
DIFFERENTIAL GEOMETRY. LECTURE 3, 22.05.08

2. Tangent space. Tangent bundle

We know from the Elementary Calculus course that the graph of a function
y = f(x) has a tangent line at a point (a, b), b = f(a) if f is differentiable at a;
this line has a slope f ′(a).

This has a far-reaching generalization in the theory of smooth manifolds. We
will first of all consider the case of a submanifold of RN , and then will try to
formulate a coordinate-independent notion of a tangent space.

Here is a short plan of what we intend to do.

• Define what is a tangent vector at a point of a submanifold of RN .
• Define the tangent space at a point of a submanifold of RN — this is the

vector space of all tangent vectors.
• Define the tangent space for general smooth manifolds.
• Study the collection of all tangent spaces at different points. It turns

out they can be assembled in a new smooth manifold called the tangent
bundle.

2.1. Tangent space to a submanifold of RN . Let X ∈ RN be a smooth
submanifold and let x ∈ X. We say that a vector v ∈ RN is a tangent vector to
X at x if there is a smooth curve γ : (−ε, ε) - RN such that γ(0) = x, the
image of γ lies in X, and γ′(0) = v. Note that by definition γ = (γ1, . . . , γN), so
the vector γ′ has by definition the components (γ′1, . . . , γ

′
N).

2.1.1. Proposition. 1. The set of tangent vectors Tx(X) to X at x is a
vector subspace of RN .

2. If X is given locally, in a neighborhood of x, by an equation

F (y) = 0,

where F : W → Rm is a smooth function, the set Tx(X) of tangent vectors
at x can be described as

(1) {v ∈ RN |DFx(v) = 0} = Ker(DFx),

where DFx : RN - Rm is the linear map described by the Jacobi matrix
of F at x.

Proof. Let F : W - Rm be a local equation of X near X, that is a smooth
function such that X ∩ W = {y ∈ W |F (y) = 0} and DF has rank m at x.
Recall that, using Implicit Function theorem, we constructed in 1.11 a chart
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φ : D - U ⊆ W where D is an open subset of Rn, n = N − m, and φ(u) =
(u, f(z)) ∈ Rm × Rm = RM .

Since the chart φ : D - U is a diffeomorphism, any curve γ : (−ε, ε) - RN

with image in U can be presented as the composition γ = φ◦δ for a unique curve
δ : (−ε, ε) - D. By the Chain Rule,

γ′(0) = Dφ(δ′(0)),

where, as usual, Dφ is given by the Jacobi matrix of the map φ : D - RN .
Since D is open in Rn, δ′(0) can be any vector in Rn, so Tx(X) is the image of
the map Dφ : Rn → RN .

This proves that Tx(X) is a vector subspace of RN .
Let us deduce the second claim. Once more by the Chain Rule, DF ◦ Dφ =

D(F ◦φ) = 0 since F vanishes on φ(D) = U . Since DF has rank m, its kernel has
dimension N −m = n. Since it contains Tx(X) = Dφ(Rn), the spaces coincide:
Tx(X) = Ker(DF ). �

2.2. Tangent space for abstract manifolds. For X ⊂ RN we defined the
tangent space Tx(X) as a subspace of RN . For a general manifold we have a
priori no big vector space to embed Tx(X). Thus, one should look for another
way for defining Tx(X).

As we have seen, any vector v ∈ Tx(X) is defined by a curve γ on X. Of
course, some curves define the same tangent vector. This leads to the following
general definition.

In what follows a smooth curve on X is a smooth map from an open segment
(a, b) to X.

2.2.1. Definition. Let X be a smooth manifold, x ∈ X a point. Two (smooth)
curves γ1, γ2 : (−ε, ε) - X with γ1(0) = γ2(0) are called equivalent if for any
chart φ : D - U ⊂ X containing x the curves φ−1 ◦ γ1 and φ−1 ◦ γ2 have the
same tangent vector at 0:

(φ−1 ◦ γ1)
′(0) = (φ−1 ◦ γ2)

′(0).

Note that in order to check that two curves are equivalent at a point, it is
sufficient to check the condition for only one chart containing the point.

2.2.2. Definition. 1. A tangent vector of a manifold X at a point x is an
equivalence class of curves γ : (−ε, ε) - X satisfying the condition
γ(0) = x.

2. The tangent space Tx(X) is the set of equivalence classes of curves.

The above definition gives immediately what we expect in the case of subman-
ifolds of RN . Note that we do not see from the definition that the tangent space
has a structure of a vector space. As usual, this will be done using the charts.
Note first of all
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2.2.3. Lemma. Let x ∈ X and let φ : D - U ⊂ X be a chart containing x.
Define a map Dφ : Rn - Tx(X) by assigning for each curve

γ : (−ε, ε) - X, γ(0) = x

to the vector (φ−1 ◦ γ)′(0) ∈ Rn of the class [γ] ∈ Tx(X). Then Dφ is a bijection.

Proof. This is a tautology. �

The map Dφ allows one to define on Tx(X) a structure of a vector space: one
defines v + w = Dφ(Dφ−1v + Dφ−1w) and similarly for the multiplication by a
number. One has, however, to check that this linear structure will be the same
if we replace a chart with another one.

This results from the following

2.2.4. Lemma. Let φi : Di
- Ui, i = 1, 2, be two compatible charts of X

containing x. Then one has

(2) Dφ1 = Dφ2 ◦ A

where A is the Jacobi matrix of the diffeomorphism φ−1
2 ◦φ1 at the point φ−1

1 (x) ∈
D1.

Proof. Immediate consequence of the Chain Rule. �

Now it is easy to see that usage of two different charts gives the same vector
space structure on Tx(X). In fact, if v, w ∈ Tx(X) than the first formula gives

v + w = Dφ1(Dφ−1
1 (v) + Dφ−1

1 (w)).

By (2) Dφ1 = Dφ2 ◦ A, so

v + w = Dφ2 ◦ A(A−1 ◦Dφ−1
2 (v) + A−1 ◦Dφ−1

2 (w)).

Since A is linear, this implies that

v + w = Dφ2(Dφ−1
2 (v) + Dφ−1

2 (w)).

2.2.5. Tangent vector as a derivative
Let v ∈ Tx(X) and let f ∈ C∞(X). We will assign now a number 〈f, v〉 which

can be interpreted as the derivative of f in direction v. Here is the definition.
Let v be the class of a curve γ : (−ε, ε) - X such that γ(0) = x. The

composition f ◦ γ is a function defined at (−ε, ε), with valies in R. Its derivative
at 0 is what we need:

Definition.

〈f, v〉 = (f ◦ γ)′(0).



4

Formally, one has to check that the result does not depend on the choice of γ.
Instead of doing this, we will give an equivalent definition which does not depend
on the choice of γ (but formally depends on the choice of a chart).

Let φ : D → U ⊆ X be a chart containing x ∈ X.

Definition.
〈f, v〉 = (f ◦ φ)′w,

where w = Dφ−1(v) ∈ Rn and the right-hand side is the directional derivative of
the function f ◦ φ along w.

It is a good exercise to check that both definitions agree (and are therefore
independent of the choices).

Homework.
1. Let F : RN - Rm be a smooth function. Assume that the set

X = {x ∈ RN |F (x) = 0}
is a smooth submanifold (eventhough we do not assume that the rank of DF
equals m). Is this still true that

Tx(X) = Ker(DFx)?

2. Prove the equivalence of two definitions of 〈f, v〉 mentioned above.
3. Prove Leibniz rule: for x ∈ X, v ∈ Tx(X), f, g ∈ C∞(X)

〈fg, v〉 = 〈f, v〉g(x) + f(x)〈g, v〉.


