DIFFERENTIAL GEOMETRY. LECTURE 5-6, 29.05-02.06.08

2.2.5. Vector fields on an open subset. Gluing

Let X be a smooth manifold, U an open subset of X (not necessarily a chart).
Then, as we know, U is itself a smooth manifold. The tangent bundle of U
identifies with an open subset (submanifold) of the tangent bundle of X: TU C
TX. Any vector field s on X restricts to a vector field on U. We denote the
restriction s|.

Let now X be covered by a collection of open sets U;. If a collection of vector
fields s; on U; is given, compatible in the sense that for each pair i, 7 one has

Si UiﬂUj = Sj UiﬂUj7

there exists a unique vector field s on X such that s|y, = s;.

Remark. The above mentioned property means that the assignment
U~ TU)

is a sheaf.

2.2.6. Vector fields as derivations
Let s € T(X) and let f € C*°(X). We define a new function s(f) : X — R
by the formula

s(f)(x) = (f, s(x)).
Let us make an explicit calculation for the case X is an open subset of R". In
this case TX = X x R" and a vector has form

s = Zfiei

where f; € C°(X) and e; are the constant vector fields forming the standard
basis of R™. Then, if g € C*°(X), one has

0
s(g) = Z fz%

In particular, s(f) is always smooth.

We see that the vector field e; considered as an operator on C*°(X), carries g to

ei(g) = %. This formula explains another convenient notation for the constant

vector field e;, e; = %.
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Our calculation shows that if X is an open subset of R", s(f) is smooth for
any s € T(X), f e C®(X).

This easily implies the similar statement for arbitrary X: in order to check s(f)
is smooth, we have to check that for any chart ¢ : D — U C X the composition
s(f)|u o ¢ is smooth. This basically reduces the claim to the case of an open
subset of R™ (see Problem 3 below).

Note that if a vector field s vanishes as an operator on C*(X), that is it
satisfies the condition s(f) = 0 for all functions f, then s = 0. In fact, choose a
chart ¢ : D — U of U. The vector field s has form

0
SZZfia—xi

in the coordinates of D. Then, if one of the functions f; is nonzero at any point
t € U, the value s(g) for a function g chosen as below will be non-zero.

Here how we can choose g. Choose € > 0 so that the disc of radius 2¢ with the
center at t belongs to D. There exists a smooth function g on D satisfying the
following properties:

e g(r1,...,7,) = x; inside the disc of radius € with the center at ¢.
e g = 0 outside the disc of radius 2¢ with the center at t.

The function g described above is a restriction of a smooth function on X
(which one?). This is why s(g) = 0 which gives a contradiction.

Definition. An operator s : C*(X) —— C®(X) is called a derivation if it
satisfies the Leibniz rule:

s(fg) = s(f)g+ fs(g).

One can prove that the set of vector fields T(X) coincides with the set of
derivations of C*°(X).

2.2.7. Bracket of vector fields
We will now define a binary operation (bracket)

‘J’(X) X 7(X> - ‘J’(X)u (Sat) = [87 t]
satisfying some remarkable properties.
Let us study, first of all, the case X is an open subset of R".

Lemma. Let X be an open subset in R™ and s,t € T(X). There exist a unique
vector field uw € T(X) such that for each f € C*(X) one has

u(f) = s(t(f)) = t(s(f))-

Proof. This is an easy (but important) calculation. Let

0 0
s = Zflﬁ—zl’ t= Zglﬁ—xz



Then for a function h € C'*
09, df;. Oh
S(() — t(s(h) = DS fis — gty
i 7 ) 7

J

which uniquely defines the vector field u by the formula
N dg;  0f; 0
v Z(; Ji ox; glaxi)axj

J

O
With a minimal effort, the above lemma can be proven for any manifold X.

Theorem. Let s,t € T(X). There exist a unique vector field v € T(X) such that
for each f € C*(X) one has

u(f) = s(t(f)) = t(s(f)).

Proof. For each chart ¢ : D — U C X the above calculation shows that the

formula
o(f) = s(t(f)) —t(s(f))

defines a (unique) vector field on U. We denote it vy. Once more, by uniqueness,
for any pair of charts ¢; : D; — U;,i = 1,2, the vector fields vU;|y,ny, coincide.
This implies that there is a (unique) vector field v on X such that v|y = vy for
any chart. This is the vector field we were looking for. U

2.3. Tangent map. A smooth map f : X — Y defines for each point x € X
the map T'f, : T,(X) —— Ty (Y). The maps T'f, for different z € X “glue
together” into a smooth map T'f : TX —— TY . Details being very easy, we
only sketch them below.

2.3.1. The linear map Df,. Any curve 7 : (—¢,e) — X with y(0) = x give
rise to a curve § = f o~y : (—e,€) — Y with §(0) = f(x). We need a calculation
in coordinates to make sure that this correspondence carries equivalent curves to
equivalent curves and that the obtained map T, (X) — Ty (Y) is linear.

Choose maps containing = and y := f(z) respectively. Let ¢y —— U; 3 x
and ¢y —— Us 5 y. Then the standard calculation with Chain rule shows the
induced map from 7, (X) to T,,(Y), after identification with R™ and R™ via D¢,
and D¢y, is described by the Jacobi matrix D(¢; ' o ¢1).

2.3.2. The map Df of the tangent bundles
We have already constructed a map of the sets TX — TY which will be
denoted T'f. Let us check it is smooth. We will use the (generalized) charts
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(¢,Dg¢) : D x R" — 7 YU) constructed in the definition of T7X. The same
calculation as above shows the map 7' f is given in the chosen coordinates by the

map (@3 " o ¢1, D(¢3" 0 ¢1)).
Homework.
1. Let F: RY —— R™ be a smooth function. Assume that the set

X ={zx e RY|F(x) = 0}
is a smooth submanifold (eventhough we do not assume that the rank of DF
equals m). Is this still true that
T.(X) = Ker(DF,)?
2. Prove the equivalence of two definitions of (f,v) mentioned in Lecture 3.

3. Prove that for s € T(X), f € C*(X) the function s(f) is smooth.
4. Prove Leibniz rule: for s € T, f,g € C*(X)

s(fg) =s(f)g+ fs(g).



