DIFFERENTIAL GEOMETRY. LECTURE 6, 05.06.08

3. Vector bundles

3.1. Definition. The tangent bundle $T X$ of a smooth manifold X is an example (may be, the most important example) of a vector bundle. Informally speaking, a vector bundle on a smooth manifold X is a family of vector spaces parametrized by the points of X.

We start with a provisional notion.
3.1.1. Definition. A family of vector spaces over X is a smooth manifold \mathbb{V} endowed with a smooth map $\pi: \mathbb{V} \longrightarrow X$ and with a structure of a vector space (in our course this will be always a real vector space) on each fiber $\mathbb{V}_{x}:=\pi^{-1}(x)$.
3.1.2. Let $\pi_{1}: \mathbb{V}_{1} \rightarrow X$ and $\pi_{2}: \mathbb{V}_{2} \rightarrow X$ be two families of vector spaces over X. A map $f: \mathbb{V}_{1} \longrightarrow \mathbb{V}_{2}$ of families of vector spaces is a map of smooth manifolds satisfying the condition

$$
\pi_{1}=\pi_{2} \circ f
$$

such that for each $x \in X$ the map of the fibers $f_{x}: \mathbb{V}_{1 x} \rightarrow \mathbb{V}_{2 x}$ is linear.

3.1.3. Restriction

Let $\pi: \mathbb{V} \rightarrow X$ is a family of vector spaces and let U be an open subset of X. Then the restriction $\pi^{-1}(U) \longrightarrow U$ is a family of vector spaces over U. This is a special case of the pullback construction we will study later.
3.1.4. Trivial family Let V be a vector space. A trivial family of vector spaces over X with fiber V is the family isomorphic to the direct product $X \times V$, with the map π given by the projection to the first factor.

Now we are ready to define vector bundles.
3.1.5. Definition. A vector bundle over X is a family of vector spaces \mathbb{V} such that for any $x \in X$ there exists an open neighborhood U of x in X such that the restriction $\left.\mathbb{V}\right|_{U}$ is a trivial family.
3.1.6. Example. For any X and for any vector space V the trivial family $X \times V$ is a vector bundle. It is called the trivial vector bundle.
3.1.7. Example. The tangent bundle $T X$ of X is a vector bundle over X. In fact, for any chart $\phi: D \rightarrow U \subset X$ the restriction of the tangent bundle to U is isomorphic to $D \times \mathbb{R}^{n}$ with the isomorphism given by the map $(\phi, D \phi)$.

For any vector bundle \mathbb{V} over X a smooth map $X \rightarrow \mathbb{V}$ sending each point $x \in X$ to $0 \in \mathbb{V}_{x}$ is defined. This map is called the zero section of \mathbb{V}.
3.1.8. Example. Here is the simplest example of a nontrivial vector bundle. Let $X=S^{1}$ and let \mathbb{V} be the Möbius band. If \mathbb{V} were isomorphic to $X \times \mathbb{R}^{1}$, the complement $\mathbb{V} \backslash X$ to the zero section would have two connected components. A small experiment with the scissors shows his is not the case.
3.2. Trivialization. Let $\mathbb{V} \rightarrow X$ be a vector bundle. Choose an open cover $X=\cup_{i} U_{i}$ such that $\left.\mathbb{V}\right|_{U_{i}}$ is trivial. Choose the isomorphisms

$$
\begin{equation*}
\eta_{i}: U_{i} \times\left.\mathbb{R}^{n} \longrightarrow \mathbb{V}\right|_{U_{i}} . \tag{1}
\end{equation*}
$$

The isomorphisms η_{i} and η_{j}, do not, in general, coincide on $U_{i} \cap U_{j}$ - otherwise we would be able to glue all η_{i} together to get an isomorphism $X \times \mathbb{R}^{n} \longrightarrow \mathbb{V}$.

Denote $U_{i, j}=U_{i} \cap U_{j}$. Consider the difference between η_{i} and η_{j}, that is an isomorphism

$$
\begin{equation*}
\eta_{j}^{-1} \circ \eta_{i}: U_{i, j} \times \mathbb{R}^{n} \longrightarrow U_{i, j} \times \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

This map has to be identity on $U_{i, j}$, so uniquely determined by a map $U_{i, j} \longrightarrow \operatorname{GL}(n, \mathbb{R})$. Denote the above defined map

$$
\begin{equation*}
\theta_{i, j}: U_{i, j} \longrightarrow G L(n, \mathbb{R}) . \tag{3}
\end{equation*}
$$

The following properties of the maps $\theta_{i, j}$ are easily verified:

$$
\begin{equation*}
\theta_{i, i} \text { is constant with value id } \in \operatorname{GL}(n, \mathbb{R}) \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \theta_{i, j}=\theta_{j, i}^{-1} . \tag{5}\\
& \theta_{j, k} \circ \theta_{i, j}=\theta_{i, k} \tag{6}
\end{align*}
$$

- the equality of the restrictions to $U_{i, j, k}=U_{i} \cap U_{j} \cap U_{k}$.

Vice versa, given an open cover $X=\cup U_{i}$, a collection of functions $\theta_{i, j}$: $U_{i, j} \longrightarrow \mathrm{GL}(n, \mathbb{R})$ satisfying the above conditions, one can "glue" \mathbb{V} from these data as explained below.

3.2.1. Gluing a manifold from open subsets .

The idea is the following. Given a topological space X with an open cover $X=\cup U_{i}$, one can present X as a result of gluing of U_{i} along $U_{i, j}=U_{i} \cap U_{j}$.

So, we start with a collection of topological spaces U_{i}, open subsets $U_{i, j} \in U_{i}$ form each pair i, j. In order to glue $U_{i, j}$ with $U_{j, i}$ we need a homeomorphism $\phi_{i, j}: U_{i, j} \rightarrow U_{j, i}$. We have requirements on $\phi_{i, j}$ similar to the requirements on $\theta_{i, j}$ above.

$$
\begin{align*}
& \phi_{i, i}=\mathrm{id}_{U_{i}} . \tag{7}\\
& \phi_{i, j}=\phi_{j, i}^{-1} . \tag{8}\\
& \phi_{j, k} \circ \phi_{i, j}=\phi_{i, k} \tag{9}
\end{align*}
$$

- the equality of the restrictions to $U_{i, j} \cap U_{i, k}$.

The topological space X is defined as the quotient of the disjoint union $\coprod U_{i}$ by the equivalence relation defined by the requirements that $x \in U_{i, j}$ is equivalent to $\phi_{i, j}(x) \in U_{j, i}$. Note that the properties of $\phi_{i, j}$ really mean that this is an equivalence relation!

One has therefore the canonical projection

$$
\coprod U_{i} \longrightarrow X .
$$

The topology on X is defined as usual: a subset $U \in X$ is open iff its preimage in $\left\lfloor U_{i}\right.$ is open.

The maps $U_{i} \rightarrow X$ are defined as the compositions

$$
U_{i} \longrightarrow \coprod U_{i} \longrightarrow X
$$

The images of U_{i} obviously cover the whole X. Let us check that for each i the map $U_{i} \rightarrow X$ is a homeomorphism to an open subset.

This requires checking that the map $U_{i} \rightarrow X$ is open and one-to-one.B This easily follow from the properties (7).

Assume now that all U_{i} are manifolds and $\phi_{i, j}$ are diffeomorphisms. Let us take the union of all charts of all U_{i}. Since U_{i} cover X, the charts cover the whole X. The charts belonging to the same U_{i} are obviously compatible. The charts belonging to different U_{i} are compatible since $\phi_{i, j}$ are diffeomorphisms. Thus, gluing smooth manifolds gives automatically a smooth manifold.

3.2.2. Gluing vector bundles

We are now given a smooth manifold X, an open cover $X=\cup U_{i}$, and a collection of smooth maps $\theta_{i, j}: U_{i, j} \longrightarrow \mathrm{GL}(n, \mathbb{R})$ satisfying the conditions (4).

We see that X can be presented as the result of gluing U_{i} along diffeomorphisms $\phi_{i, j}: U_{i, j} \rightarrow U_{j, i}$.

We define \mathbb{V} as the result of gluing of the trivial bundles $\mathbb{V}_{i}=U_{i} \times \mathbb{R}^{n}$. We define subsets $\mathbb{V}_{i, j}=U_{i, j} \times \mathbb{R}^{n}$ and the gluing maps $\Phi_{i, j}: \mathbb{V}_{i, j} \longrightarrow \mathbb{V}_{j, i}$ by the formula

$$
\begin{equation*}
\Phi_{i, j}(x, v)=\left(\phi_{i, j}(x), \theta_{i, j}(x)(v)\right) . \tag{10}
\end{equation*}
$$

One has to check a few things:

1. $\Phi_{i, j}$ satisfy (7). This gives a manifold \mathbb{V}.
2. The projection $\mathbb{V} \longrightarrow X$ is correctly defined.
3. This is a vector bundle.
4. Its restriction to U_{i} gives $U_{i} \times \mathbb{R}^{n}$.

This is more or less obvious.

3.2.3. Equivalence

It is worthwhile to understand when do two collections $\theta_{i, j}$ and $\theta_{i, j}^{\prime}$ define isomorphic vector bundles.

Recall that $\theta_{i, j}$ are defined by the choice of a trivialization which is a collection of isomorphisms (1). Let

$$
\begin{equation*}
\eta_{i}^{\prime}: U_{i} \times\left.\mathbb{R}^{n} \longrightarrow \mathbb{V}\right|_{U_{i}} \tag{11}
\end{equation*}
$$

be another choice of trivialization of \mathbb{V}. We can compare them by defining

$$
\eta_{i}^{\prime-1} \circ \eta_{i}: U_{i} \times \mathbb{R}^{n} \rightarrow U_{i} \times \mathbb{R}^{n}
$$

which is uniquely defined by a smooth function

$$
\alpha_{i}: U_{i} \longrightarrow \mathrm{GL}(n, \mathbb{R})
$$

This allows to express $\theta_{i, j}^{\prime}$ via $\theta_{i, j}$ and α_{i} by the formula

$$
\begin{equation*}
\theta_{i, j}^{\prime}=\alpha_{j} \theta_{i, j} \alpha_{i}^{-1} \tag{12}
\end{equation*}
$$

We have therefore proven the following
3.2.4. Theorem. The trivializations $\left\{\theta_{i, j}\right\}$ and $\left\{\theta_{i, j}^{\prime}\right\}$ define isomorphic vector bundles if and only if there exist a collection of smooth maps

$$
\alpha_{i}: U_{i} \rightarrow \mathrm{GL}(n, \mathbb{R})
$$

such that the condition (12) is satisfied.
Note without proof the following important
3.2.5. Theorem. Any vector bundle on the standard disc is trivial. Therefore, any vector bundle has a trivialization over any atlas.

Homework.

1. Write down trivialiation maps $\theta_{i, j}$ for the tangent bundle of a smooth variety X.
2. Using trivialization for the tangent bundle of a circle obtained in Problem 1 , prove using Theorem 3.2.4 that it is trivial.
3. Let M_{n} be the result of gluing of two short sides of a rectangle after twisting it n half-twists (so that M_{0} is a cylinder and M_{1} is the Möbius band). We consider M_{n} as a vector bundle over the circle. Prove that M_{n} is isomorphic to M_{0} if n is even and to M_{1} if n is odd.
