DIFFERENTIAL GEOMETRY. LECTURE 11, 30.06.08

4. PARTITION OF UNITY AND APPLICATIONS

Lemma 3.8.2 (see lecture 9-10) is a special case of a very important theorem
claiming the existence of a partition of unity in the sense made precise below.
We will not prove the theorem but we will deduce Lemma 3.8.2 from it.

4.1. Existence of partition of unity. Recall a few basic notions.

4.1.1. Definition. A cover X = UV; is called locally finite if for any x € X there
exists a small neighborhood U of x having nonempty intersection with only finite
number of V;.

4.1.2. Definition. An open cover X = UV is subordinate to a cover {U,} if for
each j there exist ¢ so that V; C Uj.

4.1.3. Definition. Let X = UV, be a locally finite covering of a manifold X. A
partition of unity corresponding to {V;} is a collection of smooth functions «;
satisfying the following properties

e Suppa; C V.

e o;(z) > 0.

e For any z € X one has ). a;(z) = 1.

4.1.4. Theorem. Let X be a manifold (recall: it is assumed to be countable at
infinity). Then

1. Any covering X = UU; admits a locally finite subordinate covering {V;}.

2. Any locally finite covering {V;} admits apartition of unity.

Let us explan how Lemma 3.8.2 can be deduced from 4.1.4. Let U’ C U. We
have an open covering X = U U (X
barU’). It is finite, so we do not need a subordinate covering. By the theorem,
there exist a partition of unity, that is a pair of smooth functions «, on X
such that Suppa C U and Supp 3 C X — U’. Then the function « satisfies the
required property.

4.2. Orientation of a manifold. A choice of orientation on a manifold X is,
by definition,a choice of an atlas for which all transition functions ¢, ' o ¢; have
positive jacobians.

This definition has the following explanation. Recall that for vector spaces over
R the following notion of orientation is being used. Two bases B and B’ of V' are

said to be equivalent if the transitionmatrix has a positive determinant. Thus,
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we have two equivalence classes of bases — these classes are called orientations
of V.

Endow R™ with the standard orientation, the one defined by the standard
basis of R™. Thus, any chart ¢ : D — U induces orientation in all tangent spaces
T.(X), x € U. If two charts ¢; : D; — U;, i = 1,2, are given so that the
transition function has a positive jacobian, this implies that the orientations of
T.(X), x € Uy N U, defined by ¢; and ¢- coincide.

The following criterion of orientability uses partition of unity.

4.2.1. Theorem. A smooth manifold X of dimension n is orientable iff the vector
bundle N"T*(X) of higher differential forms is trivial.

Proof. Note that A"T*X is a vector bundle of rank 1. It is rivial if and only if
it admits a nowhere zero section w € Q"(X) (that is, w(z) # 0 for all z € X. If
there exists such a section (it is called a volume formw, any element ' € Q" can
be uniquely presented in form o' = fw, f € C*.

If &’ is as well nowhere vanishing, the function f has no zeroes, therefore, has
a constant sign (at each connected component).

Assume we have chosen a volume form w. Let us show how to define an
orientation of X. We say that a chart ¢ : D — U is compatible with w if
w = fdxr; A ...\ dzx, with a positive function f. Compatible charts cover the
whole X since any chart can be always made compatible by making, if neces-
sary, a coordinate change x; — —x;. Finally, two charts compatible with w are
compatible with each other. In fact, if

w=fdrxy N...Ndx, = gdy; A ... \dy,,

one has f(x) = g(y(x)) - J where J is the jacobian of the transition function.
Therefore, since both f and g are positive, J is as well positive.

The other direction of the claim is more difficult. Now we assume that a
manifold X has an orientation and we have to construct a volume form.

Choose a locally finite atlas i — ¢; : D; —— U;, compatible in the sense of
orientations (that is, with positive jacobians of the transition functions). Choose
a partition of unity ¢ +— «; such that Suppa; C U;. On each U; we have a
perfectly defined nowhere vanishing form w; which in the local coordinates given
by ¢; is written as dxy A ... A dx,. The product o,w; is already globally defined

and the sum
w = Z ;Wi

(the sum makes sense since the covering is locally finite) is, as we will immediately
check, a volume form compatible with the atlas.
Our aim is to prove that if ¢} (w|y,) = fdzy A ... Adz,, then f is positive. One
has
f=0i )+ ¢i(ay) - det T(¢;—1¢y).
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Since all jacobians of the transition matrices det T'(¢;—1¢;) are positive, and all
«; are nonnegative, this gives the positivity of f. 0

4.3. Integration.

4.3.1. What to intergrate?
To answer this question, it is enough to analyse carefully what we know about
integration of functions of one variable.
The formula
x(b) b
flapte = [ ftal)a’ @i
z(a) a
teaches us that what we integrate are not functions but the expressions f(z)dz,
that is differential forms. If we are talking about n-dimensional integration, these
will be n-forms.
But this is not all one can deduce analysing Calculus I integration. We know

that
/ab flz)dz = — /ba f(x)dx.

This means that we cannot simply intergrate a differential form f(z)dz along a
segment [a, b]. We have to know its direction. In n-dimensional integration this
means that we will have to integrate differential forms along oriented manifolds.
Now we are ready to define the integral of an n-form with compact support over
an oriented manifold X.
Assume w € Q"(X) has a compact support. Assume first of all that Suppw C
U where
phi : D — U is a chart. Then we define

/Xw - [ e

The expression makes sense since it behaves well with respect to a base change
with a positive jacobian.

For a general form w with compact support one uses a partition of unity. Let «;
be a partition of unity with respect to a locally finite covering of X with oriented
charts U;. Then the integral of w over X is defined by the formula

/szg/Xaiwzzi: Rncbf(oéiw),

where a;w have already support in Uj.
Of course, one has to do some work to check that the result does not depend
on the choice of partition of unity.
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4.4. Embedding of a compact manifold. Any smooth manifold of dimension
n can be embedded into R?"™!. In this subsection we will prove a much weaker
statement.

4.4.1. Theorem. Let X be a smooth compact manifold. Then X can be embedded
into RN for N sufficiently big.

Proof. Let n be the dimension of X. Choose a finite atlas ¢; : D; — U;, i =
1,...,m. Choose a partition of unity ¢ — «;. Let ¢, : X —— R"” be defined by
the formula

V(1) = a;(x)é; () if x € U;, 0 otherwise.
Define a map ¥ : X —— R™ ™ by the formula

U(z) = (Y1(x),...,psipm(T), 0q(x),. .., an(x)).
The map V¥ is injective: if U(z) = U(y), then for some k ap(z) = ax(y) # 0 and
this implies that z,y € Uy and that ¢, '(z) = ¢, '(y), which, of course, imply
that x = y.

To prove that ¥ defines an embedding of X into R™*™ we have to check
that TW, is injective at all points z. Choose k for which ai(z) # 0. In a
neighborhood of ¥(z) € R™*™ a map u : R™*™ —— R™ is defined sending a
point (Y1, ..., Um, a1, ..., Q) to a1y, the composition u o W is just ¢, ' which

has an invertible tangent map. This proves the theorem.
O



