T'(X). The sections of T*X are called differential 1-forms.

For given p,q the tensor product TP(TX) ® T9(T*X) is denoted T?(X). A
section of TP is called a (p, q) tensor field on X.

Thus, (1,0) tensor fields are vector fields, and (0, 1) tensor fields are 1-forms.

Skew-symmetric (0,n) vector fields are called n-forms. They are the same as
the sections of the bundle A"T™ X

3.5. Morphisms of vector bundles versus local operators. Let V, W be
two vector bundles. Any morphism f : V—— W of vector bundles induces a
linear map of the spaces of sections

(4) D(f) : I(V) — D(W).

Recall that one can multiply sections by smooth functions on X: if s € I'(V) and
a € C*(X) then as is also a section of V.

Remark. This makes I'(V) into a module over the commutative ring C*°(X).

The map I'(f) : I'(V) — I'(W) induced by a morphism of vector bundles f
preserves the multiplication by functions:

L(f)(as) = al'(f)(s).
There are, however, very interesting maps I'(V) — I'(W) which do not come
from morphisms of vector bundles.
Here is a typical example.
Let 1 denote the trivial one-dimensional bundle 1 = X x R. One has I'(1) =
C>°(X). We will define now a very interesting operator
d:C®(X) —IN(T"X)

assigning, in local coordinates, to a function f € Coo(X) the 1-form

(5) o=y 3Lan,

where dz; is the dual basis to ‘2_.

o
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There are two ways of proving the definition makes sense. The first, direct
proof, is to check the formula above is compatible on intersection of the charts:
we know the cocycle defining the vector bundle 7% X (the corresponding matrix is
inverse to the adjoint of the Jacobi matrix) and we have to check the formula (5)
changes similarly under a change of coordinates.

Another way (for the lazybones) is to prove that I'(T™*) can be expressed as
Homew (I'(TX), C™), the set of C*°-linear map from (I'(7'X) to C* and to take
into account that each vector field acts on the functions.

3.6. De Rham complex. Let X be a manifold. We denote QF = I'(AF(T*M))
- this is the space of differential k-forms on X. In particular, Q° = C*(X).

We intend to define a collection of maps d : QF — Q! satisfying some nice
properties, in particular, d o d = 0, such that for £ = 0 this amounts to the
differential of a function defined above.

This collection of vector spaces and maps is called the de Rham complex.

One defines de Rham cohomology by the formula

HY (X)) = Ker(d : QF — Q) /Im(d : Q"1 — QF).
We mimic the definition of d in the local coordinates. If xi,..., z, are local
coordinates given by a chart ¢ : D —— U, a general k-form has a basis consisting
of expressions
dl’il VAYPIRA deZ‘k,
with coefficients from C'*°. Thus, it is enough to define what is

One should not be very astonished to have as an answer the following expres-
sion.

9
(7) d(f)dzs, A ... Adz;, = Za_gfdxi Adxi, A ... Adzg,.

Exercises.

1. Prove, using a local calculation, that d o d = 0.

2. Prove that a map V — W is the same as a global section of the bundle
Hom(V, W).

3. Calculate the de Rham cohomology H® and H! of the circle.



