DIFFERENTIAL GEOMETRY. LECTURE 3, 22.05.08

2. TANGENT SPACE. TANGENT BUNDLE

We know from the Elementary Calculus course that the graph of a function
y = f(z) has a tangent line at a point (a,b), b = f(a) if f is differentiable at a;
this line has a slope f'(a).

This has a far-reaching generalization in the theory of smooth manifolds. We
will first of all consider the case of a submanifold of RY, and then will try to
formulate a coordinate-independent notion of a tangent space.

Here is a short plan of what we intend to do.

e Define what is a tangent vector at a point of a submanifold of RV,

e Define the tangent space at a point of a submanifold of RY — this is the
vector space of all tangent vectors.

e Define the tangent space for general smooth manifolds.

e Study the collection of all tangent spaces at different points. It turns

out they can be assembled in a new smooth manifold called the tangent
bundle.

2.1. Tangent space to a submanifold of RV. Let X € R¥ be a smooth
submanifold and let z € X. We say that a vector v € RY is a tangent vector to
X at z if there is a smooth curve 7 : (—¢,e) — R such that v(0) = z, the
image of v lies in X, and /(0) = v. Note that by definition v = (y1,...,7n), so
the vector 7/ has by definition the components (7, ...,7y)-

2.1.1. Proposition. 1. The set of tangent vectors T,(X) to X at x is a
vector subspace of R,
2. If X 1is gwen locally, in a neighborhood of x, by an equation
F(y) =0,
where F' : W — R™ is a smooth function, the set T,,(X) of tangent vectors
at x can be described as
(1) {v € RY|DF,(v) = 0} = Ker(DF,),

where DF, : RN —— R™ is the linear map described by the Jacobi matrix
of F at x.

Proof. Let F' : W —— R™ be a local equation of X near X, that is a smooth
function such that X N W = {y € W|F(y) = 0} and DF has rank m at .

Recall that, using Implicit Function theorem, we constructed in 1.11 a chart
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¢: D ——U C W where D is an open subset of R", n = N —m, and ¢(u) =
(u, f(2)) € R™ x R™ = RM,

Since the chart ¢ : D — U is a diffeomorphism, any curve v : (—¢, €) — RV
with image in U can be presented as the composition v = ¢ o4 for a unique curve
d: (—€,) — D. By the Chain Rule,

7'(0) = Do(5(0)),
where, as usual, D¢ is given by the Jacobi matrix of the map ¢ : D —— RY.
Since D is open in R", ¢’(0) can be any vector in R™, so T,(X) is the image of
the map D¢ : R* — RV,
This proves that T,(X) is a vector subspace of RY.
Let us deduce the second claim. Once more by the Chain Rule, DF o D¢ =
D(Fo¢) = 0since F vanishes on ¢(D) = U. Since DF' has rank m, its kernel has

dimension N —m = n. Since it contains T,(X) = D¢(R"™), the spaces coincide:
T.(X) = Ker(DF). O

2.2. Tangent space for abstract manifolds. For X C R" we defined the
tangent space T,(X) as a subspace of RY. For a general manifold we have a
priori no big vector space to embed T,(X). Thus, one should look for another
way for defining T,,(X).

As we have seen, any vector v € T,(X) is defined by a curve v on X. Of
course, some curves define the same tangent vector. This leads to the following
general definition.

In what follows a smooth curve on X is a smooth map from an open segment

(a,b) to X.

2.2.1. Definition. Let X be a smooth manifold, z € X a point. Two (smooth)
curves 71,72 : (—€,€) —— X with 4;(0) = 12(0) are called equivalent if for any
chart ¢ : D —— U C X containing z the curves ¢! o, and ¢! o v, have the
same tangent vector at 0:

(¢~ 071)'(0) = (67" 0 2)'(0).

Note that in order to check that two curves are equivalent at a point, it is
sufficient to check the condition for only one chart containing the point.

2.2.2. Definition. 1. A tangent vector of a manifold X at a point z is an
equivalence class of curves v : (—¢,¢) —— X satisfying the condition
7(0) = .

2. The tangent space T,.(X) is the set of equivalence classes of curves.

The above definition gives immediately what we expect in the case of subman-
ifolds of RV. Note that we do not see from the definition that the tangent space
has a structure of a vector space. As usual, this will be done using the charts.
Note first of all
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2.2.3. Lemma. Let x € X and let o : D —— U C X be a chart containing x.
Define a map D¢ : R* —— T,(X) by assigning for each curve

vi(—e,e) — X, y(0) ==z
to the vector (¢~1 o) (0) € R™ of the class [y] € T,(X). Then D¢ is a bijection.
Proof. This is a tautology. O

The map D¢ allows one to define on 7,(X) a structure of a vector space: one
defines v +w = D¢(Do~'v + D¢~ tw) and similarly for the multiplication by a
number. One has, however, to check that this linear structure will be the same
if we replace a chart with another one.

This results from the following

2.2.4. Lemma. Let ¢; : D; —— U;, i = 1,2, be two compatible charts of X
containing x. Then one has

(2) D¢y = Dy o A

where A is the Jacobi matriz of the diffeomorphism ¢, o ¢y at the point ¢;*(z) €
D;.

Proof. Immediate consequence of the Chain Rule. O

Now it is easy to see that usage of two different charts gives the same vector
space structure on T,(X). In fact, if v,w € T,(X) than the first formula gives

v+w = D¢1(Dey (v) + Doyt (w)).
By (2) Dpy = D¢y 0 A, so
v+ w= D¢yo A(A" 0 Doy (v) + A7 o Doy (w)).
Since A is linear, this implies that

v+ w = Doy(Dgy ' (v) + Doyt (w)).

2.2.5. Tangent vector as a derivative
Let v € T,(X) and let f € C*(X). We will assign now a number (f, v) which
can be interpreted as the derivative of f in direction v. Here is the definition.
Let v be the class of a curve vy : (—¢,¢) —— X such that v(0) = x. The
composition f o~ is a function defined at (—¢, €), with valies in R. Its derivative
at 0 is what we need:

Definition.

(f,v) = (f 7)(0).



Formally, one has to check that the result does not depend on the choice of ~.
Instead of doing this, we will give an equivalent definition which does not depend
on the choice of v (but formally depends on the choice of a chart).

Let ¢ : D — U C X be a chart containing z € X.

Definition.

(f;v) = (fod),
where w = D¢ !(v) € R" and the right-hand side is the directional derivative of
the function f o ¢ along w.

It is a good exercise to check that both definitions agree (and are therefore
independent of the choices).

Homework.
1. Let F: RY —— R™ be a smooth function. Assume that the set

X = {z e RY|F(z) = 0}

is a smooth submanifold (eventhough we do not assume that the rank of DF
equals m). Is this still true that

T.(X) = Ker(DF,)?

2. Prove the equivalence of two definitions of (f,v) mentioned above.
3. Prove Leibniz rule: for z € X, v € T,(X), f,g € C*(X)

(fg,v) = {f,v)g(x) + f(x)(g,v).



