## DIFFERENTIAL GEOMETRY. LECTURE 5-6, 29.05-02.06.08

### 2.2.5. Vector fields on an open subset. Gluing

Let $X$ be a smooth manifold, $U$ an open subset of $X$ (not necessarily a chart). Then, as we know, $U$ is itself a smooth manifold. The tangent bundle of $U$ identifies with an open subset (submanifold) of the tangent bundle of $X: T U \subset$ $T X$. Any vector field $s$ on $X$ restricts to a vector field on $U$. We denote the restriction $\left.s\right|_{U}$.

Let now $X$ be covered by a collection of open sets $U_{i}$. If a collection of vector fields $s_{i}$ on $U_{i}$ is given, compatible in the sense that for each pair $i, j$ one has

$$
\left.s_{i}\right|_{U_{i} \cap U_{j}}=\left.s_{j}\right|_{U_{i} \cap U_{j}},
$$

there exists a unique vector field $s$ on $X$ such that $\left.s\right|_{U_{i}}=s_{i}$.
Remark. The above mentioned property means that the assignment

$$
U \mapsto \mathcal{T}(U)
$$

is a sheaf.

### 2.2.6. Vector fields as derivations

Let $s \in \mathcal{T}(X)$ and let $f \in C^{\infty}(X)$. We define a new function $s(f): X \longrightarrow \mathbb{R}$ by the formula

$$
s(f)(x)=\langle f, s(x)\rangle .
$$

Let us make an explicit calculation for the case $X$ is an open subset of $\mathbb{R}^{n}$. In this case $T X=X \times \mathbb{R}^{n}$ and a vector has form

$$
s=\sum_{i} f_{i} e_{i}
$$

where $f_{i} \in C^{\infty}(X)$ and $e_{i}$ are the constant vector fields forming the standard basis of $\mathbb{R}^{n}$. Then, if $g \in C^{\infty}(X)$, one has

$$
s(g)=\sum_{i} f_{i} \frac{\partial g}{\partial x_{i}} .
$$

In particular, $s(f)$ is always smooth.
We see that the vector field $e_{i}$ considered as an operator on $C^{\infty}(X)$, carries $g$ to $e_{i}(g)=\frac{\partial g}{\partial x_{i}}$. This formula explains another convenient notation for the constant vector field $e_{i}, e_{i}=\frac{\partial}{\partial x_{i}}$.

Our calculation shows that if $X$ is an open subset of $\mathbb{R}^{n}, s(f)$ is smooth for any $s \in \mathcal{T}(X), f \in C^{\infty}(X)$.

This easily implies the similar statement for arbitrary $X$ : in order to check $s(f)$ is smooth, we have to check that for any chart $\phi: D \rightarrow U \subset X$ the composition $\left.s(f)\right|_{U} \circ \phi$ is smooth. This basically reduces the claim to the case of an open subset of $\mathbb{R}^{n}$ (see Problem 3 below).

Note that if a vector field $s$ vanishes as an operator on $C^{\infty}(X)$, that is it satisfies the condition $s(f)=0$ for all functions $f$, then $s=0$. In fact, choose a chart $\phi: D \rightarrow U$ of $U$. The vector field $s$ has form

$$
s=\sum f_{i} \frac{\partial}{\partial x_{i}}
$$

in the coordinates of $D$. Then, if one of the functions $f_{i}$ is nonzero at any point $t \in U$, the value $s(g)$ for a function $g$ chosen as below will be non-zero.

Here how we can choose $g$. Choose $\epsilon>0$ so that the disc of radius $2 \epsilon$ with the center at $t$ belongs to $D$. There exists a smooth function $g$ on $D$ satisfying the following properties:

- $g\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ inside the disc of radius $\epsilon$ with the center at $t$.
- $g=0$ outside the disc of radius $2 \epsilon$ with the center at $t$.

The function $g$ described above is a restriction of a smooth function on $X$ (which one?). This is why $s(g)=0$ which gives a contradiction.

Definition. An operator $s: C^{\infty}(X) \longrightarrow C^{\infty}(X)$ is called $a$ derivation if it satisfies the Leibniz rule:

$$
s(f g)=s(f) g+f s(g)
$$

One can prove that the set of vector fields $\mathcal{T}(X)$ coincides with the set of derivations of $C^{\infty}(X)$.

### 2.2.7. Bracket of vector fields

We will now define a binary operation (bracket)

$$
\mathcal{T}(X) \times \mathcal{T}(X) \longrightarrow \mathcal{T}(X), \quad(s, t) \mapsto[s, t]
$$

satisfying some remarkable properties.
Let us study, first of all, the case $X$ is an open subset of $\mathbb{R}^{n}$.
Lemma. Let $X$ be an open subset in $\mathbb{R}^{n}$ and $s, t \in \mathcal{T}(X)$. There exist a unique vector field $u \in \mathcal{T}(X)$ such that for each $f \in C^{\infty}(X)$ one has

$$
u(f)=s(t(f))-t(s(f)) .
$$

Proof. This is an easy (but important) calculation. Let

$$
s=\sum f_{i} \frac{\partial}{\partial x_{i}}, \quad t=\sum g_{i} \frac{\partial}{\partial x_{i}} .
$$

Then for a function $h \in C^{\infty}$

$$
s(t(h))-t(s(h))=\sum_{j}\left(\sum_{i} f_{i} \frac{\partial g_{j}}{\partial x_{i}}-g_{i} \frac{\partial f_{j}}{\partial x_{i}}\right) \frac{\partial h}{\partial x_{j}}
$$

which uniquely defines the vector field $u$ by the formula

$$
u=\sum_{j}\left(\sum_{i} f_{i} \frac{\partial g_{j}}{\partial x_{i}}-g_{i} \frac{\partial f_{j}}{\partial x_{i}}\right) \frac{\partial}{\partial x_{j}}
$$

With a minimal effort, the above lemma can be proven for any manifold $X$.
Theorem. Let $s, t \in \mathcal{T}(X)$. There exist a unique vector field $v \in \mathcal{T}(X)$ such that for each $f \in C^{\infty}(X)$ one has

$$
v(f)=s(t(f))-t(s(f))
$$

Proof. For each chart $\phi: D \rightarrow U \subset X$ the above calculation shows that the formula

$$
v(f)=s(t(f))-t(s(f))
$$

defines a (unique) vector field on $U$. We denote it $v_{U}$. Once more, by uniqueness, for any pair of charts $\phi_{i}: D_{i} \rightarrow U_{i}, i=1,2$, the vector fields $\left.v U_{i}\right|_{U_{1} \cap U_{2}}$ coincide. This implies that there is a (unique) vector field $v$ on $X$ such that $\left.v\right|_{U}=v_{U}$ for any chart. This is the vector field we were looking for.
2.3. Tangent map. A smooth map $f: X \rightarrow Y$ defines for each point $x \in X$ the map $T f_{x}: T_{x}(X) \longrightarrow T_{f(x)}(Y)$. The maps $T f_{x}$ for different $x \in X$ "glue together" into a smooth map $T f: T X \longrightarrow T Y$. Details being very easy, we only sketch them below.
2.3.1. The linear map $D f_{x}$. Any curve $\gamma:(-\epsilon, \epsilon) \rightarrow X$ with $\gamma(0)=x$ give rise to a curve $\delta=f \circ \gamma:(-\epsilon, \epsilon) \rightarrow Y$ with $\delta(0)=f(x)$. We need a calculation in coordinates to make sure that this correspondence carries equivalent curves to equivalent curves and that the obtained map $T_{x}(X) \rightarrow T_{f(x)}(Y)$ is linear.

Choose maps containing $x$ and $y:=f(x)$ respectively. Let $\phi_{1} \longrightarrow U_{1} \ni x$ and $\phi_{2} \longrightarrow U_{2} \ni y$. Then the standard calculation with Chain rule shows the induced map from $T_{x}(X)$ to $T_{y}(Y)$, after identification with $\mathbb{R}^{n}$ and $\mathbb{R}^{m}$ via $D \phi_{1}$ and $D \phi_{2}$, is described by the Jacobi matrix $D\left(\phi_{2}^{-1} \circ \phi_{1}\right)$.

### 2.3.2. The map $D f$ of the tangent bundles

We have already constructed a map of the sets $T X \rightarrow T Y$ which will be denoted $T f$. Let us check it is smooth. We will use the (generalized) charts
$(\phi, D \phi): D \times \mathbb{R}^{n} \rightarrow \pi^{-1}(U)$ constructed in the definition of $T X$. The same calculation as above shows the map $T f$ is given in the chosen coordinates by the $\operatorname{map}\left(\phi_{2}^{-1} \circ \phi_{1}, D\left(\phi_{2}^{-1} \circ \phi_{1}\right)\right)$.

## Homework.

1. Let $F: \mathbb{R}^{N} \longrightarrow \mathbb{R}^{m}$ be a smooth function. Assume that the set

$$
X=\left\{x \in \mathbb{R}^{N} \mid F(x)=0\right\}
$$

is a smooth submanifold (eventhough we do not assume that the rank of $D F$ equals $m$ ). Is this still true that

$$
T_{x}(X)=\operatorname{Ker}\left(D F_{x}\right) ?
$$

2. Prove the equivalence of two definitions of $\langle f, v\rangle$ mentioned in Lecture 3.
3. Prove that for $s \in \mathcal{T}(X), f \in C^{\infty}(X)$ the function $s(f)$ is smooth.
4. Prove Leibniz rule: for $s \in \mathcal{T}, f, g \in C^{\infty}(X)$

$$
s(f g)=s(f) g+f s(g)
$$

