DIFFERENTIAL GEOMETRY. LECTURE 6, 05.06.08

3. Vector bundles

3.1. **Definition.** The tangent bundle TX of a smooth manifold X is an example (may be, the most important example) of a vector bundle. Informally speaking, a vector bundle on a smooth manifold X is a family of vector spaces parametrized by the points of X.

We start with a provisional notion.

3.1.1. **Definition.** A family of vector spaces over X is a smooth manifold \mathbb{V} endowed with a smooth map $\pi : \mathbb{V} \longrightarrow X$ and with a structure of a vector space (in our course this will be always a real vector space) on each fiber $\mathbb{V}_x := \pi^{-1}(x)$.

3.1.2. Let $\pi_1 : \mathbb{V}_1 \to X$ and $\pi_2 : \mathbb{V}_2 \to X$ be two families of vector spaces over X. A map $f : \mathbb{V}_1 \longrightarrow \mathbb{V}_2$ of families of vector spaces is a map of smooth manifolds satisfying the condition

$$\pi_1 = \pi_2 \circ f,$$

such that for each $x \in X$ the map of the fibers $f_x : \mathbb{V}_{1x} \to \mathbb{V}_{2x}$ is linear.

3.1.3. Restriction

Let $\pi : \mathbb{V} \to X$ is a family of vector spaces and let U be an open subset of X. Then the restriction $\pi^{-1}(U) \longrightarrow U$ is a family of vector spaces over U. This is a special case of the pullback construction we will study later.

3.1.4. Trivial family Let V be a vector space. A trivial family of vector spaces over X with fiber V is the family isomorphic to the direct product $X \times V$, with the map π given by the projection to the first factor.

Now we are ready to define vector bundles.

3.1.5. **Definition.** A vector bundle over X is a family of vector spaces \mathbb{V} such that for any $x \in X$ there exists an open neighborhood U of x in X such that the restriction $\mathbb{V}|_U$ is a trivial family.

3.1.6. Example. For any X and for any vector space V the trivial family $X \times V$ is a vector bundle. It is called the trivial vector bundle.

3.1.7. **Example.** The tangent bundle TX of X is a vector bundle over X. In fact, for any chart $\phi: D \to U \subset X$ the restriction of the tangent bundle to U is isomorphic to $D \times \mathbb{R}^n$ with the isomorphism given by the map $(\phi, D\phi)$.

For any vector bundle \mathbb{V} over X a smooth map $X \to \mathbb{V}$ sending each point $x \in X$ to $0 \in \mathbb{V}_x$ is defined. This map is called *the zero section* of \mathbb{V} .

3.1.8. Example. Here is the simplest example of a nontrivial vector bundle. Let $X = S^1$ and let \mathbb{V} be the Möbius band. If \mathbb{V} were isomorphic to $X \times \mathbb{R}^1$, the complement $\mathbb{V} \setminus X$ to the zero section would have two connected components. A small experiment with the scissors shows his is not the case.

3.2. Trivialization. Let $\mathbb{V} \to X$ be a vector bundle. Choose an open cover $X = \bigcup_i U_i$ such that $\mathbb{V}|_{U_i}$ is trivial. Choose the isomorphisms

(1)
$$\eta_i: U_i \times \mathbb{R}^n \longrightarrow \mathbb{V}|_{U_i}.$$

The isomorphisms η_i and η_j , do not, in general, coincide on $U_i \cap U_j$ — otherwise we would be able to glue all η_i together to get an isomorphism $X \times \mathbb{R}^n \longrightarrow \mathbb{V}$.

Denote $U_{i,j} = U_i \cap U_j$. Consider the difference between η_i and η_j , that is an isomorphism

(2)
$$\eta_j^{-1} \circ \eta_i : U_{i,j} \times \mathbb{R}^n \longrightarrow U_{i,j} \times \mathbb{R}^n.$$

This map has to be identity on $U_{i,j}$, so uniquely determined by a map $U_{i,j} \longrightarrow \operatorname{GL}(n, \mathbb{R})$. Denote the above defined map

(3)
$$\theta_{i,j}: U_{i,j} \longrightarrow GL(n,\mathbb{R}).$$

The following properties of the maps $\theta_{i,j}$ are easily verified:

(4)
$$\theta_{i,i}$$
 is constant with value id $\in \operatorname{GL}(n,\mathbb{R})$.

(5)
$$\theta_{i,j} = \theta_{i,i}^{-1}.$$

(6)
$$\theta_{j,k} \circ \theta_{i,j} = \theta_{i,k}$$

— the equality of the restrictions to $U_{i,j,k} = U_i \cap U_j \cap U_k$.

Vice versa, given an open cover $X = \bigcup U_i$, a collection of functions $\theta_{i,j}$: $U_{i,j} \longrightarrow \operatorname{GL}(n, \mathbb{R})$ satisfying the above conditions, one can "glue" \mathbb{V} from these data as explained below.

3.2.1. Gluing a manifold from open subsets.

The idea is the following. Given a topological space X with an open cover $X = \bigcup U_i$, one can present X as a result of gluing of U_i along $U_{i,j} = U_i \cap U_j$.

So, we start with a collection of topological spaces U_i , open subsets $U_{i,j} \in U_i$ form each pair i, j. In order to glue $U_{i,j}$ with $U_{j,i}$ we need a homeomorphism $\phi_{i,j} : U_{i,j} \to U_{j,i}$. We have requirements on $\phi_{i,j}$ similar to the requirements on $\theta_{i,j}$ above.

(7)
$$\phi_{i,i} = \mathrm{id}_{U_i}.$$

$$(8) \qquad \qquad \phi_{i,j} = \phi_{j,i}^{-1}.$$

(9)
$$\phi_{j,k} \circ \phi_{i,j} = \phi_{i,k}$$

— the equality of the restrictions to $U_{i,j} \cap U_{i,k}$.

The topological space X is defined as the quotient of the disjoint union $\coprod U_i$ by the equivalence relation defined by the requirements that $x \in U_{i,j}$ is equivalent to $\phi_{i,j}(x) \in U_{j,i}$. Note that the properties of $\phi_{i,j}$ really mean that this is an equivalence relation!

One has therefore the canonical projection

$$\coprod U_i \longrightarrow X.$$

The topology on X is defined as usual: a subset $U \in X$ is open iff its preimage in $\coprod U_i$ is open.

The maps $U_i \to X$ are defined as the compositions

$$U_i \longrightarrow \coprod U_i \longrightarrow X.$$

The images of U_i obviously cover the whole X. Let us check that for each *i* the map $U_i \to X$ is a homeomorphism to an open subset.

This requires checking that the map $U_i \to X$ is open and one-to-one.B This easily follow from the properties (7).

Assume now that all U_i are manifolds and $\phi_{i,j}$ are diffeomorphisms. Let us take the union of all charts of all U_i . Since U_i cover X, the charts cover the whole X. The charts belonging to the same U_i are obviously compatible. The charts belonging to different U_i are compatible since $\phi_{i,j}$ are diffeomorphisms. Thus, gluing smooth manifolds gives automatically a smooth manifold.

3.2.2. Gluing vector bundles

We are now given a smooth manifold X, an open cover $X = \bigcup U_i$, and a collection of smooth maps $\theta_{i,j} : U_{i,j} \longrightarrow \operatorname{GL}(n, \mathbb{R})$ satisfying the conditions (4).

We see that X can be presented as the result of gluing U_i along diffeomorphisms $\phi_{i,j}: U_{i,j} \to U_{j,i}$.

We define \mathbb{V} as the result of gluing of the trivial bundles $\mathbb{V}_i = U_i \times \mathbb{R}^n$. We define subsets $\mathbb{V}_{i,j} = U_{i,j} \times \mathbb{R}^n$ and the gluing maps $\Phi_{i,j} : \mathbb{V}_{i,j} \longrightarrow \mathbb{V}_{j,i}$ by the formula

(10)
$$\Phi_{i,j}(x,v) = (\phi_{i,j}(x), \theta_{i,j}(x)(v)).$$

One has to check a few things:

- 1. $\Phi_{i,j}$ satisfy (7). This gives a manifold \mathbb{V} .
- 2. The projection $\mathbb{V} \longrightarrow X$ is correctly defined.

3. This is a vector bundle.

4. Its restriction to U_i gives $U_i \times \mathbb{R}^n$.

This is more or less obvious.

3.2.3. Equivalence

It is worthwhile to understand when do two collections $\theta_{i,j}$ and $\theta'_{i,j}$ define isomorphic vector bundles.

Recall that $\theta_{i,j}$ are defined by the choice of a trivialization which is a collection of isomorphisms (1). Let

(11)
$$\eta'_i: U_i \times \mathbb{R}^n \longrightarrow \mathbb{V}|_{U_i}.$$

be another choice of trivialization of \mathbb{V} . We can compare them by defining

 $\eta'_i^{-1} \circ \eta_i : U_i \times \mathbb{R}^n \to U_i \times \mathbb{R}^n$

which is uniquely defined by a smooth function

 $\alpha_i: U_i \longrightarrow \operatorname{GL}(n, \mathbb{R}).$

This allows to express $\theta'_{i,j}$ via $\theta_{i,j}$ and α_i by the formula

(12)
$$\theta'_{i,j} = \alpha_j \theta_{i,j} \alpha_i^{-1}.$$

We have therefore proven the following

3.2.4. **Theorem.** The trivializations $\{\theta_{i,j}\}$ and $\{\theta'_{i,j}\}$ define isomorphic vector bundles if and only if there exist a collection of smooth maps

 $\alpha_i: U_i \to \mathrm{GL}(n, \mathbb{R})$

such that the condition (12) is satisfied.

Note without proof the following important

3.2.5. **Theorem.** Any vector bundle on the standard disc is trivial. Therefore, any vector bundle has a trivialization over any atlas.

Homework.

1. Write down trivialiation maps $\theta_{i,j}$ for the tangent bundle of a smooth variety X.

2. Using trivialization for the tangent bundle of a circle obtained in Problem 1, prove using Theorem 3.2.4 that it is trivial.

3. Let M_n be the result of gluing of two short sides of a rectangle after twisting it *n* half-twists (so that M_0 is a cylinder and M_1 is the Möbius band). We consider M_n as a vector bundle over the circle. Prove that M_n is isomorphic to M_0 if *n* is even and to M_1 if *n* is odd.