
DIFFERENTIAL GEOMETRY. LECTURE 11, 30.06.08

4. Partition of unity and applications

Lemma 3.8.2 (see lecture 9-10) is a special case of a very important theorem
claiming the existence of a partition of unity in the sense made precise below.
We will not prove the theorem but we will deduce Lemma 3.8.2 from it.

4.1. Existence of partition of unity. Recall a few basic notions.

4.1.1. Definition. A cover X = ∪Vi is called locally finite if for any x ∈ X there
exists a small neighborhood U of x having nonempty intersection with only finite
number of Vi.

4.1.2. Definition. An open cover X = ∪Vj is subordinate to a cover {Ui} if for
each j there exist i so that Vj ⊂ Ui.

4.1.3. Definition. Let X = ∪Vj be a locally finite covering of a manifold X. A
partition of unity corresponding to {Vj} is a collection of smooth functions αi

satisfying the following properties

• Suppαj ⊂ Vj.
• αi(x) ≥ 0.
• For any x ∈ X one has

∑
j αj(x) = 1.

4.1.4. Theorem. Let X be a manifold (recall: it is assumed to be countable at
infinity). Then

1. Any covering X = ∪Ui admits a locally finite subordinate covering {Vj}.
2. Any locally finite covering {Vj} admits apartition of unity.

Let us explan how Lemma 3.8.2 can be deduced from 4.1.4. Let Ū ′ ⊂ U . We
have an open covering X = U ∪ (X
barU ′). It is finite, so we do not need a subordinate covering. By the theorem,
there exist a partition of unity, that is a pair of smooth functions α, β on X
such that Suppα ⊂ U and Supp β ⊂ X − Ū ′. Then the function α satisfies the
required property.

4.2. Orientation of a manifold. A choice of orientation on a manifold X is,
by definition,a choice of an atlas for which all transition functions φ−1

2 ◦ φ1 have
positive jacobians.

This definition has the following explanation. Recall that for vector spaces over
R the following notion of orientation is being used. Two bases B and B′ of V are
said to be equivalent if the transitionmatrix has a positive determinant. Thus,
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we have two equivalence classes of bases — these classes are called orientations
of V .

Endow Rn with the standard orientation, the one defined by the standard
basis of Rn. Thus, any chart φ : D → U induces orientation in all tangent spaces
Tx(X), x ∈ U . If two charts φi : Di

- Ui, i = 1, 2, are given so that the
transition function has a positive jacobian, this implies that the orientations of
Tx(X), x ∈ U1 ∩ U2 defined by φ1 and φ2 coincide.

The following criterion of orientability uses partition of unity.

4.2.1. Theorem. A smooth manifold X of dimension n is orientable iff the vector
bundle ∧nT ∗(X) of higher differential forms is trivial.

Proof. Note that ∧nT ∗X is a vector bundle of rank 1. It is rivial if and only if
it admits a nowhere zero section ω ∈ Ωn(X) (that is, ω(x) 6= 0 for all x ∈ X. If
there exists such a section (it is called a volume formω, any element ω′ ∈ Ωn can
be uniquely presented in form ω′ = fω, f ∈ C∞.

If ω′ is as well nowhere vanishing, the function f has no zeroes, therefore, has
a constant sign (at each connected component).

Assume we have chosen a volume form ω. Let us show how to define an
orientation of X. We say that a chart φ : D → U is compatible with ω if
ω = fdx1 ∧ . . . ∧ dxn with a positive function f . Compatible charts cover the
whole X since any chart can be always made compatible by making, if neces-
sary, a coordinate change x1 7→ −x1. Finally, two charts compatible with ω are
compatible with each other. In fact, if

ω = fdx1 ∧ . . . ∧ dxn = gdy1 ∧ . . . ∧ dyn,

one has f(x) = g(y(x)) · J where J is the jacobian of the transition function.
Therefore, since both f and g are positive, J is as well positive.

The other direction of the claim is more difficult. Now we assume that a
manifold X has an orientation and we have to construct a volume form.

Choose a locally finite atlas i 7→ φi : Di
- Ui, compatible in the sense of

orientations (that is, with positive jacobians of the transition functions). Choose
a partition of unity i 7→ αi such that Suppαi ⊂ Ui. On each Ui we have a
perfectly defined nowhere vanishing form ωi which in the local coordinates given
by φi is written as dx1 ∧ . . . ∧ dxn. The product αiωi is already globally defined
and the sum

ω :=
∑

αiωi

(the sum makes sense since the covering is locally finite) is, as we will immediately
check, a volume form compatible with the atlas.

Our aim is to prove that if φ∗i (ω|Ui
) = fdx1∧ . . .∧dxn, then f is positive. One

has
f = φ∗i (αi) +

∑
j 6=i

φ∗i (αj) · detT (φj−1φi).
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Since all jacobians of the transition matrices detT (φj−1φi) are positive, and all
αi are nonnegative, this gives the positivity of f . �

4.3. Integration.

4.3.1. What to intergrate?
To answer this question, it is enough to analyse carefully what we know about

integration of functions of one variable.
The formula ∫ x(b)

x(a)

f(x)dx =

∫ b

a

f(x(t))x′(t)dt

teaches us that what we integrate are not functions but the expressions f(x)dx,
that is differential forms. If we are talking about n-dimensional integration, these
will be n-forms.

But this is not all one can deduce analysing Calculus I integration. We know
that ∫ b

a

f(x)dx = −
∫ a

b

f(x)dx.

This means that we cannot simply intergrate a differential form f(x)dx along a
segment [a, b]. We have to know its direction. In n-dimensional integration this
means that we will have to integrate differential forms along oriented manifolds.

Now we are ready to define the integral of an n-form with compact support over
an oriented manifold X.

Assume ω ∈ Ωn(X) has a compact support. Assume first of all that Suppω ⊂
U where
phi : D → U is a chart. Then we define∫

X

ω =

∫
Rn

φ∗(ω).

The expression makes sense since it behaves well with respect to a base change
with a positive jacobian.

For a general form ω with compact support one uses a partition of unity. Let αi

be a partition of unity with respect to a locally finite covering of X with oriented
charts Ui. Then the integral of ω over X is defined by the formula∫

X

ω =
∑

i

∫
X

αiω =
∑

i

∫
Rn

φ∗i (αiω),

where αiω have already support in Ui.
Of course, one has to do some work to check that the result does not depend

on the choice of partition of unity.
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4.4. Embedding of a compact manifold. Any smooth manifold of dimension
n can be embedded into R2n+1. In this subsection we will prove a much weaker
statement.

4.4.1. Theorem. Let X be a smooth compact manifold. Then X can be embedded
into RN for N sufficiently big.

Proof. Let n be the dimension of X. Choose a finite atlas φi : Di → Ui, i =
1, . . . ,m. Choose a partition of unity i 7→ αi. Let φi : X - Rn be defined by
the formula

ψi(x) = αi(x)φ
−1
i (x) if x ∈ Ui, 0 otherwise.

Define a map Ψ : X - Rmn+m by the formula

Ψ(x) = (ψ1(x), . . . , psim(x), α1(x), . . . , αm(x)).

The map Ψ is injective: if Ψ(x) = Ψ(y), then for some k αk(x) = αk(y) 6= 0 and
this implies that x, y ∈ Uk and that φ−1

k (x) = φ−1
k (y), which, of course, imply

that x = y.
To prove that Ψ defines an embedding of X into Rmn+m, we have to check

that TΨx is injective at all points x. Choose k for which αk(x) 6= 0. In a
neighborhood of Ψ(x) ∈ Rmn+m a map u : Rmn+m - Rm is defined sending a
point (ψ1, . . . , ψm, α1, . . . , αm) to α−1

k ψk. the composition u ◦Ψ is just φ−1
k which

has an invertible tangent map. This proves the theorem.
�


