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6. Geodesics

A parametrized line γ : [a, b] → Rn in Rn is straight (and the parametrization is
uniform) if the vector γ′(t) does not depend on t. Thus, there are two concurrent
description of straight lines in R

n: an ’integral’ description saying that it is
a shortest path between any two points, and a ’dfferential’ description saying
basically that γ′′ = 0. For general Riemannian manifolds one has a similar
(though not identical) picture.

6.1. Geodesics: existence and uniqueness. Any path γ : [a, b] - X de-
termines a vector field dγ

dt
along γ.

6.1.1. Definition. A path γ : [a, b] - X in a Riemannian manifold (X, g) is
called geodesic if its derivative dγ

dt
is parallel along the Levi-Civita connection ∇,

that is
∇

dt
(
dγ

dt
) = 0.

6.1.2. Velocity

One has
d

dt
〈
dγ

dt
,
dγ

dt
〉 = 〈

∇

dt
(
dγ

dt
),

dγ

dt
〉 + 〈

dγ

dt
,
∇

dt
(
dγ

dt
)〉 = 0

if γ is geodesic. Therefore, the length of velocity ||γ′(t)|| is constant along a
geodesic. Define the path length by the usual formula

s(t) =

∫ t

a

||γ′(s)||ds.

We deduce that the parametrization of a geodesic is proportional to the path
length.

6.1.3. Geodesic in local coordinates

If x1, . . . , xn are local coordinates of X, then the path γ is given by n smooth
functions xi(t). Let us rewrite in the local coordinates the geodesicity condition.

Note that d
dt

=
∑

i x
′
i∂i (this is an equality of vector fields on γ that is sections

of γ∗(TX)).
1
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Recall ∇∂i
(∂j) =

∑
k Γk

i,j∂k, where Γk
i,j are Christoffel symbols of the Levi-

Civita connection on X. Therefore,

∇

dt
γ′ =

∇

dt
(
∑

j

x′

j∂j) =
∑

j

x′′

j∂j +
∑

j

x′

j

∇

dt
(∂j) =

∑
x′′

j ∂j +
∑

i,j,k

x′

jx
′

iΓ
k
i,j∂k.

Therefore, γ is geodesic iff the following second order differential equation is
fulfilled.

(1) x′′

k +
∑

i,j

Γk
i,jx

′

ix
′

j = 0.

This allows us to use the theory of ODE to get an existence and uniqueness
result for geodesics.

Note that the differential equaition (1) is linear and homogenic. This means
in particular that if γ : (a, b) - X is a geodesic, a curve γ̃; (c−1a, c−1b) - X

defined by the formula γ̃(t) = γ(ct) is as well a geodesic.

6.1.4. Theorem. For any x ∈ X there exists a neighborhood U ∋ x and ǫ > 0
such that for any y ∈ U and any v ∈ Ty(X) with ||v|| < ǫ there exists a unique
geodesic γ : [−1, 1] - X such that

γ(0) = y, γ′(0) = v.

Moreover, the geodesic γ depends smoothly on (y, v) ∈ TU .

Note. Homogeneity of the equation means in particular that one can “trade”
the velocity norm for the length of the segment of definition of the geodesic.

Proof. This is a direct consequence of the theorem on existence and uniqueness of
a solution of ODE. Recall that our system of second order differential equation
can be rewritten as a system of first order differential equations, adding new
variables which are the first derivatives of the original variables x1(t), . . . , xn(t).
The initial condition for such a problem consists of 2n values xi(0), x′

i(0). By
ODE, there exists a neighborhood of (x, 0) ∈ TX and ǫ > 0 for which there exists
a unique solution defined on the segment (−ǫ, ǫ). Because of the homogeneity of
the equation, we can trade “time for velocity” in order to get a solution defined
on the segment [−1, 1]. �

6.2. Examples.

6.2.1. X = Rn

In the case X = R
n with the standard metric g =

∑
(dxi)

2 we have gi,j are
constant, so the Christoffel symbols vanish.

The equation of geodesic has form x′′
k = 0, k = 1, . . . , n. This defines the

straight lines.
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6.2.2. X ⊂ RN

Assume X is a smooth submanifold of RN . Any curve γin X can be automat-
ically considered as a curve in R

N (whose image belongs to X).
The first derivative γ′ defines a vector field along γ which can be considered

equivalently embedded into X or RN . Theorem in Section 5.3.2 from the previous
lecture allows one to compare the second derivatives,

(2)
∇0

dt
(γ′) and

∇

dt
(γ′)

where ∇0 and ∇ are the canonical connections on RN and on X respectively.
The vector field ∇

dt
(γ′) is the orthogonal projection of ∇0

dt
(γ′) to TX.

We get the following result.

Proposition. A curve γ in a smooth submanfold X of RN is geodesic iff its
second derivative (γ′′

1 (t), . . . , γ′′
N(t)) is orthogonal to Tγ(t)X for all t.

6.2.3. X = S2

Let x ∈ S2 and let v ∈ Tx(S
2). The reflection J of S2 with respect to the

twp-dimensional plain containing x and v, is an isometry preserving x and v. If
γ is a geodesic satisfying the conditions γ(0) = x, γ′(0) = v, the image J(γ) is
also a geodesic satisfying the same properties. By the uniqueness of geodesics
J(γ) = γ. Therefore, the image of γ belongs to the fixed-points of J . This is the
big circle of S2. Existence theorem implies that geodesics on S2 are precisely the
big circles parametried so that the velocity is constant.

The same reasoning generalizes to X = Sn.

6.2.4. The upper half-plane

The upper half-plane H = {z = a + bi ∈ C|b > 0} plays a very important role
in two-dimensional Riemannian geometry. We equip H with the Riemannian
metric defined by the formula

(3) g(x + yi) =
dx2 + dy2

y2

It is an exercise to explicitly calculate the Christoffel symbols and write down
the differential equation for geodesics. We, however, will find geodesics using the
idea of symmetry — similarly to what has been done for the sphere.

Recall (from Complex variables) that the group GL(2, R) acts on H by Möbius
transformations (

a b

c d

)
(z) =

az + b

cz + d
.

One can check that Möbius transformations are isometries (see Exercise).
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Moreover, the transformation x + yi 7→ 2c − x + yi (reflection with respect to
the vertical line x = c) also preserves the metric. This immediately implies that
the vertical lines x = c (properly parametried) are geodesic. Now, any isometry
carries geodesics to geodesics. The Möbius transformation F carries the vertical
line x = a to a semicircle lying in the upper half-plane intersecting the real line
at points F (c), F (∞). This implies that such semicircles are all geodesic. One
can easily check that there is a unique semicircle passing through a given point
and having there a given tangent line. Therefore, we have got all geodesics in H .

6.3. Exponent.

6.3.1. Definition. Let γ be a geodesic defined (at least) on [0, 1], γ(0) = x,

γ′(0) = v. Then we denote expx(v) = γ(1).

By the above theorem, exp is defined, as a function of two variables, at an
open subset V of TX containing the zero section X ⊂ TX.

By the homogeneity, if γ is the geodesic satisfying the conditions γ(0) =
x, γ′(0) = v, one has expx(tv) = γ(t) for all t in the domain of definitnion
of γ. This implies, in particular, that the map expx considered as a smooth map
from a neighborhood of zero at TxX to X, satisfies the property

(4) T0 expx = id : TxX - TxX.

Look at the map

F : V - X × X

defined by the formula

F (x, v) = (x, expx(v)).

Let us calculate the Jacobi matrix of F at (x, 0) ∈ V . Choose local coor-
dinates x1, . . . , xn of X at x. Then the local coordinates for V at (x, 0) are
x1, . . . , xn, v1, . . . , vn, where vi = dxi. The tangent map T(x,0)F sends ∂

∂xi
to the

pair ( ∂
∂xi

, ∂
∂xi

) since F (y, 0) = (y, y), whereas T(x,0)F ( ∂
∂vi

) = (0, ∂
∂vi

) by (4).
As a result, the matrix T(x,0)F is invertible. Therefore, by the Implicit function

theorem, F induces a diffeomorphism from a neighborhood of (x, 0) in TX to a
neighborhood of (x, x) ∈ X × X. We can replace the neighborhood of (x, 0) in
TX by a smaller neighborhood of form

(5) UU,ǫ = {(y, v)|y ∈ U, ||v|| < ǫ}.

Finally, we can replace the image of UU,ǫ under F with a neighborhood of (x, x)
of form W × W . This proves the following result.

6.3.2. Theorem. 1. For any x ∈ X there exists a neighborhood W of x in
X and ǫ > 0 such that for any two points y, z in W there exists a unique
geodesic γ in X of length < ǫ connecting y and z.
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2. The vector v defining the geodesic γ = expy(v) connecting y with z, de-
pends smoothly on y and z.

3. The map F carries any open ǫ-ball with center at y ∈ W diffeomorphically
to a set Uy,ǫ containing W .

6.4. Riemannian manifold as a metric space. Let (X, g) be a Riemannian
manifold. Define the function on X

d(x, y) = inf ℓ(γ)

where γ : [a, b] → X is a piecewise smooth curve with γ(a) = x, γ(b) = y, and
ℓ(γ) denotes the length of the curve γ.

The function d is obviously symmetric and satisfies the triangle axiom. We
will prove later that d(x, y) = 0 implies x = y, so that d is a distance function.
Moreover, we will prove that locally the distance between points is the length of
the shortest geodesic connecting them.

We keep the notation of Theorem 6.3.2.

6.4.1. Lemma. Fix y ∈ X and let Uy,ǫ be as above. Geodesic lines through y in
Uy,ǫ are trajectories orthogonal to the hypersurfaces

{expy(v)|v ∈ TvX, ||v|| = const.}.

Proof. Let t 7→ v(t) be a line in TyX with ||v(t)|| = 1. We have to check that
the line t 7→ expy(r0v(t)) is orthogonal to the geodesic r 7→ expy(rv(t0)) at
r = r0, t = t0.

Note that both lines belong to a parametrized surface

(6) (t, r) 7→ f(t, r) = expy(rv(t)),

so our aim is to prove that the partial deriatives ∂f

∂t
and ∂f

∂r
are orthogonal for

all (r, t). We will check this claim for r = 0 and then will verify that the inner
product

〈
∂f

∂r
,
∂f

∂t
〉

is independent of r.
Let r = 0. Then f(t, 0) = y, therefore ∂f

∂t
(t, 0) = 0 and (6) vanishes at r = 0.

Now

(7)
∂

∂r
〈
∂f

∂r
,
∂f

∂t
〉 = 〈∇ ∂

∂r

∂f

∂r
,
∂f

∂t
〉 + 〈

∂f

∂r
,∇ ∂

∂r

∂f

∂t
〉.

The first summand of the right-hand side vanishes since f(r, t0) is geodesic for
each t0. The second summand contains the expression ∇ ∂

∂r

∂f

∂t
which, since ∇ is

torsion-free, can be rewritten as

∇ ∂

∂t

∂f

∂r
=

1

2

∂

∂t
〈
∂f

∂r
,
∂f

∂r
〉 =

1

2

∂

∂t
〈v(t), v(t)〉 = 0.

The lemma is proven. �
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The above lemma allows one to prove the minimality of geodesics using “Pythago-
ras theorem”.

Let δ : [a, b] → Uy,ǫ be a piecewise smooth curve. We assume for simplicity
that y does not belong to the image of δ.

The one can uniquely write δ(t) = expy(r(t)v(t)) where v(t) is a curve in TyX

such that ||v(t)|| = 1 and r(t) is a smooth real function with positive values.

6.4.2. Lemma. One has

ℓ(δ) =

∫ b

a

||δ′(t)||dt ≥ |r(b) − r(a)|,

the equality holding only if v(t) is constant and r(t) is monotone.

Proof. Put, as above, f(t, r) = expy(rv(t)) so that δ(t) = f(t, v(t)). One has

δ′(t) =
∂f

∂t
+

∂f

∂r
r′(t)

where the summands are orthogonal by Lemma 6.4.1. Since ||∂f

∂r
|| = 1, one has

||δ′|| ≥ |r′(t)|

with the equality taking place iff ∂f

∂t
= 0 that is if v is constant. Therefore,

ℓ(δ) =

∫ b

a

||δ′(t)||dt ≥

∫ b

a

|r′(t)|dt ≥ |r(b) − r(a)|

with the equality taking place only of v is constant and r(t) is monotone. �

Now it is easy to prove

6.4.3. Theorem. Let W and ǫ be chosen as above. Then any geodesic γ in W

with ℓ(γ) < ǫ is the shortest piecewise smooth path connecting the end points.

Proof. Let y = γ(a), z = γ(b). Assume there exists a line η with the ends y and
z so that ℓ(η) < ℓ(γ).

For arbitrary small δ the curve η contains a segment connecting z with a point
y′ corresponding to r = δ. The length of such segment has to be at least ℓ(γ)−δ.
Thus, ℓ(η) ≥ ℓ(γ)−δ. Since the inequality holds for arbitrary δ, we are done. �

6.4.4. Corollary. Let γ : [a, b] → X be a piecewise smooth curve which is the
shortest among such curves connecting γ(a) with γ(b). Then γ is geodesic (and
smooth).

Proof. The property of being the shortest persists once one replaces the whole
segment with its part. This allows to use the local result 6.4.3. �

6.4.5. Corollary. The function d(x, y) on X × X defined above is a distance.
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Proof. The only thing one has to check is that d(x, y) 6= 0 for x 6= y. This follows
from Lemma 6.4.2: if y belongs to the neighborhood Ux,ǫ of x, the shortest path
between the points is geodesic. Otherwise the length of the path conecting x with
y is bounded below by ǫ since any path passes through a point at the ǫ-sphere
with the center at x. �

6.5. Geodesic completeness. A manifold X is called geodesically complete if
any geodesic can be extended to the whole real line γ : R → X.

The following important result belongs to Hopf and Rinow.

6.5.1. Theorem. Let X be geodesically complete. Then any thwo points of X

can be connected by a minimal (=shortest) geodesic.

Proof. Let x, y ∈ X. Put d = d(x, y). Choose a neighborhood Ux,ǫ as in The-
orem 6.3.2. Choose a point z at the ǫ-sphere with the center at x which is the
closest to y (this is possible since the sphere is compact). One has z = expx(ǫv)
for some v ∈ TxX of norm one. We claim that y = expx(dv). This will result of
a (more) general statement that the distance between y and expx(cv) is d− c for
any c ∈ [ǫ, d]. Let us prove the assertion for c = ǫ. In fact, for any small δ > 0
there exists a path between x and y whose length is less than d − δ. This path
has to pass through the ǫ-sphere, so the distance between an intersection point
and y is less than d − δ − ǫ. Since this is true for any δ, the minimal distance
should be at least d − ǫ; obviously, it can not be less than that.

Let A be the set of numbers a satisfying the condition

∀(c < a)d(expx(cv), y) = d − c.

By continuity, A is a closed segment. Assume A = [ǫ, b]. Then we can replace
the point x with the point expx(bv) and repeat the reasoning. This proves the
theorem. �

6.5.2. Corollary. crl:completeness For a Riemannian manifold X geodesic and
metric completeness are equivalent.

Proof. Let X be complete with respect to the metric d defined via the Riemann
structure. We will prove that the domain D of definition of any geodesic γ in X

is the whole R. By the theorem of existence and uniqueness of geodesics D is
open. Let us prove it is closed. Let ti ∈ D converge to t ∈ R. One has

d(γ(ti), γ(tj)) ≤ c|ti − tj |

since the parametriation of γ is proportional to the arc length. Thus, γ(ti) form
a Cauchy sequence converging to a limit x ∈ X. Now by Theorem 6.3.2 the point
x admits a neighborhood W and a number ǫ > 0 so that for any y ∈ W the map
expy sends diffeomorphically the open ǫ-ball with the center at 0 in TyX to its
image in X. We can choose y to be a point γ(ti) having distance less than ǫ

2
from

x — and this will assure our geodesic can be extended further.
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In the opposite direction, let X be geodesically compete. We will prove that
any closed bounded subset K of X is compact. Since Cauchy sequences are
bounded, this will imply the completeness of X. Choose any point x ∈ X. Since
K is bounded, the distance between x and the points of K is bounded. This
means that there exists a closed ball in TxX whose image under expx covers K.
Since an image of a compact is compact, K is a closed subset of a compact set,
hence it is compact. �

Recall that two continuous paths γ0, γ1 : [0, 1] → X with γi(0) = x, γi(1) = y

are called homotopic if there exists a continuous family γ : [0, 1] × [0, 1] → X of
paths such that

γ(0, t) = γ0(t), γ(1, t) = γ1(t), γ(s, 0) = x, γ(s, 1) = y.

Homotopy is an equivalence relation between the paths connecting x with y. The
set of homotopy classes of paths between x and y will be denoted ΠX(x, y).

Recall the construction of a universal covering of X. Fix a point x ∈ X and
denote

X̃ =
∐

y∈X

ΠX(x, y).

Define the map p : X̃ → X sending ΠX(x, y) to y.

For ỹ ∈ ΠX(x, y) ⊂ X̃ define a base of neighborhoods as follows: choose any

open contractible neighborhood U of y ∈ X; Then define Ũ as the set of points

of X̃ which can be connected with ỹ by a path whose image lies in U . The open
sets Ũ so constructed form a base of topology of X̃. Recall

6.5.3. Theorem. The projection p : X̃ → X is a covering, that is for each x ∈ X

there exists a neighborhood U whose preimage in X̃ is isomorphic to U ×F where

F is discrete. Furthermore, X̃ is simply connected.

Since X and X̃ are locally isomorphic, the smooth structures, as well as the

Riemann structures move automatically from X to X̃ and back.

Moreover, if X is complete, X̃ is as well complete. This proves the following

6.5.4. Corollary. Let X be a complete Riemann manifold. Then in each homo-
topy class of paths connecting x to y there exists a geodesic path.

Proof. Construct X̃ using x; Choose x̃ to correspond to the constant path and
ỹ to the homotopy class in question. The points x̃ and ỹ can be connected
by a geodesic according to Hopf-Rinow theorem. The image of this path will
give a geodesic connecting x to y and lying in the homotopy class of paths we
wanted. �


