DIFFERENTIAL GEOMETRY. LECTURE 12-13, 3.07.08

5. RIEMANNIAN METRICS. EXAMPLES. CONNECTIONS

5.1. Length of a curve. Let $\gamma : [a, b] \longrightarrow \mathbb{R}^n$ be a parametried curve. Its length can be calculated as the limit of partial sums

$$\sum_{i=1}^{N} ||\gamma(t_i) - \gamma(t_{i-1})||$$

where $t_0 = a < t_1 < \ldots < t_N = b$ is a partition of the segment.

This easily gives the well-known expression

(1)
$$\ell(\gamma) = \int_a^b ||\gamma'(t)|| dt.$$

We want to have a similar expression for the length of a parametrized curve on a smooth manifold. Given a curve $\gamma : [a, b] \longrightarrow X$, we know that $\gamma'(t)$ is a vector in $T_{\gamma(t)}X$. We do not know, however, how to calculate the length of a tangent vector. To have it, we need an inner product on the tangent spaces. Of course, it makes sense to require that this inner product on T_xX depends smoothly on x.

5.1.1. **Definition.** A Riemannian metric on X is a section g of the bundle S^2T^*X such that for each $x \in X$ the value $g_x : T_x \times T_x \longrightarrow \mathbb{R}$ is a positively definite symmetric bilinear form.

A smooth manifold endowed with a Riemannian metric is called a Riemannian manifold. The formula (1) defines now length of a curve on any Riemannian manifold.

Let us note that the length of a curve does not depend on a parametrization.

In fact, let t be a monotone function of $s \in [c, d]$ so that t(c) = a, t(d) = b. Define $\delta(s) = \gamma(t(s))$.

Then

$$\int_{a}^{b} ||\gamma'(t)|| dt = \int_{c}^{d} ||\gamma'(t(s))|| t'(s) ds = \int_{c}^{d} ||\gamma'(t(s))t'(s)|| ds = \int_{c}^{d} ||\delta'(s)|| ds = \int_$$

5.2. Riemannian manifolds. What can be studied? If we know what a length of a curve is, we can ask what are the shortest curves connecting given points. Lines satisfying (locally) minimality condition are *geodesic lines*. They are defined as the lines satisfying a certain differential equation.

One can study existence of geodesic lines and connection to topological properties of X. One can wish to classify Riemannian structures on a given smooth manifold. Also, a local behavior of Riemannian manifolds is interesting (note that smooth manifolds are locally the same; this is not true for Riemannian manifolds).

5.3. Riemannian metric in local coordinates. Let X be an open subset in \mathbb{R}^n . Riemannian tensor g has form

$$g = \sum g_{i,j} dx_i dx_j.$$

Given two vector fields, $v = \sum v^i \frac{\partial}{\partial x_i}$ and $w = \sum w^i \frac{\partial}{\partial x_i}$ where v^i , $w^i \in C^{\infty}(X)$, a function

$$g(v,w) = \sum_{i,j} g_{i,j} v^i w^j$$

is defined.

In general any chart $\phi: D \longrightarrow U \subset X$ allows one to describe a Riemannian metric g in coordinates $g_{i,j}$ where

$$g_{i,j} = g(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_i}).$$

If one has another chart $\phi': D' \to U'$, and if $g_{i,j}, g'_{k,l}$ are the coordinates of g in these charts, one has

$$g'_{k,l} = \sum_{i,j} \frac{\partial x_i}{\partial x'_k} \frac{\partial x_j}{\partial x'_l} g_{i,j}.$$

5.3.1. Important: The above formulas mean, in particular, that Riemannian metric exists for any open subset of \mathbb{R}^n . We will see very soon that it exists for any smooth manifold.

5.3.2. Example. Let us write down the standard Riemannian metric on \mathbb{R}^2 in the polar coordinates (r, ϕ) .

We have $g = dx^2 + dy^2$. Since $x = r \cos \phi$, $y = r \sin \phi$, we can get after an easy calculation $g = dr^2 + r^2 d\phi^2$.

5.3.3. Example. Let $X \subset \mathbb{R}^N$ be a smooth submanifold of \mathbb{R}^N . For each point $x \in X$ one has a natural embedding $T_x X \longrightarrow \mathbb{R}^N$. This induces an inner product on each tangent space $T_x(X)$. An easy calculation (see Homework) shows that this inner product depends smoothly on the point x. Therefore, this defines a Riemannian metric on X which is called *the Riemannian metric on X induced from that on* \mathbb{R}^N .

5.4. **Existence.** We will now prove the existence of a Riemannian metric on any smooth manifold. The proof is (of course) based on partition of unity.

Let $\phi_i : D_i \to U_i$ be a locally finite atlas of X. Choose a partition of unity $i \mapsto \alpha_i$ so that $\sum \alpha_i = 1$ and $\operatorname{Supp} \alpha_i \subset U_i$. Choose any Riemannian metric on U_i , for instance g^i written in the coordinates of the chart ϕ_i as $\sum_j dx_j^2$. Define $g = \sum_i \alpha_i g^i$. We claim that g so defined is a Riemannian metric on X. The value of g on a nonzero vector $v \in T_x X$ is a sum of nonnegative summands. If $\alpha_i(x) \neq 0$, the *i*-th summand is nonzero. That proves the positive definitness of g.

5.5. Riemannian embeddings. Given two Riemannian manifolds, (X, g) and (Y, h), a Riemannian embedding is a morphism $f : X \longrightarrow Y$ such that for each $x \in X$ the map $T_x f : T_x X \to T_{f(x)} Y$ is an isometry. An invertible Riemannian embedding is called *isometry*.

The main object of classical Riemannian geometry is to study isometry invariants of (differently embedded) Riemannian manifolds.

For instance, a famous Gauss' *Theorema Egregium* claims that the Gauss curvature of a surface embedded into \mathbb{R}^3 is invariant under isometry.

5.5.1. **Example.** Let X and Y be two surfaces in \mathbb{R}^3 defined by the equations y = 0 and $y = \sin x$ respectively. Both X and Y have a Riemannian metric induced from \mathbb{R}^3 . They are isometric: an isometry $X \to Y$ can be easily obtained from a natural parametrization of the curve $y = \sin x$.

5.6. Connections. In a general smooth manifold X tangent spaces at different points are not connected to one another. On the contrary, if X is an open subset of \mathbb{R}^n , tangent spaces at all points "are the same". Informally speaking, connection on TX is a law that assigns an isomorphism

$$T_x X \longrightarrow T_y X$$

to each path $\gamma : [a, b] \longrightarrow X$ with $\gamma(a) = x$, $\gamma(b) = y$, so that concatenation of paths corresponds to composition of isomorphisms.

The definition we present below is of "infinitesimal" nature. Instead of an isomorphism between different tangent spaces defined by a path connecting the base points, we have a structure defined by a tangent vector to a point.

Later on we will find out that a Riemann structure on X defines a very special connection (Levi-Civita connection).

Since the notion of connection makes sense for any vector bundle (not necessarily the tangent bundle), we develop the theory in this generality.

5.6.1. **Definition.** Let \mathbb{V} be a vector bundle on X. A connection on V is an \mathbb{R} -bilinear map

 $\nabla: \mathfrak{T} \times \Gamma(\mathbb{V}) \longrightarrow \Gamma(\mathbb{V}), \quad (\tau, v) \mapsto \nabla_{\tau}(v),$

satisfying the following properties

- $\nabla_{f\tau}(s) = f \nabla_{\tau}(s).$ $\nabla_{\tau}(fs) = f \nabla_{\tau}(s) + \tau(f)s.$

The first condition means that, for a fixed section $s \in \Gamma(\mathbb{V})$ the map $\mathcal{T} \longrightarrow \mathbb{V}$ is linear over \mathbb{C}^{∞} , that is as we saw above, is induced by a map of vector bundles $TX \longrightarrow \mathbb{V}$ which is, as we know, the same as a section of $T^*X \otimes \mathbb{V}$. This allows one to rewrite the definition as follows.

5.6.2. Definition. Let \mathbb{V} be a vector bundle on X. A connection on V is an operator

$$\nabla: \Gamma(\mathbb{V}) \longrightarrow \Gamma \operatorname{Hom}(TX, \mathbb{V}) = \Gamma(T^*X \otimes \mathbb{V}),$$

satisfying the following property

• $\nabla(fs) = df \otimes s + f \nabla(s).$

5.6.3. Connection in local coordinates

Let x_1, \ldots, x_n be local coordinates in X corresponding to a chart $\phi: D \longrightarrow U \subset$ X and let $\mathbb{V}|_U = U \times \mathbb{R}^n$ be trivial. The constant sections e_i form a basis of $\Gamma(\mathbb{V}|_U)$ over $C^{\infty}(U)$. Then the connection ∇ is uniquely defined by $n \cdot m^2$ coefficients $\Gamma_{i,i}^k$ defined from the formulas

(2)
$$\nabla(e_j) = \sum \Gamma_{i,j}^k dx_i \otimes e_k.$$

The coefficients $\Gamma_{i,j}^k$ are called *Christoffel symbols*. These are functions in coordinates x_1, \ldots, x_n . They are not components of a tensor!

Let us write down the general formula for ∇ in local coordinates. We have

(3)
$$\nabla(\sum_{j} \alpha_{j}e_{j}) = \sum_{j} d(\alpha_{j}) \otimes e_{j} + \sum_{i,j,k} \Gamma_{i,j}^{k} \alpha_{j} dx_{i} \otimes e_{k} = \sum_{k} \left(d\alpha_{k} + \sum_{i,j} \Gamma_{i,j}^{k} \alpha_{j} dx_{i} \right) \otimes e_{k} = \sum_{i,k} \left(\frac{\partial \alpha_{k}}{\partial x_{i}} + \sum_{j} \Gamma_{i,j}^{k} \alpha_{j} \right) dx_{i} \otimes e_{k}.$$

In order to inderstand how to "integrate" a connection along a curve, 5.6.4. to get an isomorphism between the fibers \mathbb{V}_x and \mathbb{V}_y at the ends of the curve, it is worthwhile to divide this question into two separate problems.

First of all, we will understand how to define, given a vector bundle \mathbb{V} on X with a connection ∇ , and a smooth map $f: Y \to X$, a connection on the inverse image $f^*(V)$. In particular, this will give, for each smooth curve $\gamma: [a, b] \to X$ a connection on the restriction of \mathbb{V} to the curve.

Then, to construct an isomorphism between the fibers \mathbb{V}_x and \mathbb{V}_y one can forget about X and work with a vector bundle with connection on a segment.

4

5.6.5. Inverse image of a connection

Let ∇ be a connection on a vector bundle \mathbb{V} over X and let $f: Y \to X$ be a smooth map. We claim that there exists a unique connection (which will be denoted by the same letter)

$$\nabla: \mathfrak{I}(Y) \times \Gamma(f^* \mathbb{V}) \longrightarrow \Gamma(f^* \mathbb{V})$$

compatible with the original connection of \mathbb{V} , that is making the diagram

commutative. Let us explain the vertical maps in the diagram. The leftmost map assigns to a section $s : X \to \mathbb{V}$ the composition $s \circ f : Y \to \mathbb{V}$ which automatically corresponds to $Y \to f^*\mathbb{V}$.

Any map of bundles $TX \longrightarrow \mathbb{V}$ defines canonically a map of inverse images $f^*TX \longrightarrow f^*\mathbb{V}$. This explains the arrow in the upper right corner. Finallt, the map marked Tf is defined by the composition with the canonical tangent map

$$TY \longrightarrow f^*TX.$$

As usual, we will prove uniqueness and existence of such connection on $f^*\mathbb{V}$ in local coordinates, and this will automatically imply that the local construction are compatible at the intersections.

The formulas (2), (3) show that on an open set U for which $\mathbb{V}|_U$ is trivial, a connection ∇ is uniquely defined by its value on the generating sections e_i . The vector bundle $f^*\mathbb{V}$ is trivial on $f^{-1}(U) \subset Y$ and is generated by the same sections e_i . The commutative diagram (4) prescribes the value of ∇ on e_i , so that the connection on $f^*\mathbb{V}|_{f^{-1}(U)}$ exists and is defined uniquely.

This concludes the construction of the connection on $f^*\mathbb{V}$.

5.6.6. Connections on a segment.

We want to apply the above construction to a curve $\gamma : [a, b] \to X$. This is formally not allowed since [a, b] is not a manifold, but all definitions easily extend to this case.

Let \mathbb{W} be a vector bundle on [a, b] (we will apply this to $\mathbb{W} := \gamma^*(\mathbb{V})$). Since vector fields on [a, b] have form $f \frac{d}{dt}$ for $f \in C^{\infty}([a, b])$, a connection on \mathbb{W} is given uniquely by an operator

$$\nabla_{\frac{d}{dt}}: \Gamma(\mathbb{W}) \longrightarrow \Gamma(\mathbb{W})$$

which will be denoted from now on $\frac{\nabla}{dt}$.

The operator $\frac{\nabla}{dt}$ satisfies the property

$$\frac{\nabla}{dt}(fs) = \frac{df}{dt}s + f\frac{\nabla}{dt}(s).$$

A section $s \in \Gamma(\mathbb{W})$ will be called *parallel* if $\frac{\nabla}{dt}(s) = 0$. The parallel sections enjoy the following properties.

- 5.6.7. **Proposition.** 1. The parallel sections of \mathbb{W} form a vector subspace of $\Gamma(\mathbb{W})$ of dimension $\operatorname{rk} \mathbb{W}$.
 - 2. For any $t_0 \in [a, b]$ and for any $s_0 \in \mathbb{V}_{t_0}$ there exists a unique parallel section s with $s(t_0) = s_0$.

Proof. The set of parallel section is a linear subspace as the kernel of a linear operator. Its dimension equals rk W by the second claim. Let us prove it. Choose a partition of the segment so that W is trivial on each segment of the partition. It is sufficient to prove the assertion on each small segment separately. Thus, we are allowed to assume W s trivial.

According to the general formula (3), one has

$$\frac{\nabla}{dt}(\sum \alpha_j e_j) = \sum_k \left(\frac{d\alpha_k}{dt} + \sum_j \Gamma_{1,j}^k \alpha_j\right) e_k,$$

where $\Gamma_{1,j}^k$ are Christoffel symbols of our connection. Thus, a section $s = \sum \alpha_j e_j$ is parallel iff the coefficients α_j satisfy the system of linear differential equations

(5)
$$\frac{d\alpha_k}{dt} + \sum_j \Gamma_{1,j}^k \alpha_j = 0.$$

By the man theorem of ODE such system has a unique solution satisfying an initial condition. $\hfill \Box$

Let $c, d \in [a, b]$. We define an isomorphism $\Psi_c^d : \mathbb{W}_c \longrightarrow \mathbb{W}_d$ as follows: the value $\Psi_c^d(w)$ for $w \in \mathbb{W}_c$ is equal to s(d) where s is the parallel section of \mathbb{W} satisfying the initial condition s(c) = w. The isomorphism Ψ_c^d (parallel transport from c to d along the connection ∇) has very nice composition properties:

$$\Psi_d^e \circ \Psi_c^d = \Psi_c^e.$$

5.6.8. Parallel transport in general

Let now ∇ be a connection on a vector bundle \mathbb{V} over X and let $\gamma : [a, b] \longrightarrow X$ be a smooth path in X. Applying the constructions of the previous subsection to the inverse image $\mathbb{W} = \gamma^* \mathbb{V}$ and the inverse image connection, we get a parallel transport map

$$\Psi_c^d: \mathbb{V}_{\gamma(c)} \longrightarrow \mathbb{V}_{\gamma(d)}.$$

Recall that in order to construct the map Ψ_c^d , we defined two important notions: the space $\Gamma(\gamma^*\mathbb{V})$ of section of \mathbb{V} over γ which is the space of maps $\widetilde{\gamma} : [a, b] \longrightarrow \mathbb{V}$ satisfying the condition $\pi \circ \widetilde{\gamma} = \gamma$, and the operator

$$\frac{\nabla}{dt}: \Gamma(\gamma^* \mathbb{V}) \longrightarrow \Gamma(\gamma^* \mathbb{V}).$$

We will use these notions in the future.

Homework.

1. Let $X \subset \mathbb{R}^N$ be a smooth submanifold of \mathbb{R}^N . We consider \mathbb{R}^n endowed with the standard inner product. This defines an inner product on each $T_x(X) \subset \mathbb{R}^N$ (see Lecture 1). Prove this collection of inner products depends smoothly on $x \in X$, that is defines a Riemannian structure on X. Hint: use the charts for X constructed in Theorem 1.11

2. Let $T = S^1 \times S^1 = \{(\phi, \psi) | \phi, \psi \in S^1\}$ be the two-dimensional torus with the product Riemannian metric. Find whether the following embeddings are isometries.

a) $i: T^2 \longrightarrow \mathbb{R}^3$ defined as

$$i(\phi,\psi) = ((2+\cos\phi)\cos\psi, (2+\cos\phi)\sin\psi, \sin\phi).$$

b) $j: T^2 \longrightarrow \mathbb{R}^4$ defined as

$$j(\phi, \psi) = (\cos \phi, \sin \psi, \cos \psi, \sin \psi).$$

3. Let $H = \{(x, y) \in \mathbb{R}^2 | y > 0\}$ be the upper half-plane. Define the metric on H by the formula

$$g = \frac{dx^2 + dy^2}{y^2}.$$

a) calculate the length of the segment connecting the points (0, 1) with (0, 2).

b) Can H be isometric to the upper half-plane endowed with the usual Euclidean metric $(g = dx^2 + dy^2)$?