DIFFERENTIAL GEOMETRY. LECTURE 4, 26.05.08

2.1. Tangent bundle. We want now to glue all tangent spaces $T_{x}(X), x \in X$, into a big manifold $T X$ endowed with a smooth map $\pi: T X \longrightarrow X$ such that $T_{x} X=\pi^{-1}(x)$.

In the case X is an open subspace of \mathbb{R}^{n}, we will get just the direct product $X \times$ \mathbb{R}^{n}. In general we will have to "glue" $T X$ from the tangent bundles corresponding to the charts.

We will proceed as follows. First of all, we have $T X=\coprod_{x \in X} T_{x}(X)$ as a set. Using the atlas of X, we will present a covering of $T X$ by open subsets of $\mathbb{R}^{2 n}$ where $n=\operatorname{dim} X$. This will define a topology on $T X$, as well as an atlas.
2.1.1. Topology on $T X$ Let $\phi: D \longrightarrow U \subset X$ be a chart of X. Recall that for each $x \in U$ an isomorphism $D \phi: \mathbb{R}^{n} \longrightarrow T_{x}(X)$ is defined. This defines an injection

$$
(\phi, D \phi): D \times \mathbb{R}^{n} \longrightarrow \coprod_{x \in X} T_{x}(X)=T X
$$

carrying the pair (t, v) to $(\phi(t), D \phi(v)) \in T_{\phi(t)}(X)$.
Note that

- The product $D \times \mathbb{R}^{n}$ is an open subset in $\mathbb{R}^{2 n}$.
- The images of $(\phi, D \phi)$ cover the whole $T X$.

We declare a subset V of $T X$ open if and only if for any chart ϕ in the atlas of X the preimage $(\phi, D \phi)^{-1}(V)$ is open in $D \times \mathbb{R}^{n}$.

2.1.2. The charts of $T X$

Of course, we would like to say that the maps $(\phi, D \phi): D \times \mathbb{R}^{n} \rightarrow T X$ form the charts of $T X$. This is true, but requires checking that $(\phi, D \phi)$ is a homeomorphisms of $D \times \mathbb{R}^{n}$ with its image in $T X$ and that this image is open in $T X$.

This is clearly a bijection. To prove it is a homeomorphism, we have to check that for any open subset V in $D \times \mathbb{R}^{n}$ its image $(\phi, D \phi)(V)$ is open in $T X$. By definition, this amounts to checking the following. Choose any (other) chart $\psi: D_{1} \longrightarrow U_{1} \subset X$. We have to check that the preimage

$$
\begin{equation*}
(\psi, D \psi)^{-1}(\phi, D \phi)(V) \tag{1}
\end{equation*}
$$

is open in $D_{1} \times \mathbb{R}^{n}$.

We will get this simultaneously with the compatibility of the charts. Let as above $\phi: D \rightarrow U \subset X$ and $\psi: D_{1} \rightarrow U_{1} \subset X$ are two (compatible) charts of X. By definition, this means that the map

$$
\psi^{-1} \circ \phi: \phi^{-1}\left(U \cap U_{1}\right) \longrightarrow \psi^{-1}\left(U \cap U_{1}\right)
$$

is a diffeomorphism.
The intersection of the images of the maps $(\phi, D \phi)$ and $(\psi, D \psi)$ in $T X$ is clearly $\coprod_{x \in U \cap U_{1}} T_{x}(X)$.

The inverse images of this set in $D \times \mathbb{R}^{n}$ and $D_{1} \times \mathbb{R}^{n}$ are obviously $\phi^{-1}(U \cap$ $\left.U_{1}\right) \times \mathbb{R}^{n}$ and $\psi^{-1}\left(U \cap U_{1}\right) \times \mathbb{R}^{n}$.

The transition map $(\psi, D \psi)^{-1}(\phi, D \phi)$ from one space to the other is given by the formula

$$
(t, v) \mapsto\left(\psi^{-1} \phi(t), D\left(\psi^{-1} \circ \phi\right)(v)\right)
$$

— this follows from Lemma 2.2.4 (Lecture 3). This is clearly a bijection since the Jacobi matrix of a diffeomorphism is nondegenerate. A small calculation below (Lemma 2.1.3) shows it is also a diffeomorphism.

We still have a small debt, that of checking that (1) is open. But now this set is the image of the open set $V \cap\left(\phi^{-1}\left(U \cap U_{1}\right) \times \mathbb{R}^{n}\right)$ under a diffeomorphism $(\psi, D \psi)^{-1}(\phi, D \phi)$. Therefore, it is open.
2.1.3. Lemma. Let U be an open subset in \mathbb{R}^{n} and let $f: U \longrightarrow \mathbb{R}^{m}$ be a smooth map. Define $F: U \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \times \mathbb{R}^{m}$ by the formula

$$
F(t, v)=\left(f(t), D f_{t}(v)\right)
$$

where $D f_{t}$ denotes, as usual, the Jacobi matrix of f at t. Then the Jacobi matrix of F at (t, v) is of form

$$
\left(\begin{array}{c|c}
D f_{t} & 0 \tag{2}\\
\hline * & D f_{t}
\end{array}\right)
$$

In particular, if f is a local diffeomorphism, than F is a local diffeomorphism as well.

Proof. Direct computation. The bottom left quadrant consists of expressions like

$$
\sum_{k} \frac{\partial^{2} f_{i}}{\partial x_{j} \partial x_{k}} v_{k} .
$$

2.2. Properties of Tangent bundles. Vector fields. We start with (long overdue)
2.2.1. Definition. Let X, Y be smooth manifold. Their direct product $X \times Y$ is defined as follows.

- As a topological space, it is the direct product of X and Y.
- Each pair of charts $\phi: D_{1} \rightarrow U_{1} \subset X$ and $\psi: D_{2} \rightarrow U_{2} \subset Y$ defines a (generalized) chart

$$
\phi \times \psi: D_{1} \times D_{2} \rightarrow U_{1} \times U_{2} \subset X \times Y
$$

for $X \times Y$.

2.2.2. Open subsets of \mathbb{R}^{n}

If X is an open subset of \mathbb{R}^{n}, its tangent bundle is diffeomorphic to $X \times \mathbb{R}^{n}$. We will see later that the tangent bundle does not always have such a simple form.
2.2.3. Definition. A vector field on X is a smooth map $s: X \longrightarrow T X$ such that $\pi \circ s=\operatorname{id}_{X}$.

The meaning of the definition is clear: a vector field assigns to any point $x \in X$ a tangent vector $s(x) \in T_{x}(X)$ which "smoothly depends" on x.

The set of vector fields on X, denoted $\mathcal{T}(X)$, has two natural operations, addition and multiplication by a smooth function:

- $\left(s_{1}+s_{2}\right)(t)=s_{1}(t)+s_{2}(t)$.
- For $a \in C^{\infty}(X), s \in \mathcal{T}(X)$, one defines $\operatorname{as}(t)=a(t) s(t)$.

A vector field on an open subset X of \mathbb{R}^{n}, that is, a section of the projection $X \times \mathbb{R}^{n} \rightarrow X$, is given by a smooth function

$$
s: X \longrightarrow \mathbb{R}^{n}
$$

or, what is the same, by n smooth functions. In this case $\mathcal{T}(X)$ really "looks like" an n-dimensional vector space over C^{∞}.

Let e_{i} denote the vector field assigning to all points of X the same i-th coordinate vector e_{i} of \mathbb{R}^{n}. Then a general vector field has form

$$
s=f_{1} e_{1}+\ldots+f_{n} e_{n}
$$

where $f_{i} \in C^{\infty}(X)$.
The same holds for any manifold X whose tangent bundle is isomorphic to $X \times \mathbb{R}^{n}$.

Let us mention without proof
2.2.4. Theorem. Let s be a vector field on $X=S^{2}$. Then there exists at least one point $x \in S^{2}$ such that $s(x)=0$.

This implies that the tangent bundle of the two-dimensioinal sphere is not isomorphic to $S^{2} \times \mathbb{R}^{2}$.

