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1.12. Remarks to the definition.

1.12.1. Dimension If a smooth manifold X is connected, all its charts (φ :
Rn ⊃ D - U ⊆ X) have the same dimension n. This number is called the
dimension of X.

1.12.2. “Generalized” charts. Assume D is an arbitrary open subset in Rn

(not necessarily a disc). A homeomorphism φ : D → U ⊂ X to an open subset
of X can be called a generalized chart of X. The notion of compatibility of the
charts has a perfect meaning for generalized charts. Moreover, since any open
subset of Rn is a (may be, infinite) union of discs, any generalized chart of X can
be replaced by a collection of compatible “conventional” charts. Thus, there is
no real difference between two notions of chart.

1.12.3. Separatedness of X. Why is it important for X to be Hausdorff?
Here is an example of what we want to avoid. Take two copies of the real line R
(with the coordinate x and y respectively) and let X be the result of gluing of
these lines along the equivalence

{x = a} ∼ {y = a} for all a 6= 0.

We get a real line with “two copies of zero”: the points {x = 0} and {y = 0} have
no disjoint neighborhoods. This has some nasty complications we would like to
avoid: any continuous function on X has the same values at these two points. If
we try to define a distance between them, we will have a problem.

1.12.4. Compactness at ∞. Here is an example of “very long line” we would
like to avoid (sketch).

Let Ω be an ordinal (a well-ordered set). Define X = Ω×[0, 1) as a set with the
lexicographic order. Define a topology on X choosing as the basis the collection
of open segments in X.

First of all, one can prove (by induction) that if Ω is countable, the result will
be homeomorphic to [0, 1) (or, what is the same, to [0,∞)).

cNow, if Ω is the first non-countable ordinal, any open segment will still be
homeomorphic to (0, 1), but the whole line will not be homeomorphic to [0,∞)
— it will be “much longer”.
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1.13. Example: RPn. The real projective space is different from what we saw
until now: it has no obvious embedding into affine space.

As a set, RPn is the set of lines in Rn+1 passing through the origin. It can be
otherwise described as the set of collections (x0, x1, . . . , xn) not all xi being equal
to zero, modulo relation

(x0, x1, . . . , xn) ∼ (λx0, λx1, . . . , λxn), λ ∈ R∗.

Another presentation of RPn: this is the quotient of Sn ⊂ Rn+1 by the (simpler)
relation

(x0, x1, . . . , xn) ∼ (−x0,−x1, . . . ,−xn).

The topology on RPn is defined by the projection from the sphere: a subset in
RPn is open iff its preimage in Sn is open.

Let π : Sn → RPn be the projection. If U is open in Sn, π−1π(U) = U ∪ −U
is open, so by definition π(U) is open in RPn. Moreover, if U ∩ −U = ∅, the
restriction

πU : U - π(U)

is a homeomorphism.
Thus, if one chooses a collection of charts for Sn small enough so that U∩−U =

∅, this gives automatically a collection of charts for the quotient RPn.

1.14. Smooth functions. Smooth maps.

1.14.1. Definition. A function f : X - R is smooth if for each chart (φ :
D - U) the composition f ◦ φ : D - R is smooth. Thus, f is smooth
iff its restriction to any open covering is smooth. It is enough to check that a
restriction of f to some open covering is smooth.

1.14.2. Definition. A map f : X - Y is smooth iff for any pair of charts
φ : D1 → U ⊂ X and ψ : D2

- V ⊂ Y the composition ψ−1 ◦ f ◦ φ defines a
smooth map from φ−1(U ∩ f−1(V )) to D2.

Smooth functions can be added and multiplied. The collection of smooth
functions on X is denoted C∞(X). This is a commutative ring.

Smooth functions on X are the same as smooth maps X → R.
Smooth maps can be composed (see below).

1.14.3. Proposition. Composition of smooth maps is a smooth map.

Proof. Let f : X → Y and g : Y → Z be smooth maps. This means that for any
choice of three charts, φ : D → U ⊂ X, ψ : D → V ⊂ Y , χ : D → W ⊂ Z, the
maps ψ−1 ◦ f ◦ φ and χ−1 ◦ g ◦ ψ are smooth in their respective domains. This
implies that their composition

(1) χ−1 ◦ g ◦ f ◦ φ
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is smooth in the intersection of the respective domains

(2) φ−1(U ∩ f−1(V ∩ g−1(W ))).

Since the previous claim holds for any chart ψ : D → V ⊂ Y , the composi-
tion (??) is smooth in the union of all possible (??) which is the whole of

φ−1(U ∩ (g ◦ f)−1(W )).

�

1.15. Open submanifolds. Submanifolds. The first example of a smooth
manifold has been an open subset of Rn. This can be generalized as follows.

LetX be a smooth manifold and let U be an open subset ofX. The intersection
of a chart in X with U is a (generalized) chart of U . In this way, U aquires a
canonical structure of a smooth manifold.

1.15.1. Definition. An open submanifold of X is an open subset U endowed
with the canonical structure of a smooth manifold.

The following notion of submanifold is more general.

1.15.2. Definition. Let Y be a subset of a manifold X for which there exists
a collection of charts φi : Di → Ui covering X so that for each i the subset
φ−1

i (U ∩ Y ) is a submanifold of Rn. Then Y is called a submanifold of X.

We claim that a submanifold Y of X has a canonical structure of a smooth
manifold. In fact, choose a covering family of charts φi : Di → Ui as in the
definition above. For each i choose an atlas for φ−1

i (U ∩Y ), and compose it with
φi. This will give a required atlas for Y .

Of course, the notion of open submanifold is a (very) special case of the notion
of submanifold.

a

1.16. Immersions. If X is a submanifold of Y , the embedding of X into Y is
a smooth map: if φ : D1

- U is a chart of Y and ψ : D2 → V is a chart of
φ−1(U ∩ X), then the composition φ ◦ ψ : D2 → φ(V ) is a chart of X and the
embedding of X into Y is given in this pair of charts by

φ−1 ◦ φ ◦ ψ : D2 → V ⊂ D1.

This map is of course smooth. But it also satisfies the following extra property
The rank of the Jacobi matrix of ψ coincides with the number of its columns.

In other words, the Jacobi matrix defines an injective linear map.
The converse is not necessarily true. For example, the smooth map

f : R1 - R2
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given by the formlas x = t2 − 1, y = t(t2 − 1) has nowhere vanishing Jacobi
matrix, but the image of R in R2 has a self-intersection at 0 (t = 0, 1), so it is
not a submanifold.

1.16.1. Definition. A smooth map f : X → Y is called an immersion if for each
x ∈ X, y = f(x) ∈ Y there are charts φ : D1 → U and ψ : D2 → V such that
x ∈ U, y ∈ V and the rank of the Jacobian matrix of the map ψ−1 ◦ f ◦ φ :
φ−1(U ∩ f−1(V )) → D2 equals the number of columns (that is dimX).

1.17. Submersions. There is another case a smooth map looks nicely.

1.17.1. Definition. A smooth map f : X → Y is called a submersion if for each
x ∈ X, y = f(x) ∈ Y there are charts φ : D1 → U and ψ : D2 → V such that
x ∈ U, y ∈ V and the rank of the Jacobian matrix of the map ψ−1 ◦ f ◦ φ :
φ−1(U ∩ f−1(V )) → D2 equals the number of rows (that is dimY ).

A typical example of a submersion appears in Theorem 11: a function f :
RN - Rm whose Jacobian matrix has rank m gives rise to submanifolds —
the level sets f(x) = a ∈ Rm. This is a general pattern.

1.17.2. Proposition. Let f : X - Y be a submersion. Then for any y ∈ Y
the preimage f−1(y) = {x ∈ X|f(x) = y} is a smooth submanifold of X.

Proof. This easily follows from Theorem 1.11. �

1.17.3. Remark. One can explain why immersions and submersions are much
better than general smooth maps. In both cases the Jacobian matrix has a max-
imal rank. If this property is fulfilled at a given point, this implies an existence
of a non-vanishing minor which implies that in a neighborhood of the given point
the rank remains maximal. In general, the rank of the Jacobian matrix can be
different (greater) in an arbitrarily small neighborhood of the given point.


