DIFFERENTIAL GEOMETRY, LECTURE 15, JULY 10

5. Levi-Civita connection

From now on we are interested in connections on the tangent bundle $T X$ of a Riemanninam manifold (X, g).

Out main result will be a construction of a canonical connection on $T X$ depending of the Riemannian tensor g.
5.1. Compatibility with the metric. Recall that any connection ∇ on $T X$ defines operators of parallel transport $\Psi_{\gamma}: T_{\gamma(a)} X \longrightarrow T_{\gamma(b)} X$.
5.1.1. Definition. A connection ∇ on $T X$ is called to be compatible with g if the parallel transport operators preserve the metric:

$$
\langle v, w\rangle=\langle\Psi(v), \Psi(w)\rangle .
$$

Let us find out when does this happen in terms of ∇.
Recall that a vector field s along γ is called parallel if $\frac{\nabla s}{d t}=0$. If ∇ is compatible with the metric, each pair of parallel vector fields s, t along γ has a constant inner product. Recall that for any $v \in T_{x}(X)$ there exists a unique parallel vector field s along γ satisfying $s(x)=v$.
5.1.2. Lemma. The connection ∇ on $T X$ is compatible with the metric iff for any vector fields v, w along γ one has

$$
\begin{equation*}
\frac{d}{d t}\langle v, w\rangle=\left\langle\frac{\nabla v}{d t}, w\right\rangle+\left\langle v, \frac{\nabla w}{d t}\right\rangle . \tag{1}
\end{equation*}
$$

Proof. Assume ∇ is compatible with the metric. Let γ be a curve connecting x with y. Choose an orthogonal basis e_{1}, \ldots, e_{n} in $T_{x} X$. Denote the the same letters the parallel vector fields along γ defined by the e_{i}. Since ∇ is compatible with the metric, the vector fields e_{i} along γ are orthogonal at all points. Now if $v=\sum a_{i} e_{i}$ and $w=\sum b_{i} e_{i}$ where a_{i}, b_{i} are smooth functions on γ, we have $\langle v, w\rangle=\sum a_{i} b_{i}, \frac{\nabla v}{d t}=\sum \frac{d a_{i}}{d t} e_{i}$ and $\frac{\nabla w}{d t}=\sum \frac{d b_{i}}{d t} e_{i}$. The comparison yields one of the implications. The converse implication is obvious.
5.1.3. Theorem. A connection ∇ is compatible with the metric iff for all $\tau, v, w \in$ \mathcal{T} one has

$$
\begin{equation*}
\tau(\langle v, w\rangle)=\left\langle\nabla_{\tau}(v), w\right\rangle+\left\langle v, \nabla_{\tau}(w)\right\rangle \tag{2}
\end{equation*}
$$

Proof. Let ∇ be compatible. Then, on order to check the equality of the functions at a given point x, we have to choose any curve passing through x with tangent vector at x equal to τ_{x}; restrict vector fields v and w to γ and apply Lemma 5.1.2.

To prove the opposite claim we have to deduce compatibility of a connection satisfying the property (2). Or, equivalently, this means that the connection satisfies (1) for any curve γ for all pairs of vector fields on γ induced by global vector fields on X. Now we note that it is enough to check the claim for curves γ lying completely inside an open set U such that $T X$ is trivial on U. For such small curves any vector field along γ can be presented as a linear combination $\sum \alpha_{i} v_{i}$ where v_{i} age global vector fields and α_{i} are functions on γ. Now, if $v=\sum \alpha_{i} v_{i}$ and $w=\sum \beta_{j} w_{j}$ so that v_{i} and w_{j} are global vector fields, then

$$
\frac{d}{d t}\langle v, w\rangle=\frac{d}{d t}\left(\sum_{i, j} \alpha_{i} \beta_{j}\left\langle v_{i}, w_{j}\right\rangle\right)=\sum_{i, j} \frac{d}{d t}\left(\alpha_{i} \beta_{j}\right)\left\langle v_{i}, w_{j}\right\rangle+\sum_{i, j} \alpha_{i} \beta_{j} \frac{d}{d t}\left\langle v_{i}, w_{j}\right\rangle
$$

whereas the right-hand side is

$$
\begin{array}{r}
\left\langle\frac{\nabla v}{d t}, w\right\rangle+\left\langle v, \frac{\nabla w}{d t}\right\rangle= \\
\sum_{i, j} \frac{d \alpha_{i}}{d t} \beta_{j}\left\langle v_{i}, w_{j}\right\rangle+\sum_{i, j} \alpha_{i} \beta_{j}\left\langle\frac{\nabla v_{i}}{d t}, w_{j}\right\rangle+\sum_{i, j} \alpha_{i} \frac{d \beta_{j}}{d t}\left\langle v_{i}, w_{j}\right\rangle+\sum_{i, j} \alpha_{i} \beta_{j}\left\langle v_{i}, \frac{\nabla w_{j}}{d t}\right\rangle
\end{array}
$$

which is obviously the same.
5.2. Torsion. Compatibility of a connection with the metric could be defined for any vector bundle \mathbb{V} with a metric $g \in \Gamma\left(S^{2} \mathbb{V}^{*}\right)$.

The following notion makes sense for connections on $T X$ only.
5.2.1. Definition. A connection ∇ on $T X$ is called torsion-free if for any pair of vector fields τ, σ one has

$$
\nabla_{\sigma}(\tau)-\nabla_{\tau}(\sigma)=[\sigma, \tau]
$$

Choose a local chart with coordinates x_{1}, \ldots, x_{n}, so that $T X$ is generated by $\frac{\partial}{\partial x_{i}}$. In what follows we will write ∂_{i} instead of $\frac{\partial}{\partial x_{i}}$ for simplicity. Then

$$
\nabla_{\partial_{i}}\left(\partial_{j}\right)=\sum \Gamma_{i, j}^{k} \partial_{k} .
$$

Since $\left[\partial_{i}, \partial_{j}\right]=0$, symmetricity implies

$$
\Gamma_{i, j}^{k}=\Gamma_{j, i}^{k} .
$$

5.2.2. Lemma. In local coordinates, a connection on TX is torsion-free if and only if the corresponding Christoffel symbols satisfy the condiition $\Gamma_{i, j}^{k}=\Gamma_{j, i}^{k}$.
Proof. The only if part has already been checked. The if part is a result of an easy calculation.
5.3. Levi-Civita connection. Let (X, g) be a Riemannian manifold. LeviCivita connection is the only connection ∇ on $T X$ which is compatible with the metric and torsion-free. This is the claim of the following theorem which is "the principal theorem of Differential Geometry".
5.3.1. Theorem. There is a unique connection ∇ on the tangent bundle of a Riemannian manifold (X, g) which is torsion-free and compatible with g.

Proof. It suffices to prove the existence and uniqueness in local coordinates: because of the uniqueness the connections on different charts will coincide at the intersections. We will denote as usual

$$
g_{i, j}=\left\langle\partial_{i}, \partial_{j}\right\rangle, \quad \nabla_{\partial_{i}}\left(\partial_{j}\right)=\sum_{k} \Gamma_{i, j}^{k} \partial_{k} .
$$

By compatibility with the metric

$$
\begin{equation*}
\partial_{i} g_{j, k}=\left\langle\nabla_{\partial_{i}} \partial_{j}, \partial_{k}\right\rangle+\left\langle\partial_{j}, \nabla_{\partial_{i}} \partial_{k}\right\rangle . \tag{3}
\end{equation*}
$$

Replacing the triple (i, j, k) with (j, i, k) and (k, i, j) we get two more equations,

$$
\begin{equation*}
\partial_{j} g_{i, k}=\left\langle\nabla_{\partial_{j}} \partial_{i}, \partial_{k}\right\rangle+\left\langle\partial_{i}, \nabla_{\partial_{j}} \partial_{k}\right\rangle . \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{k} g_{i, j}=\left\langle\nabla_{\partial_{k}} \partial_{i}, \partial_{j}\right\rangle+\left\langle\partial_{i}, \nabla_{\partial_{k}} \partial_{j}\right\rangle . \tag{5}
\end{equation*}
$$

Since ∇ is to be torsion-free, threre are only three different expressions on the right-hand side of the equations. This allows to express each one of them through the left-hand side as follows.

$$
\begin{equation*}
\left\langle\nabla_{\partial_{i}}\left(\partial_{j}\right), \partial_{k}\right\rangle=\frac{1}{2}\left(\partial_{i} g_{j, k}+\partial_{j} g_{i, k}-\partial_{k} g_{i, j}\right) . \tag{6}
\end{equation*}
$$

The formula (6) uniquely defines $\nabla_{\partial_{i}}\left(\partial_{j}\right)$ since the inner product is nondegenerate. This proves uniqueness of the connection satisfying the listed above properties.

To prove the existence of such a connection, we can define a connection by the formulas (6) and then to check the properties. Torsion-freeness follows directly from the definition. The formulas (3)-(5) can be immediately deduced from (6). This implies compatibility of ∇ with g in the generators. We have already seen in the proof of Theorem 5.1.3 that this implies the compatibility in general.
5.3.2. Comparison It is instructive to compare Levi-Civita connections on an embedded pair of Riemannian manifolds.

Let Y be a submanifold of a Riemannian manifold X. The tangent space $T_{y} Y$ is embedded into $T_{y} X$ and, therefore, it carries an induced inner product. This gives a Riemannian structure on Y.

Let $i: Y \rightarrow X$ be the embedding. One has a map of vector bundles

$$
j: T Y \longrightarrow i^{*}(T X)
$$

and the connection on $i^{*}(T X)$ defined by the Levi-Civita connection $\widetilde{\nabla}$ on $T X$. Orthogonal projections $\pi_{y}: T_{y} X \rightarrow T_{y} Y$ define a map $\pi: i^{*}(T X) \longrightarrow T Y$ splitting j.

Now we are ready to express the Levi-Civita connection ∇ on $T Y$ through $\widetilde{\nabla}$.
Theorem. Let σ, τ be vector fields on Y. Then

$$
\begin{equation*}
\nabla_{\tau}(\sigma)=\pi\left(\widetilde{\nabla}_{j(\tau)}(j(\sigma))\right) \tag{7}
\end{equation*}
$$

Proof. The right-hand side of the formula (7) defines a connection on $T Y$. Let us check it is torsion-free and compatible with the metric. Compatibility with the metric follows from the fact that j is an isometry. Torsion freeness can be checked locally; one can use local coordinates x_{1}, \ldots, x_{n} for which Y is given by the equations $x_{1}=\ldots=x_{i}=0$. In this case torsion freeness is immediate.
5.4. Connection on the standard tensor bundles. There is a general way to extend a connection on \mathbb{V} to a connection on any tensor power $T^{p}(\mathbb{V}) \otimes T^{q}\left(\mathbb{V}^{*}\right)$.

It is done very similarly to the definition of Lie derivative on the standard bundles. More precisely, we claim that, given a connection ∇ on \mathbb{V}, there is a unique collection of connections (denoted by the same letter ∇) on $\mathbb{V}_{q}^{p}:=$ $T^{p}(\mathbb{V}) \otimes T^{q}\left(\mathbb{V}^{*}\right)$ so that

- ∇_{τ} acts as τ on $\mathbb{V}_{0}^{0}=\mathbf{1}$.
- $\nabla_{\tau}(s \otimes t)=\nabla_{\tau}(s) \otimes t+s \otimes \nabla_{\tau}(t)$.
- ∇_{τ} commutes with the contractions.

Instead of giving a proof (which is identical to the proof given for Lie dervativee) we will present some formulas - for \mathbb{V}_{0}^{p} and \mathbb{V}_{q}^{0}.

$$
\begin{equation*}
\nabla_{\tau}\left(s_{1} \otimes s_{p}\right)=\sum_{i} s_{1} \otimes \ldots \otimes \nabla_{\tau}\left(s_{i}\right) \otimes \ldots \otimes s_{p}, \quad s_{1} \otimes \ldots \otimes s_{p} \in \Gamma\left(V_{0}^{p}\right) . \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla_{\tau} r\right)\left(s_{1}, \ldots, s_{q}\right)=\tau\left(r\left(s_{1}, \ldots, s_{q}\right)\right)-\sum_{i} r\left(s_{1}, \ldots, \nabla_{\tau}\left(s_{i}\right), \ldots, s_{q}\right) . \quad s \in \Gamma\left(\mathbb{V}_{q}^{0}\right) \tag{9}
\end{equation*}
$$

Of course, all said above can be applied to $\mathbb{V}=T X$ and ∇ the Levi-Civita connection.

5.5. Moving indices up and down.

5.5.1. Linear algebra Let (V, g) be a vector space endowed with an inner product g. Any quadratic form on V can be interpreted as a linear map $V \rightarrow V^{*}$.

Since g is non-degenerate, the map $V \rightarrow V^{*}$ is an isomorphism. It is given by the formula

$$
v \mapsto g(v,) .
$$

5.5.2. Similarly to the above, the Riemannian metric $g \in \mathcal{T}_{2}^{0}$ induces an isomorphism $T X \longrightarrow T^{*} X$. We will write this map as an isomorphism $\mathcal{T}_{0}^{1} \longrightarrow \mathcal{T}_{1}^{0}$ (converting vectors to covectors). This can be automatically extended to maps $\mathfrak{T}_{q}^{p} \longrightarrow \mathcal{T}_{q+r}^{p-r}$ (moving down r indices. All these maps are isomorphisms, so that one can really move maps up and down.

Homework.

0 . Check that the formula $\nabla_{\tau}(f)=\tau(f)$ defines a connection on the trivial bundle 1.

1. Let ∇_{0} and ∇_{1} be two connections on a vector bundle \mathbb{V}. Prove that the difference $\nabla_{1}-\nabla_{0}$ is a tensor, that is is iven by a map $T X \otimes \mathbb{V} \longrightarrow \mathbb{V}$ of vector bundles.
2. Let ∇ be a connection on $T X$. Define $T: \mathcal{T} \times \mathcal{T} \longrightarrow \mathcal{T}$ by the formula

$$
T(\sigma, \tau)=\nabla_{\sigma}(\tau)-\nabla_{\tau}(\sigma)-[\sigma, \tau] .
$$

Prove that T is a $(1,2)$-tensor, that is is defined by a map $T X \otimes T X \longrightarrow T X$ of vector bundles. (The tensor T is called the torsion of ∇).
3. Prove that if ∇ is the Levi-Civita connection on (X, g) then for any $\tau \in \mathcal{T}$ one has $\nabla_{\tau}(g)=0$. Here g is considered as an element of \mathfrak{T}_{2}^{0}. Deduce from this fact that Levi-Civita connection commutes with moving indices up and down.

