DIFFERENTIAL GEOMETRY. LECTURE 12-13, 3.07.08

5. Riemannian metrics. Examples. Connections

5.1. Length of a curve. Let $\gamma:[a, b] \longrightarrow \mathbb{R}^{n}$ be a parametried curve. Its length can be calculated as the limit of partial sums

$$
\sum_{i=1}^{N}\left\|\gamma\left(t_{i}\right)-\gamma\left(t_{i-1}\right)\right\|
$$

where $t_{0}=a<t_{1}<\ldots<t_{N}=b$ is a partition of the segment.
This easily gives the well-known expression

$$
\begin{equation*}
\ell(\gamma)=\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t \tag{1}
\end{equation*}
$$

We want to have a similar expression for the length of a parametrized curve on a smooth manifold. Given a curve $\gamma:[a, b] \longrightarrow X$, we know that $\gamma^{\prime}(t)$ is a vector in $T_{\gamma(t)} X$. We do not know, however, how to calculate the length of a tangent vector. To have it, we need an inner product on the tangent spaces. Of course, it makes sense to require that this inner product on $T_{x} X$ depends smoothly on x.
5.1.1. Definition. A Riemannian metric on X is a section g of the bundle $S^{2} T^{*} X$ such that for each $x \in X$ the value $g_{x}: T_{x} \times T_{x} \longrightarrow \mathbb{R}$ is a positively definite symmetric bilinear form.

A smooth manifold endowed with a Riemannian metric is called a Riemannian manifold. The formula (1) defines now length of a curve on any Riemannian manifold.

Let us note that the length of a curve does not depend on a parametrization.
In fact, let t be a monotone function of $s \in[c, d]$ so that $t(c)=a, t(d)=b$. Define $\delta(s)=\gamma(t(s))$.

Then

$$
\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t=\int_{c}^{d}\left\|\gamma^{\prime}(t(s))\right\| t^{\prime}(s) d s=\int_{c}^{d}\left\|\gamma^{\prime}(t(s)) t^{\prime}(s)\right\| d s=\int_{c}^{d}\left\|\delta^{\prime}(s)\right\| d s
$$

5.2. Riemannian manifolds. What can be studied? If we know what a length of a curve is, we can ask what are the shortest curves connecting given points. Lines satisfying (locally) minimality condition are geodesic lines. They are defined as the lines satisfying a certain differential equation.

One can study existence of geodesic lines and connection to topological properties of X. One can wish to classify Riemannian structures on a given smooth manifold. Also, a local behavior of Riemannian manifolds is interesting (note that smooth manifolds are locally the same; this is not true for Riemannian manifolds).
5.3. Riemannian metric in local coordinates. Let X be an open subset in \mathbb{R}^{n}. Riemannian tensor g has form

$$
g=\sum g_{i, j} d x_{i} d x_{j} .
$$

Given two vector fields, $v=\sum v^{i} \frac{\partial}{\partial x_{i}}$ and $w=\sum w^{i} \frac{\partial}{\partial x_{i}}$ where $v^{i}, w^{i} \in C^{\infty}(X)$, a function

$$
g(v, w)=\sum_{i, j} g_{i, j} v^{i} w^{j}
$$

is defined.
In general any chart $\phi: D \longrightarrow U \subset X$ allows one to describe a Riemannian metric g in coordinates $g_{i, j}$ where

$$
g_{i, j}=g\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{i}}\right) .
$$

If one has another chart $\phi^{\prime}: D^{\prime} \rightarrow U^{\prime}$, and if $g_{i, j}, g_{k, l}^{\prime}$ are the coordinates of g in these charts, one has

$$
g_{k, l}^{\prime}=\sum_{i, j} \frac{\partial x_{i}}{\partial x_{k}^{\prime}} \frac{\partial x_{j}}{\partial x_{l}^{\prime}} g_{i, j} .
$$

5.3.1. Important: The above formulas mean, in particular, that Riemannian metric exists for any open subset of \mathbb{R}^{n}. We will see very soon that it exists for any smooth manifold.
5.3.2. Example. Let us write down the standard Riemannian metric on \mathbb{R}^{2} in the polar coordinates (r, ϕ).

We have $g=d x^{2}+d y^{2}$. Since $x=r \cos \phi, y=r \sin \phi$, we can get after an easy calculation $g=d r^{2}+r^{2} d \phi^{2}$.
5.3.3. Example. Let $X \subset \mathbb{R}^{N}$ be a smooth submanifold of \mathbb{R}^{N}. For each point $x \in X$ one has a natural embedding $T_{x} X \longrightarrow \mathbb{R}^{N}$. This induces an inner product on each tangent space $T_{x}(X)$. An easy calculation (see Homework) shows that this inner product depends smoothly on the point x. Therefore, this defines a Riemannian metric on X which is called the Riemannian metric on X induced from that on \mathbb{R}^{N}.
5.4. Existence. We will now prove the existence of a Riemannian metric on any smooth manifold. The proof is (of course) based on partition of unity.

Let $\phi_{i}: D_{i} \rightarrow U_{i}$ be a locally finite atlas of X. Choose a partition of unity $i \mapsto \alpha_{i}$ so that $\sum \alpha_{i}=1$ and $\operatorname{Supp} \alpha_{i} \subset U_{i}$. Choose any Riemannian metric on U_{i}, for instance g^{i} written in the coordinates of the chart ϕ_{i} as $\sum_{j} d x_{j}^{2}$. Define $g=\sum_{i} \alpha_{i} g^{i}$. We claim that g so defined is a Riemannian metric on X. The value of g on a nonzero vector $v \in T_{x} X$ is a sum of nonnegative summands. If $\alpha_{i}(x) \neq 0$, the i-th summand is nonzero. That proves the positive definitness of g.
5.5. Riemannian embeddings. Given two Riemannian manifolds, (X, g) and (Y, h), a Riemannian embedding is a morphism $f: X \longrightarrow Y$ such that for each $x \in X$ the map $T_{x} f: T_{x} X \rightarrow T_{f(x)} Y$ is an isometry. An invertible Riemannian embedding is called isometry.

The main object of classical Riemannian geometry is to study isometry invariants of (differently embedded) Riemannian manifolds.

For instance, a famous Gauss' Theorema Egregium claims that the Gauss curvature of a surface embedded into \mathbb{R}^{3} is invariant under isometry.
5.5.1. Example. Let X and Y be two surfaces in \mathbb{R}^{3} defined by the equations $y=0$ and $y=\sin x$ respectively. Both X and Y have a Riemannian metric induced from \mathbb{R}^{3}. They are isometric: an isometry $X \rightarrow Y$ can be easily obtained from a natural parametrization of the curve $y=\sin x$.
5.6. Connections. In a general smooth manifold X tangent spaces at different points are not connected to one another. On the contrary, if X is an open subset of \mathbb{R}^{n}, tangent spaces at all points "are the same". Informally speaking, connection on $T X$ is a law that assigns an isomorphism

$$
T_{x} X \longrightarrow T_{y} X
$$

to each path $\gamma:[a, b] \longrightarrow X$ with $\gamma(a)=x, \gamma(b)=y$, so that concatenation of paths corresponds to composition of isomorphisms.

The definition we present below is of "infinitesimal" nature. Instead of an isomorphism between different tangent spaces defined by a path connecting the base points, we have a structure defined by a tangent vector to a point.

Later on we will find out that a Riemann structure on X defines a very special connection (Levi-Civita connection).

Since the notion of connection makes sense for any vector bundle (not necessarily the tangent bundle), we develop the theory in this generality.
5.6.1. Definition. Let \mathbb{V} be a vector bundle on X. A connection on V is an \mathbb{R}-bilinear map

$$
\nabla: \mathcal{T} \times \Gamma(\mathbb{V}) \longrightarrow \Gamma(\mathbb{V}), \quad(\tau, v) \mapsto \nabla_{\tau}(v)
$$

satisfying the following properties

- $\nabla_{f \tau}(s)=f \nabla_{\tau}(s)$.
- $\nabla_{\tau}(f s)=f \nabla_{\tau}(s)+\tau(f) s$.

The first condition means that, for a fixed section $s \in \Gamma(\mathbb{V})$ the map $\mathcal{T} \longrightarrow \mathbb{V}$ is linear over \mathbb{C}^{∞}, that is as we saw above, is induced by a map of vector bundles $T X \longrightarrow \mathbb{V}$ which is, as we know, the same as a section of $T^{*} X \otimes \mathbb{V}$. This allows one to rewrite the definitnion as follows.
5.6.2. Definition. Let \mathbb{V} be a vector bundle on X. A connection on V is an operator

$$
\nabla: \Gamma(\mathbb{V}) \longrightarrow \Gamma \operatorname{Hom}(T X, \mathbb{V})=\Gamma\left(T^{*} X \otimes \mathbb{V}\right)
$$

satisfying the following property

- $\nabla(f s)=d f \otimes s+f \nabla(s)$.

5.6.3. Connection in local coordinates

Let x_{1}, \ldots, x_{n} be local coordinates in X corresponding to a chart $\phi: D \longrightarrow U \subset$ X and let $\left.\mathbb{V}\right|_{U}=U \times \mathbb{R}^{n}$ be trivial. The constant sections e_{i} form a basis of $\Gamma\left(\left.\mathbb{V}\right|_{U}\right)$ over $C^{\infty}(U)$. Then the connection ∇ is uniquely defined by $n \cdot m^{2}$ coefficients $\Gamma_{i, j}^{k}$ defined from the formulas

$$
\begin{equation*}
\nabla\left(e_{j}\right)=\sum \Gamma_{i, j}^{k} d x_{i} \otimes e_{k} . \tag{2}
\end{equation*}
$$

The coefficients $\Gamma_{i, j}^{k}$ are called Christoffel symbols. These are functions in coordinates x_{1}, \ldots, x_{n}. They are not components of a tensor!

Let us write down the general formula for ∇ in local coordinates. We have

$$
\begin{array}{r}
\nabla\left(\sum_{j} \alpha_{j} e_{j}\right)=\sum_{j} d\left(\alpha_{j}\right) \otimes e_{j}+\sum_{i, j, k} \Gamma_{i, j}^{k} \alpha_{j} d x_{i} \otimes e_{k}= \tag{3}\\
\sum_{k}\left(d \alpha_{k}+\sum_{i, j} \Gamma_{i, j}^{k} \alpha_{j} d x_{i}\right) \otimes e_{k}=\sum_{i, k}\left(\frac{\partial \alpha_{k}}{\partial x_{i}}+\sum_{j} \Gamma_{i, j}^{k} \alpha_{j}\right) d x_{i} \otimes e_{k} .
\end{array}
$$

5.6.4. In order to inderstand how to "integrate" a connection along a curve, to get an isomorphism between the fibers \mathbb{V}_{x} and \mathbb{V}_{y} at the ends of the curve, it is worthwhile to divide this question into two separate problems.

First of all, we will understand how to define, given a vector bundle \mathbb{V} on X with a connection ∇, and a smooth map $f: Y \rightarrow X$, a connection on the inverse image $f^{*}(V)$. In particular, this will give, for each smooth curve $\gamma:[a, b] \rightarrow X$ a connection on the restriction of \mathbb{V} to the curve.

Then, to construct an isomorphism between the fibers \mathbb{V}_{x} and \mathbb{V}_{y} one can forget about X and work with a vector bundle with connection on a segment.

5.6.5. Inverse image of a connection

Let ∇ be a connection on a vector bundle \mathbb{V} over X and let $f: Y \rightarrow X$ be a smooth map. We claim that there exists a unique connection (which will be denoted by the same letter)

$$
\nabla: \mathcal{T}(Y) \times \Gamma\left(f^{*} \mathbb{V}\right) \longrightarrow \Gamma\left(f^{*} \mathbb{V}\right)
$$

compatible with the original connection of \mathbb{V}, that is making the diagram

commutative. Let us explain the vertical maps in the diagram. The leftmost map assigns to a section $s: X \rightarrow \mathbb{V}$ the composition $s \circ f: Y \rightarrow \mathbb{V}$ which automatically corresponds to $Y \rightarrow f^{*} \mathbb{V}$.
Any map of bundles $T X \longrightarrow \mathbb{V}$ defines canonically a map of inverse images $f^{*} T X \longrightarrow f^{*} \mathbb{V}$. This explains the arrow in the upper right corner. Finallt, the map marked $T f$ is defined by the composition with the canonical tangent map

$$
T Y \longrightarrow f^{*} T X
$$

As usual, we will prove uniqueness and existence of such connection on $f^{*} \mathbb{V}$ in local coordinates, and this will automatically imply that the local construction are compatible at the intersections.

The formulas (2), (3) show that on an open set U for which $\left.\mathbb{V}\right|_{U}$ is trivial, a connection ∇ is uniquely defined by its value on the generating sections e_{i}. The vector bundle $f^{*} \mathbb{V}$ is trivial on $f^{-1}(U) \subset Y$ and is generated by the same sections e_{i}. The commutative diagram (4) prescribes the value of ∇ on e_{i}, so that the connection on $\left.f^{*} \mathbb{V}\right|_{f^{-1}(U)}$ exists and is defined uniquely.

This concludes the construction of the connection on $f^{*} \mathbb{V}$.

5.6.6. Connections on a segment.

We want to apply the above construction to a curve $\gamma:[a, b] \rightarrow X$. This is formally not allowed since $[a, b]$ is not a manifold, but all definitions easily extend to this case.

Let \mathbb{W} be a vector bundle on $[a, b]$ (we will apply this to $\mathbb{W}:=\gamma^{*}(\mathbb{V})$). Since vector fields on $[a, b]$ have form $f \frac{d}{d t}$ for $f \in C^{\infty}([a, b])$, a connection on \mathbb{W} is given uniquely by an operator

$$
\nabla_{\frac{d}{d t}}: \Gamma(\mathbb{W}) \longrightarrow \Gamma(\mathbb{W})
$$

which will be denoted from now on $\frac{\nabla}{d t}$.
The operator $\frac{\nabla}{d t}$ satisfies the property

$$
\frac{\nabla}{d t}(f s)=\frac{d f}{d t} s+f \frac{\nabla}{d t}(s) .
$$

A section $s \in \Gamma(\mathbb{W})$ will be called parallel if $\frac{\nabla}{d t}(s)=0$.
The parallel sections enjoy the following properties.

5.6.7. Proposition. 1. The parallel sections of \mathbb{W} form a vector subspace of $\Gamma(\mathbb{W})$ of dimension $\mathrm{rk} \mathbb{W}$.

2. For any $t_{0} \in[a, b]$ and for any $s_{0} \in \mathbb{V}_{t_{0}}$ there exists a unique parallel section s with $s\left(t_{0}\right)=s_{0}$.

Proof. The set of parallel section is a linear subspace as the kernel of a linear operator. Its dimension equals $\mathrm{rk} \mathbb{W}$ by the second claim. Let us prove it. Choose a partition of the segment so that \mathbb{W} is trivial on each segment of the partition. It is sufficient to prove the assertion on each small segment separately. Thus, we are allowed to assume \mathbb{W} s trivial.

According to the general formula (3), one has

$$
\frac{\nabla}{d t}\left(\sum \alpha_{j} e_{j}\right)=\sum_{k}\left(\frac{d \alpha_{k}}{d t}+\sum_{j} \Gamma_{1, j}^{k} \alpha_{j}\right) e_{k},
$$

where $\Gamma_{1, j}^{k}$ are Christoffel symbols of our connection. Thus, a section $s=\sum \alpha_{j} e_{j}$ is parallel iff the coefficients α_{j} satisfy the system of linear differential equations

$$
\begin{equation*}
\frac{d \alpha_{k}}{d t}+\sum_{j} \Gamma_{1, j}^{k} \alpha_{j}=0 \tag{5}
\end{equation*}
$$

By the man theorem of ODE such system has a unique solution satisfying an initial condition.

Let $c, d \in[a, b]$. We define an isomorphism $\Psi_{c}^{d}: \mathbb{W}_{c} \longrightarrow \mathbb{W}_{d}$ as follows: the value $\Psi_{c}^{d}(w)$ for $w \in \mathbb{W}_{c}$ is equal to $s(d)$ where s is the parallel section of \mathbb{W} satisfying the initial condition $s(c)=w$. The isomorphism Ψ_{c}^{d} (parallel transport from c to d along the connection ∇) has very nice composition properties:

$$
\Psi_{d}^{e} \circ \Psi_{c}^{d}=\Psi_{c}^{e} .
$$

5.6.8. Parallel transport in general

Let now ∇ be a connection on a vector bundle \mathbb{V} over X and let $\gamma:[a, b] \longrightarrow X$ be a smooth path in X. Applying the constructions of the previous subsection to the inverse image $\mathbb{W}=\gamma^{*} \mathbb{V}$ and the inverse image connection, we get a parallel transport map

$$
\Psi_{c}^{d}: \mathbb{V}_{\gamma(c)} \longrightarrow \mathbb{V}_{\gamma(d)} .
$$

Recall that in order to construct the map Ψ_{c}^{d}, we defined two important notions: the space $\Gamma\left(\gamma^{*} \mathbb{V}\right)$ of section of \mathbb{V} over γ which is the space of maps $\widetilde{\gamma}:[a, b] \longrightarrow \mathbb{V}$ satisfying the condition $\pi \circ \widetilde{\gamma}=\gamma$, and the operator

$$
\frac{\nabla}{d t}: \Gamma\left(\gamma^{*} \mathbb{V}\right) \longrightarrow \Gamma\left(\gamma^{*} \mathbb{V}\right)
$$

We will use these notions in the future.

Homework.

1. Let $X \subset \mathbb{R}^{N}$ be a smooth submanifold of \mathbb{R}^{N}. We consider \mathbb{R}^{n} endowed with the standard inner product. This defines an inner product on each $T_{x}(X) \subset \mathbb{R}^{N}$ (see Lecture 1). Prove this collection of inner products depends smoothly on $x \in X$, that is defines a Riemannian structure on X. Hint: use the charts for X constructed in Theorem 1.11
2. Let $T=S^{1} \times S^{1}=\left\{(\phi, \psi) \mid \phi, \psi \in S^{1}\right\}$ be the two-dimensional torus with the product Riemannian metric. Find whether the following embeddings are isometries.
a) $i: T^{2} \longrightarrow \mathbb{R}^{3}$ defined as

$$
i(\phi, \psi)=((2+\cos \phi) \cos \psi,(2+\cos \phi) \sin \psi, \sin \phi)
$$

b) $j: T^{2} \longrightarrow \mathbb{R}^{4}$ defined as

$$
j(\phi, \psi)=(\cos \phi, \sin \psi, \cos \psi, \sin \psi) .
$$

3. Let $H=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ be the upper half-plane. Define the metric on H by the formula

$$
g=\frac{d x^{2}+d y^{2}}{y^{2}} .
$$

a) calculate the length of the segment connecting the points $(0,1)$ with $(0,2)$.
b) Can H be isometric to the upper half-plane endowed with the usual Euclidean metric $\left(g=d x^{2}+d y^{2}\right)$?

