
DIFFERENTIAL GEOMETRY. LECTURE 5-6, 29.05-02.06.08

2.2.5. Vector fields on an open subset. Gluing

Let X be a smooth manifold, U an open subset of X (not necessarily a chart).
Then, as we know, U is itself a smooth manifold. The tangent bundle of U

identifies with an open subset (submanifold) of the tangent bundle of X: TU ⊂
TX. Any vector field s on X restricts to a vector field on U . We denote the
restriction s|U .

Let now X be covered by a collection of open sets Ui. If a collection of vector
fields si on Ui is given, compatible in the sense that for each pair i, j one has

si|Ui∩Uj
= sj |Ui∩Uj

,

there exists a unique vector field s on X such that s|Ui
= si.

Remark. The above mentioned property means that the assignment

U 7→ T(U)

is a sheaf.

2.2.6. Vector fields as derivations

Let s ∈ T(X) and let f ∈ C∞(X). We define a new function s(f) : X - R

by the formula

s(f)(x) = 〈f, s(x)〉.

Let us make an explicit calculation for the case X is an open subset of R
n. In

this case TX = X × R
n and a vector has form

s =
∑

i

fiei

where fi ∈ C∞(X) and ei are the constant vector fields forming the standard
basis of R

n. Then, if g ∈ C∞(X), one has

s(g) =
∑

i

fi

∂g

∂xi

.

In particular, s(f) is always smooth.
We see that the vector field ei considered as an operator on C∞(X), carries g to

ei(g) = ∂g

∂xi
. This formula explains another convenient notation for the constant

vector field ei, ei = ∂
∂xi

.
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Our calculation shows that if X is an open subset of R
n, s(f) is smooth for

any s ∈ T(X), f ∈ C∞(X).
This easily implies the similar statement for arbitrary X: in order to check s(f)

is smooth, we have to check that for any chart φ : D → U ⊂ X the composition
s(f)|U ◦ φ is smooth. This basically reduces the claim to the case of an open
subset of R

n (see Problem 3 below).
Note that if a vector field s vanishes as an operator on C∞(X), that is it

satisfies the condition s(f) = 0 for all functions f , then s = 0. In fact, choose a
chart φ : D → U of U . The vector field s has form

s =
∑

fi

∂

∂xi

in the coordinates of D. Then, if one of the functions fi is nonzero at any point
t ∈ U , the value s(g) for a function g chosen as below will be non-zero.

Here how we can choose g. Choose ǫ > 0 so that the disc of radius 2ǫ with the
center at t belongs to D. There exists a smooth function g on D satisfying the
following properties:

• g(x1, . . . , xn) = xi inside the disc of radius ǫ with the center at t.
• g = 0 outside the disc of radius 2ǫ with the center at t.

The function g described above is a restriction of a smooth function on X

(which one?). This is why s(g) = 0 which gives a contradiction.

Definition. An operator s : C∞(X) - C∞(X) is called a derivation if it
satisfies the Leibniz rule:

s(fg) = s(f)g + fs(g).

One can prove that the set of vector fields T(X) coincides with the set of
derivations of C∞(X).

2.2.7. Bracket of vector fields

We will now define a binary operation (bracket)

T(X) × T(X) - T(X), (s, t) 7→ [s, t]

satisfying some remarkable properties.
Let us study, first of all, the case X is an open subset of R

n.

Lemma. Let X be an open subset in R
n and s, t ∈ T(X). There exist a unique

vector field u ∈ T(X) such that for each f ∈ C∞(X) one has

u(f) = s(t(f)) − t(s(f)).

Proof. This is an easy (but important) calculation. Let

s =
∑

fi

∂

∂xi

, t =
∑

gi

∂

∂xi

.
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Then for a function h ∈ C∞

s(t(h)) − t(s(h)) =
∑

j

(
∑

i

fi

∂gj

∂xi

− gi

∂fj

∂xi

)
∂h

∂xj

which uniquely defines the vector field u by the formula

u =
∑

j

(
∑

i

fi

∂gj

∂xi

− gi

∂fj

∂xi

)
∂

∂xj

�

With a minimal effort, the above lemma can be proven for any manifold X.

Theorem. Let s, t ∈ T(X). There exist a unique vector field v ∈ T(X) such that

for each f ∈ C∞(X) one has

v(f) = s(t(f)) − t(s(f)).

Proof. For each chart φ : D → U ⊂ X the above calculation shows that the
formula

v(f) = s(t(f)) − t(s(f))

defines a (unique) vector field on U . We denote it vU . Once more, by uniqueness,
for any pair of charts φi : Di → Ui, i = 1, 2, the vector fields vUi|U1∩U2

coincide.
This implies that there is a (unique) vector field v on X such that v|U = vU for
any chart. This is the vector field we were looking for. �

2.3. Tangent map. A smooth map f : X → Y defines for each point x ∈ X

the map Tfx : Tx(X) - Tf(x)(Y ). The maps Tfx for different x ∈ X “glue
together” into a smooth map Tf : TX - TY . Details being very easy, we
only sketch them below.

2.3.1. The linear map Dfx. Any curve γ : (−ǫ, ǫ) → X with γ(0) = x give
rise to a curve δ = f ◦ γ : (−ǫ, ǫ) → Y with δ(0) = f(x). We need a calculation
in coordinates to make sure that this correspondence carries equivalent curves to
equivalent curves and that the obtained map Tx(X) → Tf(x)(Y ) is linear.

Choose maps containing x and y := f(x) respectively. Let φ1
- U1 ∋ x

and φ2
- U2 ∋ y. Then the standard calculation with Chain rule shows the

induced map from Tx(X) to Ty(Y ), after identification with R
n and R

m via Dφ1

and Dφ2, is described by the Jacobi matrix D(φ−1
2 ◦ φ1).

2.3.2. The map Df of the tangent bundles

We have already constructed a map of the sets TX → TY which will be
denoted Tf . Let us check it is smooth. We will use the (generalized) charts
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(φ, Dφ) : D × R
n → π−1(U) constructed in the definition of TX. The same

calculation as above shows the map Tf is given in the chosen coordinates by the
map (φ−1

2 ◦ φ1, D(φ−1
2 ◦ φ1)).

Homework.

1. Let F : R
N - R

m be a smooth function. Assume that the set

X = {x ∈ R
N |F (x) = 0}

is a smooth submanifold (eventhough we do not assume that the rank of DF

equals m). Is this still true that

Tx(X) = Ker(DFx)?

2. Prove the equivalence of two definitions of 〈f, v〉 mentioned in Lecture 3.
3. Prove that for s ∈ T(X), f ∈ C∞(X) the function s(f) is smooth.
4. Prove Leibniz rule: for s ∈ T, f, g ∈ C∞(X)

s(fg) = s(f)g + fs(g).


