
DIFFERENTIAL GEOMETRY, LECTURE 18-19, JULY 21-24

7. Curvature

If we look at a small neighborhood of a two-dimensional sphere, we see that
even locally the sphere does not look as R2. Thus, ther should exist local invari-
ants of Riemann manifolds which distinguish between, say, S2 and R2. Curvature
is the most famous one.

7.1. Curvature of a connection. Let X be a smooth manifold, V a vector
bundle over X and let ∇ : T × Γ(V) - Γ(V) be a connection on V.

Define R∇ : T × T × Γ(V) - Γ(V) by the formula

(1) R∇(s, t, v) = ∇s ◦ ∇t(v)−∇t ◦ ∇s(v)−∇[s,t](v).

We remember that connections are C∞-linear in the first (vector field) argu-
ment, but not completely linear in the second (section of V) argument.

7.1.1. Lemma. The operator R∇ is C∞-linear in all three arguments.

Proof. R∇ is trilinear over R. Recall that ∇fs = f∇s and ∇s(fv) = f∇s(v) +
s(f)v, so

R∇(fs, t, v) = f∇s(∇t(v))−∇t(f∇s(v))−∇[fs,t](v) = f∇s(∇t(v))− f∇t(∇s(v))−
−t(f)∇s(v)− f∇[s,t](v) + t(f)∇s(v) = fR∇(s, t, v).

Note that the formula for R∇ is skew-symmetric with respect to the first two
arguments, so that C∞-linearity in the second argument is automatic. Finally,

R∇(s, t, fv) = ∇s(∇t(fv))−∇t(∇s(fv))−∇[fs,t](fv) = ∇s(f∇t(v) + t(f)v)−
∇t(f∇s(v) + s(f)v)− f∇[s,t](v)− [s, t](f)v.

We have

∇s(f∇t(v) + t(f)v) = f∇s(∇t(v)) + s(f)∇t(v) + t(f)∇s(v) + s(t(f))v.

Substracting from this expression the one obtained by replacing s and t, one
finally gets

R∇(s, t, fv) = fR∇(s, t, v).

�

As we know, C∞-linearity in all arguments implies that R∇ comes from a map
of vector bundles (which we denote by the same letter)

R∇ : TX ⊗ TX ⊗ V - V.
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Because of skew-symmetricity, it can be written as

R∇ : ∧2(TX)⊗ V - V.

This latter map of vector bundles will be called the curvature tensor of the con-
nection ∇.

7.2. Geometric meaning. We know that a connection ∇ allows one to con-
struct parallel sections along curves: given γ : [a, b] → X and given v ∈ Vγ(a) one
can, using a connection, construct a unique parallel section v(t) with v(a) = v.
One can ask, whether parallel sections along parametrized surfaces exist.

Given a parametrized surface σ : R2 → X and a vector v ∈ Vsigma(0,0) we can
try to construct a parallel section v(s, t) along σ with v(0, 0) = v in two steps:
first of all, over a line t = 0, and then over the lines s = s0 for each s0 separately.

We will now show that this is possible if and only if the curvature R∇( ∂
∂s

, ∂
∂t

)
vanishes.

In fact, v(s, t) is parallel iff ∇ ∂
∂s

(v) = ∇ ∂
∂t

(v) = 0. The section v(s, t) con-

structed above obviously satisfies the condition ∇ ∂
∂t

(v) = 0. The condition

∇ ∂
∂s

(v) = 0 is by construction of v(s, t) fulfilled at t = 0. Therefore, ∇ ∂
∂t

vanishes

tautologically at v if and only if its derivative along t vanishes, that is

∇ ∂
∂t
∇ ∂

∂s
(v) = 0.

Since, by definition of curvature,

R∇(
∂

∂s
,

∂

∂t
) = ∇ ∂

∂t
∇ ∂

∂s
−∇ ∂

∂s
∇ ∂

∂t

and since ∂
∂t

(v) = 0, we get the required result.

7.3. Curvature tensor for a Riemannian manifold. We are mostly inter-
ested with the case X is a riemannian manifold and ∇ is the Levi-Civita connec-
tion.

In what follows we will write for simplicity R isnstead of R∇. This is an (1, 3)-
tensor, that is a function assigning a tangent vector R(s, t, v) at x ∈ X to a triple
of tangent vectors s, t, v ∈ TxX.

7.3.1. Proposition. One has the following identities (Bianchi identities)

1. R(s, t, v) + R(t, s, v) = 0.
2. R(s, t, v) + R(v, s, t) + R(t, v, s) = 0.
3. 〈R(s, t, v), w〉+ 〈R(s, t, w), v〉 = 0.
4. 〈R(s, t, v), w〉 = 〈R(v, w, s), t〉.

Proof. The first identity (skew-symmetricity for the first two arguments) is ob-
vious. To prove the second identity, let us note that since R is a tensor, we
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can prove the claim locally, and choose constant vecot fields so that the brackets
between them [s, t], [s, v], [t, v] vanish. Then the left-hand side of (2) is

∇s(∇t(v))−∇t(∇s(v)) +∇v(∇s(t))−∇s(∇v(t)) +∇t(∇v(s))−∇v(∇t(s)) = 0

since ∇ is torsion-free.
Property 3 means that the form v, w 7→ 〈R(s, t, v), w〉 is skew-symmetric. It is

therefore enuogh to prove that

(2) 〈R(s, t, v), v〉 = 0

for all s, t, v. Once more assume that [s, t] = 0. Then (2) means that the form
s, t 7→ 〈∇s(∇t(v)), v〉 is symmetric.

Since ∇ is compatible with the metric, one has

(3) st〈v, v〉 = 2s(〈∇t(v), v〉) = 2〈∇s ◦ ∇t(v), v〉+ 2〈∇t(v),∇s(v)〉.
Since [s, t] = 0, the left-hand side is symmetric with respect to s, t. The right

summand of the right-hand side is also symmetric. Therefore,

〈∇s ◦ ∇t(v), v〉
is also symmetric as required.

Finally, Property 4 can be formally deduced from the rest of the properties.
�

7.3.2. Sectional curvature
It is convenient, lowering the index, to consider R as a (0, 4) tensor. Thus,

we will write R(s, t, v, w) instead of 〈R(s, t, v), w〉. The properties 1, 3 and 4 of
Proposition 7.3.1 implies that R is a symmetric bilinear form on ∧2TX.

Let P be a two-dimensional subspace of TxX. Choose an orthonormal basis
{e, f} of P ; The vector e∧f ∈ ∧2TxX is uniquely defined up to a sign. Therefore,
a number −R(e, f, e, f) ∈ R is defined. This is the sectional curvature of X. This
is a function on pairs (x, P ) where x ∈ X and P ⊂ TxX is a two-dimensional
subspace.

In case ∼ X = 2 we have no choice of two-dimansional subspace. Thus, the
sectional curvature becomes just a function on X called the Gaussian curvature.

Definition. A riemannian manifold X is said to have a constant / a positive /
a negative curvature if its sectional curvature is constant / positive / negative.
A riemannian manifold is flat if its sectional curvature vanishes.

7.4. Examples.

7.4.1. The space Rn

The Christoffel symbols vanish in the standard coordinates on Rn, so the cur-
vature tensor vanishes as well.
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7.4.2. Covering map Assume p : X̃ → X is a covering map and assume X̃
and X have compatible metrics. This means that the maps of the tangent spaces
are isometries. Then, since all the definitions are local and p is a local isometry,

the sectional curvatures of X and of X̃ are the same. In particular, the torus
which is the quotient of R2 by a lattice, is flat.

7.4.3. The standard sphere Sn

The sectional curvature of Sn is constant. This follows from the existence of a
“very large group of isometries” of Sn. In fact, let x1, x2 ∈ Sn and let P1 and P2

be two-dimensional subspaces in Tx1S
n and Tx2S

n respectively. we claim there
exists an isometry of Sn sending x1 to x2 and P1 to P2.

We can first of all take care of the points, and only after that of the planes. The
group of isomotries of the standard sphere Sn is the orthogonal group O(n+1, R).
We know that any norm one vector can be completed to an orthonormal basis,
so any point of the sphere can be transferred to any other point of the sphere.

Now we want to see that, given two planes P1, P2 in Tx(S
n), there is an

orthogonal transformation of Rn+1 preserving x and sending P1 to P2. Since
Tx(S

n) is just the orthogonal complement of the vector x ∈ Rn+1, any orthogonal
transformation of TxS

n defines an orthogonal transformation of Rn+1 preserving
x. Thus, we have only to check that the orhogonal transformations of Rn act
transitively on two-dimensional subspaces of Rn. This is obvious.

7.4.4. The hyperbolic space Hn

We have already studied H2 = {z = a + bi|b > 0}. This example generalizes
to all dimensions as follows.

Endow the vector space Rm+1 with the quadratic form

〈x, x〉 = −x2
0 +

n∑
i=1

x2
i .

It is not positively definite but this will not spoil us the example. Define

Hn = {x ∈ Rn+1|x0 > 0, 〈x, x〉 = −1}.

For any x ∈ Hn the tangent space TxH
n identifies with the orthogonal subspace

〈x〉⊥. It is positively definite since 〈x, x〉 < 0. This defines a riemannian manifold
denoted Hn.

The group of linear transformations preserving the quadratic form x 7→ 〈x, x〉
is denoted O(1, n). Any such transformation preserves {x ∈ Rn+1|〈x, x〉 = −1}
but does not necessarily preserve Hn since the sign of the zeroth coordinate may
change.

We denote O0(1, n) the subgroup of transformations preserving the sign of x0.
It acts on Hn by isometries.
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Now we claim that, similarly to the case of sphere, the group O0(1, n) acts
transitively on the set of pairs (x, P ) where x ∈ Hn and P is a two-dimensional
subspace of TxH

n. This is also done in two steps.
Let us, first of all, check that O0(1, n) acts transitively on Hn. Denote ei, i =

1, . . . , n the standard basis vectors of Rn+1. In particular, e0 ∈ Hn. Let us
show there is a linear transformation in O(1, n) carrying e0 to any vector x with
〈x, x〉 = −1. In fact, to describe an element in O(1, n) one has to find a collection
f0, . . . , fn of pairwise orthogonal vectors with

〈f0, f0〉 = −1, 〈fi, fi〉 = 1 for i > 0.

We put f0 = x and we use the (already mentioned) fact that the restriction of
the form to 〈x〉⊥ is positively definite. Therefore, the orthogonal complement has
an orthonormal basis. This proves the claim.

Now we can assume that x = e0. The group of transformations in O(1, n)
preserving e0 is just O(n). This group is known to act transitively on the set of
two-dimensional subspaces of Rn. We are done.

7.4.5. Sign of the curvature
An explicit calculation shows that the sectional curvature of Sn is positive,

and that of Hn is negative.

8. Jacobi vector fields. Conjugate points. Cartan-Hadamard
theorem.

8.1. Variation of a geodesic. Assume a smooth map

γ : (−ε, ε)× [0, 1] → X

is given so that for all u ∈ (−ε, ε) the curve γu(t) := γ(u, t) is geodesic. Such fam-
ily of geodesics can be considered as a “variation of γ0 in the class of geodesics”.
We have a vector field J(t) = ∂γ

∂u
(0, t) along the geodesic γ0.

Since for each u the curve γu is a geodesic, one has ∇
dt

(∂γ
∂t

) = 0. Therefore,

0 =
∇
∂u

∇
∂t

∂γ

∂t
=
∇
∂t

∇
∂u

∂γ

∂t
−R(

∂γ

∂t
,
∂γ

∂u
,
∂γ

∂t
) =(4)

∇2

∂t2
∂γ

∂u
−R(

∂γ

∂t
,
∂γ

∂u
,
∂γ

∂t
).(5)

8.1.1. Definition. Let γ be a geodesic line in X. A vector field J along γ is
called a Jacobi vector field if

∇2J

dt2
−R(γ′, J, γ′) = 0.

Remark. Note that sometimes the opposite sign for R is used. In this case the
definition of Jacobi field is altered accordingly.
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A calculation above shows that if γu is a family of geodesics, the derivative ∂γ
∂u

is a Jacobi vector field.
The converse of this statement is also true: any Jacobi vector field along a

geodesic is a tangent tector field to a family of geodesics. We will not prove this
in these lectures.

8.2. Existence of Jacobi fields. Conjugate points. Jacobi fields are de-
scribed by a linear second order differential equation. If v1, . . . , vn is a system of
n orthonormal parallel vector fields along γ, a vector field J =

∑
fivi is Jacobi

iff
d2fi

dt2
+

n∑
j=1

ai,j(t)fj(t) = 0,

where ai,j(t) = −R(γ′, vj, γ
′, vi).

A Jacobi vector field J is uniquely defined by its initial conditions J(0), ∇J
dt

(0) ∈
Tγ(0)X.

8.2.1. Definition. Two points x = γ(a) and y = γ(b) with a 6= b on a geodesic
γ are called conjugate if there exists a Jacobi vector field J along γ vanishing at
both a and b.

8.2.2. Example. Opposite points x, y on a sphere S2 are conjugate: there is
a family of geodesics passing through x and y; the tangent vector field to this
family is Jacobi.

8.3. The study of the exponential map. Assume that X is complete so that
the exponential map

expx : TxX - X

is everywhere defined. We wish to understand whether expx is a local isomor-
phism. This is a smooth map of manifolds of the same dimension. So expx is a
local isomorphism at v ∈ TxX iff the tangent map

(6) T expx(v) : TxX - Texpx(v)X

is injective.

8.3.1. Lemma. If the tangent map (6) is not injective, then the points x and
expx(v) are conjugate along the geodesic t 7→ expx(tv).

Proof. By the assumptions, there exists a nonzero vector w ∈ TxX belonging to
the kernel of (6). This means that the derivative at 0 of the function

t 7→ expx(v + tw)

vanishes.
Consider the family of geodesics

γ(u, t) = expx(t(v + uw)).
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For each u γu(t) = expx(t(v +uw)) is a geodesics. Therefore, The tangent vector
field to this family J(t) = ∂γ

∂u
(0, t) is a Jacobi field. We claim that J(0) =

0, J(1) = 0. The first equality is obvious since γ(u, 0) = x. The second equality
is just a reformulation of the fact that w belongs to the kernel of (6). Lemma is
proven. �

8.4. Cartan-Hadamard theorem. We are now ready to prove the following
theorem connecting the topology with the curvature of a manifold.

8.4.1. Theorem. Let X be a complete Riemannian manifold with nonpositive
sectional curvature. Then the universal covering of X is diffeomorphism to Rn.

8.4.2. Remark. The theorem implies, for instance, that the higher homotopy
groups of X, πi(X) (i > 1), vanish.

The proof goes as follows. First of all we prove that a manifold with nonpositive
sectional curvature has no conjugate points. This implies that an exponent map

expx : TxX - X

is a local diffeomorphism. Finally, using completeness one can deduce that expx

is a covering.

8.4.3. Lemma. Let X have a nonpositive sectional curvature:

−R(s, t, s, t) ≤ 0.

Then X has no conjugate points along any geodesic.

Proof. Ley γ be a geodesic in X and let J be a Jacobi field along γ. One has

∇2J

dt2
−R(γ′, J, γ′) = 0.

Then

〈∇
2J

dt2
, J〉 = R(γ′, J, γ′ < J) ≥ 0,

therefore
d

dt
〈∇J

dt
, J〉 = 〈∇

2J

dt2
, J〉+ 〈∇J

dt
,
∇J

dt
〉 ≥ 0.

We have proven that the function 〈∇J
dt

, J〉 is nondecreasing. If J(0) = J(a) the
function vanishes at both 0 and a, and thus at the whole segment [0, a]. Then
J(0) = 0, ∇J

dt
(0) = 0 which implies that J = 0 identically. �

Now Lemma 8.3.1 implies that the map expx is a local diffeomorphism. The
theorem will be proven if we deduce that

expx : TxX - X

is a covering.
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Let us first of all explain what is the difference between a local isomorphism
and a covering. Of course, each covering is a local isomorphism. For instance,
the map from R2 to the cylinder R × S1 is a covering. If we replace R2 with
an open subset U obtained by cutting a closed disc in R2, we will get a local
isomorphism U → R× S1 which is not a covering.

Now we will use that X is complete. Since expx is a local isomorphism, the
space TxX is endowed with a (nonstandard) Riemannian structure so that expx

becomes a local isometry. Let Y denote the space TxX endowed with this new
Riemannian structure. Even though Y has a nonstandard Riemannian structure,
the straight lines connecting 0 with any point in Y is geodesic and has the
standard length.

This implies that any closed bounded subset of Y is compact. Therefore, Y is
complete. The rest follows from the lemma below.

8.4.4. Lemma. lem:complete-cov Let f : Y - X be a local isometry of Rie-
mannian manifolds. Assume that Y is complete. Then f is a covering.

Proof. We have to find for each x ∈ X a neighborhood U such that the inverse
image f−1(U) is isomorphic to U × F where F = f−1(x) is discrete. Let r be
small enough so that the map expx is a diffeomorphism of the radius r open disc
with the center at 0 to its image. We let U to be the image of this disc. Let for
each y ∈ f−1(x) Uy be the image of the radius r open disc under the exponent
map expy : TyY - Y . We claim that f : Uy

- U is a diffeomorphism
for each y and that f−1(U) = tUy. First of all, f(Uy) ⊂ U since any point in
Uy can be connected by a geodesic of length < r with y and since f preserves
geodesics. Then, the restriction f |Uy is a diffeomorphism since the composition
expy ◦Tf−1 ◦ exp−1

x is inverse to it. It remains to check that f−1(U) ⊂ ∪Uy.
Assume z ∈ U and z′ ∈ Y so that f(z′) = z. Connect z with x by a geodesic γ
of length s < r. Sice the geodesic is uniquely defined by its starting point and
the tangent vector at this point, γ can be uniquely lifted to a geodesic γ′ in Y
passing through z′. Since Y is complete, we can go along γ′ the distance s, and
we will definitely arrive to a point y over x. Thus z′ ∈ Uy. �

Homework.
1. Let dim X = 2. Prove that for arbitrary vector fields s, t, v, w ∈ T(X) one

has
R(s, t, v, w) = K(〈s, v〉〈t, w〉 − 〈s, w〉〈t, v〉),

where K is the Gaussian curvature of X.
2. Calculate the sectional curvature of Sn and Hn in the standard metric.


