
DIFFERENTIAL GEOMETRY. LECTURE 12-13, 3.07.08

5. Riemannian metrics. Examples. Connections

5.1. Length of a curve. Let γ : [a, b] - Rn be a parametried curve. Its
length can be calculated as the limit of partial sums

N∑
i=1

||γ(ti)− γ(ti−1)||

where t0 = a < t1 < . . . < tN = b is a partition of the segment.
This easily gives the well-known expression

(1) `(γ) =

∫ b

a

||γ′(t)||dt.

We want to have a similar expression for the length of a parametrized curve on
a smooth manifold. Given a curve γ : [a, b] - X, we know that γ′(t) is a vector
in Tγ(t)X. We do not know, however, how to calculate the length of a tangent
vector. To have it, we need an inner product on the tangent spaces. Of course,
it makes sense to require that this inner product on TxX depends smoothly on
x.

5.1.1. Definition. A Riemannian metric on X is a section g of the bundle S2T ∗X
such that for each x ∈ X the value gx : Tx × Tx

- R is a positively definite
symmetric bilinear form.

A smooth manifold endowed with a Riemannian metric is called a Riemannian
manifold. The formula (1) defines now length of a curve on any Riemannian
manifold.

Let us note that the length of a curve does not depend on a parametrization.
In fact, let t be a monotone function of s ∈ [c, d] so that t(c) = a, t(d) = b.

Define δ(s) = γ(t(s)).
Then∫ b

a

||γ′(t)||dt =

∫ d

c

||γ′(t(s))||t′(s)ds =

∫ d

c

||γ′(t(s))t′(s)||ds =

∫ d

c

||δ′(s)||ds.

5.2. Riemannian manifolds. What can be studied? If we know what a
length of a curve is, we can ask what are the shortest curves connecting given
points. Lines satisfying (locally) minimality condition are geodesic lines. They
are defined as the lines satisfying a certain differential equation.
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One can study existence of geodesic lines and connection to topological prop-
erties of X. One can wish to classify Riemannian structures on a given smooth
manifold. Also, a local behavior of Riemannian manifolds is interesting (note
that smooth manifolds are locally the same; this is not true for Riemannian
manifolds).

5.3. Riemannian metric in local coordinates. Let X be an open subset in
Rn. Riemannian tensor g has form

g =
∑

gi,jdxidxj.

Given two vector fields, v =
∑
vi ∂

∂xi
and w =

∑
wi ∂

∂xi
where vi, wi ∈ C∞(X), a

function

g(v, w) =
∑
i,j

gi,jv
iwj

is defined.
In general any chart φ : D - U ⊂ X allows one to describe a Riemannian

metric g in coordinates gi,j where

gi,j = g(
∂

∂xi

,
∂

∂xi

).

If one has another chart φ′ : D′ → U ′, and if gi,j, g
′
k,l are the coordinates of g in

these charts, one has

g′k,l =
∑
i,j

∂xi

∂x′k

∂xj

∂x′l
gi,j.

5.3.1. Important: The above formulas mean, in particular, that Riemannian
metric exists for any open subset of Rn. We will see very soon that it exists for
any smooth manifold.

5.3.2. Example. Let us write down the standard Riemannian metric on R2 in
the polar coordinates (r, φ).

We have g = dx2 +dy2. Since x = r cosφ, y = r sinφ, we can get after an easy
calculation g = dr2 + r2dφ2.

5.3.3. Example. Let X ⊂ RN be a smooth submanifold of RN . For each point
x ∈ X one has a natural embedding TxX - RN . This induces an inner product
on each tangent space Tx(X). An easy calculation (see Homework) shows that
this inner product depends smoothly on the point x. Therefore, this defines a
Riemannian metric on X which is called the Riemannian metric on X induced
from that on RN .
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5.4. Existence. We will now prove the existence of a Riemannian metric on any
smooth manifold. The proof is (of course) based on partition of unity.

Let φi : Di → Ui be a locally finite atlas of X. Choose a partition of unity
i 7→ αi so that

∑
αi = 1 and Suppαi ⊂ Ui. Choose any Riemannian metric on

Ui, for instance gi written in the coordinates of the chart φi as
∑

j dx
2
j . Define

g =
∑

i αig
i. We claim that g so defined is a Riemannian metric on X. The

value of g on a nonzero vector v ∈ TxX is a sum of nonnegative summands. If
αi(x) 6= 0, the i-th summand is nonzero. That proves the positive definitness of
g.

5.5. Riemannian embeddings. Given two Riemannian manifolds, (X, g) and
(Y, h), a Riemannian embedding is a morphism f : X - Y such that for each
x ∈ X the map Txf : TxX → Tf(x)Y is an isometry. An invertible Riemannian
embedding is called isometry.

The main object of classical Riemannian geometry is to study isometry invari-
ants of (differently embedded) Riemannian manifolds.

For instance, a famous Gauss’ Theorema Egregium claims that the Gauss cur-
vature of a surface embedded into R3 is invariant under isometry.

5.5.1. Example. Let X and Y be two surfaces in R3 defined by the equations
y = 0 and y = sinx respectively. Both X and Y have a Riemannian metric
induced from R3. They are isometric: an isometry X → Y can be easily obtained
from a natural parametrization of the curve y = sinx.

5.6. Connections. In a general smooth manifold X tangent spaces at different
points are not connected to one another. On the contrary, if X is an open
subset of Rn, tangent spaces at all points “are the same”. Informally speaking,
connection on TX is a law that assigns an isomorphism

TxX - TyX

to each path γ : [a, b] - X with γ(a) = x, γ(b) = y, so that concatenation of
paths corresponds to composition of isomorphisms.

The definition we present below is of “infinitesimal” nature. Instead of an
isomorphism between different tangent spaces defined by a path connecting the
base points, we have a structure defined by a tangent vector to a point.

Later on we will find out that a Riemann structure on X defines a very special
connection (Levi-Civita connection).

Since the notion of connection makes sense for any vector bundle (not neces-
sarily the tangent bundle), we develop the theory in this generality.

5.6.1. Definition. Let V be a vector bundle on X. A connection on V is an
R-bilinear map

∇ : T × Γ(V) - Γ(V), (τ, v) 7→ ∇τ (v),
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satisfying the following properties

• ∇fτ (s) = f∇τ (s).
• ∇τ (fs) = f∇τ (s) + τ(f)s.

The first condition means that, for a fixed section s ∈ Γ(V) the map T - V
is linear over C∞, that is as we saw above, is induced by a map of vector bundles
TX - V which is, as we know, the same as a section of T ∗X ⊗V. This allows
one to rewrite the definitnion as follows.

5.6.2. Definition. Let V be a vector bundle on X. A connection on V is an
operator

∇ : Γ(V) - Γ Hom(TX,V) = Γ(T ∗X ⊗ V),

satisfying the following property

• ∇(fs) = df ⊗ s+ f∇(s).

5.6.3. Connection in local coordinates
Let x1, . . . , xn be local coordinates inX corresponding to a chart φ : D - U ⊂

X and let V|U = U×Rn be trivial. The constant sections ei form a basis of Γ(V|U)
over C∞(U). Then the connection ∇ is uniquely defined by n · m2 coefficients
Γk

i,j defined from the formulas

(2) ∇(ej) =
∑

Γk
i,jdxi ⊗ ek.

The coefficients Γk
i,j are called Christoffel symbols. These are functions in coor-

dinates x1, . . . , xn. They are not components of a tensor!
Let us write down the general formula for ∇ in local coordinates. We have

∇(
∑

j

αjej) =
∑

j

d(αj)⊗ ej +
∑
i,j,k

Γk
i,jαjdxi ⊗ ek =(3)

∑
k

(dαk +
∑
i,j

Γk
i,jαjdxi)⊗ ek =

∑
i,k

(
∂αk

∂xi

+
∑

j

Γk
i,jαj

)
dxi ⊗ ek.

5.6.4. In order to inderstand how to “integrate” a connection along a curve,
to get an isomorphism between the fibers Vx and Vy at the ends of the curve, it
is worthwhile to divide this question into two separate problems.

First of all, we will understand how to define, given a vector bundle V on X
with a connection ∇, and a smooth map f : Y → X, a connection on the inverse
image f ∗(V ). In particular, this will give, for each smooth curve γ : [a, b] → X a
connection on the restriction of V to the curve.

Then, to construct an isomorphism between the fibers Vx and Vy one can
forget about X and work with a vector bundle with connection on a segment.
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5.6.5. Inverse image of a connection
Let ∇ be a connection on a vector bundle V over X and let f : Y → X be

a smooth map. We claim that there exists a unique connection (which will be
denoted by the same letter)

∇ : T(Y )× Γ(f ∗V) - Γ(f ∗V)

compatible with the original connection of V, that is making the diagram

(4)

Γ(V)
∇ - Γ Hom(TX,V)

Γ Hom(f ∗TX, f ∗V)
?

Γ(f ∗V)
?

∇- Γ Hom(TY, f ∗V)

Tf

?

commutative. Let us explain the vertical maps in the diagram. The leftmost
map assigns to a section s : X → V the composition s ◦ f : Y → V which
automatically corresponds to Y → f ∗V.

Any map of bundles TX - V defines canonically a map of inverse images
f ∗TX - f ∗V. This explains the arrow in the upper right corner. Finallt, the
map marked Tf is defined by the composition with the canonical tangent map

TY - f ∗TX.

As usual, we will prove uniqueness and existence of such connection on f ∗V in
local coordinates, and this will automatically imply that the local construction
are compatible at the intersections.

The formulas (2), (3) show that on an open set U for which V|U is trivial, a
connection ∇ is uniquely defined by its value on the generating sections ei. The
vector bundle f ∗V is trivial on f−1(U) ⊂ Y and is generated by the same sections
ei. The commutative diagram (4) prescribes the value of ∇ on ei, so that the
connection on f ∗V|f−1(U) exists and is defined uniquely.

This concludes the construction of the connection on f ∗V.

5.6.6. Connections on a segment.
We want to apply the above construction to a curve γ : [a, b] → X. This is

formally not allowed since [a, b] is not a manifold, but all definitions easily extend
to this case.
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Let W be a vector bundle on [a, b] (we will apply this to W := γ∗(V)). Since
vector fields on [a, b] have form f d

dt
for f ∈ C∞([a, b]), a connection on W is given

uniquely by an operator

∇ d
dt

: Γ(W) - Γ(W)

which will be denoted from now on ∇
dt

.

The operator ∇
dt

satisfies the property

∇
dt

(fs) =
df

dt
s+ f

∇
dt

(s).

A section s ∈ Γ(W) will be called parallel if ∇
dt

(s) = 0.
The parallel sections enjoy the following properties.

5.6.7. Proposition. 1. The parallel sections of W form a vector subspace of
Γ(W) of dimension rk W.

2. For any t0 ∈ [a, b] and for any s0 ∈ Vt0 there exists a unique parallel
section s with s(t0) = s0.

Proof. The set of parallel section is a linear subspace as the kernel of a linear
operator. Its dimension equals rk W by the second claim. Let us prove it. Choose
a partition of the segment so that W is trivial on each segment of the partition.
It is sufficient to prove the assertion on each small segment separately. Thus, we
are allowed to assume W s trivial.

According to the general formula (3), one has

∇
dt

(
∑

αjej) =
∑

k

(
dαk

dt
+
∑

j

Γk
1,jαj)ek,

where Γk
1,j are Christoffel symbols of our connection. Thus, a section s =

∑
αjej

is parallel iff the coefficients αj satisfy the system of linear differential equations

(5)
dαk

dt
+
∑

j

Γk
1,jαj = 0.

By the man theorem of ODE such system has a unique solution satisfying an
initial condition. �

Let c, d ∈ [a, b]. We define an isomorphism Ψd
c : Wc

- Wd as follows: the
value Ψd

c(w) for w ∈ Wc is equal to s(d) where s is the parallel section of W
satisfying the initial condition s(c) = w. The isomorphism Ψd

c (parallel transport
from c to d along the connection ∇) has very nice composition properties:

Ψe
d ◦Ψd

c = Ψe
c.

5.6.8. Parallel transport in general
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Let now∇ be a connection on a vector bundle V overX and let γ : [a, b] - X
be a smooth path in X. Applying the constructions of the previous subsection to
the inverse image W = γ∗V and the inverse image connection, we get a parallel
transport map

Ψd
c : Vγ(c)

- Vγ(d).

Recall that in order to construct the map Ψd
c , we defined two important notions:

the space Γ(γ∗V) of section of V over γ which is the space of maps γ̃ : [a, b] - V
satisfying the condition π ◦ γ̃ = γ, and the operator

∇
dt

: Γ(γ∗V) - Γ(γ∗V).

We will use these notions in the future.
Homework.
1. Let X ⊂ RN be a smooth submanifold of RN . We consider Rn endowed with

the standard inner product. This defines an inner product on each Tx(X) ⊂ RN

(see Lecture 1). Prove this collection of inner products depends smoothly on
x ∈ X, that is defines a Riemannian structure on X. Hint: use the charts for X
constructed in Theorem 1.11

2. Let T = S1 × S1 = {(φ, ψ)|φ, ψ ∈ S1} be the two-dimensional torus with
the product Riemannian metric. Find whether the following embeddings are
isometries.

a) i : T 2 - R3 defined as

i(φ, ψ) = ((2 + cosφ) cosψ, (2 + cosφ) sinψ, sinφ).

b) j : T 2 - R4 defined as

j(φ, ψ) = (cosφ, sinψ, cosψ, sinψ).

3. Let H = {(x, y) ∈ R2|y > 0} be the upper half-plane. Define the metric on
H by the formula

g =
dx2 + dy2

y2
.

a) calculate the length of the segment connecting the points (0, 1) with (0, 2).
b) Can H be isometric to the upper half-plane endowed with the usual Eu-

clidean metric (g = dx2 + dy2)?


