DIFFERENTIAL GEOMETRY. LECTURE 11, 30.06.08

4. Partition of unity and applications

Lemma 3.8.2 (see lecture 9-10) is a special case of a very important theorem claiming the existence of a partition of unity in the sense made precise below. We will not prove the theorem but we will deduce Lemma 3.8.2 from it.
4.1. Existence of partition of unity. Recall a few basic notions.
4.1.1. Definition. A cover $X=\cup V_{i}$ is called locally finite if for any $x \in X$ there exists a small neighborhood U of x having nonempty intersection with only finite number of V_{i}.
4.1.2. Definition. An open cover $X=\cup V_{j}$ is subordinate to a cover $\left\{U_{i}\right\}$ if for each j there exist i so that $V_{j} \subset U_{i}$.
4.1.3. Definition. Let $X=\cup V_{j}$ be a locally finite covering of a manifold X. A partition of unity corresponding to $\left\{V_{j}\right\}$ is a collection of smooth functions α_{i} satisfying the following properties

- $\operatorname{Supp} \alpha_{j} \subset V_{j}$.
- $\alpha_{i}(x) \geq 0$.
- For any $x \in X$ one has $\sum_{j} \alpha_{j}(x)=1$.
4.1.4. Theorem. Let X be a manifold (recall: it is assumed to be countable at infinity). Then

1. Any covering $X=\cup U_{i}$ admits a locally finite subordinate covering $\left\{V_{j}\right\}$.
2. Any locally finite covering $\left\{V_{j}\right\}$ admits apartition of unity.

Let us explan how Lemma 3.8.2 can be deduced from 4.1.4. Let $\bar{U}^{\prime} \subset U$. We have an open covering $X=U \cup(X$
$\left.\operatorname{bar} U^{\prime}\right)$. It is finite, so we do not need a subordinate covering. By the theorem, there exist a partition of unity, that is a pair of smooth functions α, β on X such that Supp $\alpha \subset U$ and Supp $\beta \subset X-\overline{U^{\prime}}$. Then the function α satisfies the required property.
4.2. Orientation of a manifold. A choice of orientation on a manifold X is, by definition, a choice of an atlas for which all transition functions $\phi_{2}^{-1} \circ \phi_{1}$ have positive jacobians.

This definition has the following explanation. Recall that for vector spaces over \mathbb{R} the following notion of orientation is being used. Two bases B and B^{\prime} of V are said to be equivalent if the transitionmatrix has a positive determinant. Thus,
we have two equivalence classes of bases - these classes are called orientations of V.

Endow \mathbb{R}^{n} with the standard orientation, the one defined by the standard basis of \mathbb{R}^{n}. Thus, any chart $\phi: D \rightarrow U$ induces orientation in all tangent spaces $T_{x}(X), x \in U$. If two charts $\phi_{i}: D_{i} \longrightarrow U_{i}, i=1,2$, are given so that the transition function has a positive jacobian, this implies that the orientations of $T_{x}(X), x \in U_{1} \cap U_{2}$ defined by ϕ_{1} and ϕ_{2} coincide.

The following criterion of orientability uses partition of unity.
4.2.1. Theorem. A smooth manifold X of dimension n is orientable iff the vector bundle $\wedge^{n} T^{*}(X)$ of higher differential forms is trivial.

Proof. Note that $\wedge^{n} T^{*} X$ is a vector bundle of rank 1. It is rivial if and only if it admits a nowhere zero section $\omega \in \Omega^{n}(X)$ (that is, $\omega(x) \neq 0$ for all $x \in X$. If there exists such a section (it is called a volume form ω, any element $\omega^{\prime} \in \Omega^{n}$ can be uniquely presented in form $\omega^{\prime}=f \omega, f \in C^{\infty}$.

If ω^{\prime} is as well nowhere vanishing, the function f has no zeroes, therefore, has a constant sign (at each connected component).

Assume we have chosen a volume form ω. Let us show how to define an orientation of X. We say that a chart $\phi: D \rightarrow U$ is compatible with ω if $\omega=f d x_{1} \wedge \ldots \wedge d x_{n}$ with a positive function f. Compatible charts cover the whole X since any chart can be always made compatible by making, if necessary, a coordinate change $x_{1} \mapsto-x_{1}$. Finally, two charts compatible with ω are compatible with each other. In fact, if

$$
\omega=f d x_{1} \wedge \ldots \wedge d x_{n}=g d y_{1} \wedge \ldots \wedge d y_{n}
$$

one has $f(x)=g(y(x)) \cdot J$ where J is the jacobian of the transition function. Therefore, since both f and g are positive, J is as well positive.

The other direction of the claim is more difficult. Now we assume that a manifold X has an orientation and we have to construct a volume form.

Choose a locally finite atlas $i \mapsto \phi_{i}: D_{i} \longrightarrow U_{i}$, compatible in the sense of orientations (that is, with positive jacobians of the transition functions). Choose a partition of unity $i \mapsto \alpha_{i}$ such that $\operatorname{Supp} \alpha_{i} \subset U_{i}$. On each U_{i} we have a perfectly defined nowhere vanishing form ω_{i} which in the local coordinates given by ϕ_{i} is written as $d x_{1} \wedge \ldots \wedge d x_{n}$. The product $\alpha_{i} \omega_{i}$ is already globally defined and the sum

$$
\omega:=\sum \alpha_{i} \omega_{i}
$$

(the sum makes sense since the covering is locally finite) is, as we will immediately check, a volume form compatible with the atlas.

Our aim is to prove that if $\phi_{i}^{*}\left(\left.\omega\right|_{U_{i}}\right)=f d x_{1} \wedge \ldots \wedge d x_{n}$, then f is positive. One has

$$
f=\phi_{i}^{*}\left(\alpha_{i}\right)+\sum_{j \neq i} \phi_{i}^{*}\left(\alpha_{j}\right) \cdot \operatorname{det} T\left(\phi_{j}-1 \phi_{i}\right) .
$$

Since all jacobians of the transition matrices $\operatorname{det} T\left(\phi_{j}-1 \phi_{i}\right)$ are positive, and all α_{i} are nonnegative, this gives the positivity of f.

4.3. Integration.

4.3.1. What to intergrate?

To answer this question, it is enough to analyse carefully what we know about integration of functions of one variable.

The formula

$$
\int_{x(a)}^{x(b)} f(x) d x=\int_{a}^{b} f(x(t)) x^{\prime}(t) d t
$$

teaches us that what we integrate are not functions but the expressions $f(x) d x$, that is differential forms. If we are talking about n-dimensional integration, these will be n-forms.

But this is not all one can deduce analysing Calculus I integration. We know that

$$
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
$$

This means that we cannot simply intergrate a differential form $f(x) d x$ along a segment $[a, b]$. We have to know its direction. In n-dimensional integration this means that we will have to integrate differential forms along oriented manifolds.

Now we are ready to define the integral of an n-form with compact support over an oriented manifold X.

Assume $\omega \in \Omega^{n}(X)$ has a compact support. Assume first of all that Supp $\omega \subset$ U where
$p h i: D \rightarrow U$ is a chart. Then we define

$$
\int_{X} \omega=\int_{\mathbb{R}^{n}} \phi^{*}(\omega)
$$

The expression makes sense since it behaves well with respect to a base change with a positive jacobian.

For a general form ω with compact support one uses a partition of unity. Let α_{i} be a partition of unity with respect to a locally finite covering of X with oriented charts U_{i}. Then the integral of ω over X is defined by the formula

$$
\int_{X} \omega=\sum_{i} \int_{X} \alpha_{i} \omega=\sum_{i} \int_{\mathbb{R}^{n}} \phi_{i}^{*}\left(\alpha_{i} \omega\right),
$$

where $\alpha_{i} \omega$ have already support in U_{i}.
Of course, one has to do some work to check that the result does not depend on the choice of partition of unity.
4.4. Embedding of a compact manifold. Any smooth manifold of dimension n can be embedded into $\mathbb{R}^{2 n+1}$. In this subsection we will prove a much weaker statement.
4.4.1. Theorem. Let X be a smooth compact manifold. Then X can be embedded into \mathbb{R}^{N} for N sufficiently big.

Proof. Let n be the dimension of X. Choose a finite atlas $\phi_{i}: D_{i} \rightarrow U_{i}, i=$ $1, \ldots, m$. Choose a partition of unity $i \mapsto \alpha_{i}$. Let $\phi_{i}: X \longrightarrow \mathbb{R}^{n}$ be defined by the formula

$$
\psi_{i}(x)=\alpha_{i}(x) \phi_{i}^{-1}(x) \text { if } x \in U_{i}, 0 \text { otherwise. }
$$

Define a map $\Psi: X \longrightarrow \mathbb{R}^{m n+m}$ by the formula

$$
\Psi(x)=\left(\psi_{1}(x), \ldots, p s i_{m}(x), \alpha_{1}(x), \ldots, \alpha_{m}(x)\right) .
$$

The map Ψ is injective: if $\Psi(x)=\Psi(y)$, then for some $k \alpha_{k}(x)=\alpha_{k}(y) \neq 0$ and this implies that $x, y \in U_{k}$ and that $\phi_{k}^{-1}(x)=\phi_{k}^{-1}(y)$, which, of course, imply that $x=y$.

To prove that Ψ defines an embedding of X into $\mathbb{R}^{m n+m}$, we have to check that $T \Psi_{x}$ is injective at all points x. Choose k for which $\alpha_{k}(x) \neq 0$. In a neighborhood of $\Psi(x) \in \mathbb{R}^{m n+m}$ a map $u: \mathbb{R}^{m n+m} \longrightarrow \mathbb{R}^{m}$ is defined sending a point $\left(\psi_{1}, \ldots, \psi_{m}, \alpha_{1}, \ldots, \alpha_{m}\right)$ to $\alpha_{k}^{-1} \psi_{k}$. the composition $u \circ \Psi$ is just ϕ_{k}^{-1} which has an invertible tangent map. This proves the theorem.

