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5. Levi-Civita connection

From now on we are interested in connections on the tangent bundle TX of a
Riemanninam manifold (X, g).

Out main result will be a construction of a canonical connection on TX de-
pending of the Riemannian tensor g.

5.1. Compatibility with the metric. Recall that any connection ∇ on TX
defines operators of parallel transport Ψγ : Tγ(a)X - Tγ(b)X.

5.1.1. Definition. A connection ∇ on TX is called to be compatible with g if
the parallel transport operators preserve the metric:

〈v, w〉 = 〈Ψ(v), Ψ(w)〉.

Let us find out when does this happen in terms of ∇.
Recall that a vector field s along γ is called parallel if ∇s

dt
= 0. If∇ is compatible

with the metric, each pair of parallel vector fields s, t along γ has a constant inner
product. Recall that for any v ∈ Tx(X) there exists a unique parallel vector field
s along γ satisfying s(x) = v.

5.1.2. Lemma. The connection ∇ on TX is compatible with the metric iff for
any vector fields v, w along γ one has

(1)
d

dt
〈v, w〉 = 〈∇v

dt
, w〉+ 〈v,

∇w

dt
〉.

Proof. Assume ∇ is compatible with the metric. Let γ be a curve connecting
x with y. Choose an orthogonal basis e1, . . . , en in TxX. Denote the the same
letters the parallel vector fields along γ defined by the ei. Since ∇ is compatible
with the metric, the vector fields ei along γ are orthogonal at all points. Now
if v =

∑
aiei and w =

∑
biei where ai, bi are smooth functions on γ, we have

〈v, w〉 =
∑

aibi,
∇v
dt

=
∑

dai

dt
ei and ∇w

dt
=

∑
dbi

dt
ei. The comparison yields one of

the implications. The converse implication is obvious. �

5.1.3. Theorem. A connection ∇ is compatible with the metric iff for all τ, v, w ∈
T one has

(2) τ(〈v, w〉) = 〈∇τ (v), w〉+ 〈v,∇τ (w)〉.
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Proof. Let∇ be compatible. Then, on order to check the equality of the functions
at a given point x, we have to choose any curve passing through x with tangent
vector at x equal to τx; restrict vector fields v and w to γ and apply Lemma 5.1.2.

To prove the opposite claim we have to deduce compatibility of a connection
satisfying the property (2). Or, equivalently, this means that the connection
satisfies (1) for any curve γ for all pairs of vector fields on γ induced by global
vector fields on X. Now we note that it is enough to check the claim for curves γ
lying completely inside an open set U such that TX is trivial on U . For such small
curves any vector field along γ can be presented as a linear combination

∑
αivi

where vi age global vector fields and αi are functions on γ. Now, if v =
∑

αivi

and w =
∑

βjwj so that vi and wj are global vector fields, then

d

dt
〈v, w〉 =

d

dt
(
∑
i,j

αiβj〈vi, wj〉) =
∑
i,j

d

dt
(αiβj)〈vi, wj〉+

∑
i,j

αiβj
d

dt
〈vi, wj〉

whereas the right-hand side is

〈∇v

dt
, w〉+ 〈v,

∇w

dt
〉 =∑

i,j

dαi

dt
βj〈vi, wj〉+

∑
i,j

αiβj〈
∇vi

dt
, wj〉+

∑
i,j

αi
dβj

dt
〈vi, wj〉+

∑
i,j

αiβj〈vi,
∇wj

dt
〉

which is obviously the same. �

5.2. Torsion. Compatibility of a connection with the metric could be defined
for any vector bundle V with a metric g ∈ Γ(S2V∗).

The following notion makes sense for connections on TX only.

5.2.1. Definition. A connection ∇ on TX is called torsion-free if for any pair of
vector fields τ, σ one has

∇σ(τ)−∇τ (σ) = [σ, τ ].

Choose a local chart with coordinates x1, . . . , xn, so that TX is generated by
∂

∂xi
. In what follows we will write ∂i instead of ∂

∂xi
for simplicity. Then

∇∂i
(∂j) =

∑
Γk

i,j∂k.

Since [∂i, ∂j] = 0, symmetricity implies

Γk
i,j = Γk

j,i.

5.2.2. Lemma. In local coordinates, a connection on TX is torsion-free if and
only if the corresponding Christoffel symbols satisfy the condiition Γk

i,j = Γk
j,i.

Proof. The only if part has already been checked. The if part is a result of an
easy calculation. �
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5.3. Levi-Civita connection. Let (X, g) be a Riemannian manifold. Levi-
Civita connection is the only connection ∇ on TX which is compatible with
the metric and torsion-free. This is the claim of the following theorem which is
“the principal theorem of Differential Geometry”.

5.3.1. Theorem. There is a unique connection ∇ on the tangent bundle of a
Riemannian manifold (X, g) which is torsion-free and compatible with g.

Proof. It suffices to prove the existence and uniqueness in local coordinates: be-
cause of the uniqueness the connections on different charts will coincide at the
intersections. We will denote as usual

gi,j = 〈∂i, ∂j〉, ∇∂i
(∂j) =

∑
k

Γk
i,j∂k.

By compatibility with the metric

(3) ∂igj,k = 〈∇∂i
∂j, ∂k〉+ 〈∂j,∇∂i

∂k〉.

Replacing the triple (i, j, k) with (j, i, k) and (k, i, j) we get two more equations,

(4) ∂jgi,k = 〈∇∂j
∂i, ∂k〉+ 〈∂i,∇∂j

∂k〉.

and

(5) ∂kgi,j = 〈∇∂k
∂i, ∂j〉+ 〈∂i,∇∂k

∂j〉.

Since ∇ is to be torsion-free, threre are only three different expressions on the
right-hand side of the equations. This allows to express each one of them through
the left-hand side as follows.

(6) 〈∇∂i
(∂j), ∂k〉 =

1

2
(∂igj,k + ∂jgi,k − ∂kgi,j).

The formula (6) uniquely defines ∇∂i
(∂j) since the inner product is nondegener-

ate. This proves uniqueness of the connection satisfying the listed above proper-
ties.

To prove the existence of such a connection, we can define a connection by the
formulas (6) and then to check the properties. Torsion-freeness follows directly
from the definition. The formulas (3)–(5) can be immediately deduced from (6).
This implies compatibility of ∇ with g in the generators. We have already seen
in the proof of Theorem 5.1.3 that this implies the compatibility in general. �

5.3.2. Comparison It is instructive to compare Levi-Civita connections on
an embedded pair of Riemannian manifolds.

Let Y be a submanifold of a Riemannian manifold X. The tangent space TyY
is embedded into TyX and, therefore, it carries an induced inner product. This
gives a Riemannian structure on Y .
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Let i : Y → X be the embedding. One has a map of vector bundles

j : TY - i∗(TX)

and the connection on i∗(TX) defined by the Levi-Civita connection ∇̃ on TX.
Orthogonal projections πy : TyX → TyY define a map π : i∗(TX) - TY
splitting j.

Now we are ready to express the Levi-Civita connection ∇ on TY through ∇̃.

Theorem. Let σ, τ be vector fields on Y . Then

(7) ∇τ (σ) = π(∇̃j(τ)(j(σ))).

Proof. The right-hand side of the formula (7) defines a connection on TY . Let
us check it is torsion-free and compatible with the metric. Compatibility with
the metric follows from the fact that j is an isometry. Torsion freeness can be
checked locally; one can use local coordinates x1, . . . , xn for which Y is given by
the equations x1 = . . . = xi = 0. In this case torsion freeness is immediate. �

5.4. Connection on the standard tensor bundles. There is a general way to
extend a connection on V to a connection on any tensor power T p(V)⊗ T q(V∗).

It is done very similarly to the definition of Lie derivative on the standard
bundles. More precisely, we claim that, given a connection ∇ on V, there is
a unique collection of connections (denoted by the same letter ∇) on Vp

q :=
T p(V)⊗ T q(V∗) so that

• ∇τ acts as τ on V0
0 = 1.

• ∇τ (s⊗ t) = ∇τ (s)⊗ t + s⊗∇τ (t).
• ∇τ commutes with the contractions.

Instead of giving a proof (which is identical to the proof given for Lie derva-
tivee) we will present some formulas - for Vp

0 and V0
q.

(8) ∇τ (s1 ⊗ sp) =
∑

i

s1 ⊗ . . .⊗∇τ (si)⊗ . . .⊗ sp, s1 ⊗ . . .⊗ sp ∈ Γ(V p
0 ).

(9)

(∇τr)(s1, . . . , sq) = τ(r(s1, . . . , sq))−
∑

i

r(s1, . . . ,∇τ (si), . . . , sq). s ∈ Γ(V0
q).

Of course, all said above can be applied to V = TX and ∇ the Levi-Civita
connection.

5.5. Moving indices up and down.

5.5.1. Linear algebra Let (V, g) be a vector space endowed with an inner
product g. Any quadratic form on V can be interpreted as a linear map V → V ∗.
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Since g is non-degenerate, the map V → V ∗ is an isomorphism. It is given by
the formula

v 7→ g(v, ).

5.5.2. Similarly to the above, the Riemannian metric g ∈ T0
2 induces

an isomorphism TX - T ∗X. We will write this map as an isomorphism
T1

0
- T0

1 (converting vectors to covectors). This can be automatically extended
to maps Tp

q
- T

p−r
q+r (moving down r indices. All these maps are isomorphisms,

so that one can really move maps up and down.
Homework.
0. Check that the formula ∇τ (f) = τ(f) defines a connection on the trivial

bundle 1.
1. Let ∇0 and ∇1 be two connections on a vector bundle V. Prove that the

difference ∇1−∇0 is a tensor, that is is iven by a map TX ⊗V - V of vector
bundles.

2. Let ∇ be a connection on TX. Define T : T × T - T by the formula

T (σ, τ) = ∇σ(τ)−∇τ (σ)− [σ, τ ].

Prove that T is a (1, 2)-tensor, that is is defined by a map TX ⊗ TX - TX
of vector bundles. (The tensor T is called the torsion of ∇).

3. Prove that if ∇ is the Levi-Civita connection on (X, g) then for any τ ∈ T

one has ∇τ (g) = 0. Here g is considered as an element of T0
2 . Deduce from this

fact that Levi-Civita connection commutes with moving indices up and down.


