
BASIC ALGEBRA COURSE

1. Rings, modules

1.1. Basic definitions. One of the basic notions in Algebra is that of a ring.

1.1.1. Definition. An associative ring (with unit) is an abelian group R (with
respect to the operation denoted as +) with an extra operation called product
or multiplication, satisfying the following properties.

1. Associativity a(bc) = (ab)c, for all a, b, c ∈ R.
2. Existence of unit 1, 1a = a1 = a, for all a ∈ R.
3. Distributivity:

a(b+ c) = ab+ ac, (a+ b)c = ac+ bc,

for all a, b, c ∈ R.

Nice examples of rings include

0. Fields.
1. Commutative rings like the polynomial ring F[x].
2. Group ring. It is non-commutative if the group is not commutative. Given

a group G and a field k (any commutative ring instead of k will work as
well), we define the group ring kG as the vector space spanned by the
elements g ∈ G. That is, kG as an additive group is the set of finite
linear combinations

∑
aigi where ai ∈ k and gi ∈ G. The multiplication

is uniquely determined by the multiplication in G and the distributivity
law.

3. Matrix ring. The ring Mn(k) of square matrices of size n over a field
k (one could replace it with any ring, actually) has been studied in the
Linear algebra course.

4. Weyl algebra. Will be defined in exercises.

One can think of a ring as a (far) generalization of a field. Modules are gener-
alizations of vector spaces.

1.1.2. Definition. A (left) module over a ring R is an abelian group (M,+) with
an extra operation of (left) multiplication by elements of R. The axioms include:

• Two distributivity laws. That is,

(a+ b)m = am+ bm, a(m+ n) = am+ an

for a, b ∈ R, m, n ∈M .
1
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• Associativity of multiplication by scalar, a(bm) = (ab)m for a, b ∈ R and
m ∈M .
• Unit acts as identity, 1m = m for m ∈M .

One could have defined right modules. This would lead to a parallel but not
identical notion (as the multiplication in a ring needs not to be commutative).

1.1.3. Definition. Let R be a ring. The opposite ring Rop, is defined as follows.
As the additive group, they are the same: (Rop,+) = (R,+). The multiplication
in Rop (we deinte it by ∗ to distinguish from the original multiplication) is defined
by the formula a ∗ b = ba.

If R is commutative, R = Rop. Sometimes R is isomorphic to Rop, but in a
nontrivial way. For instance, a group ring is isomorphic to its opposite, find the
isomorphism (Hint: the isomorphism kG→ (kG)op carries g ∈ G to g−1).

Weyl algebra is also isomorphic to its opposite in a nontrivial way.

1.1.4. Proposition. Left modules over R are “the same as” right modules over
Rop (and vice versa).

Modules are like vector spaces over general rings. However, they are not really
like vector spaces.

1.1.5. Definition. (Module generated by a set) Let R be a ring, M an R-module,
X ⊂M a subset. We will say that X generated M if any m ∈M can be presented
as a (finite) linear combination

m =
∑

aixi, ai ∈ R, xi ∈ X.

The definition above looks precisely as the definition of generating set in linear
algebra. The main difference of the notion of module with the notion of a vector
space is that modules usually do not have a basis, that is a generating set for
which any element as a unique presentation as a linear combination.

1.1.6. Definition. Let M be a module over R. A left submodule of M is defined
as an additive subgroup N ⊂M such that

a ∈ R, x ∈ N =⇒ ax ∈ N.

The ring R is obviously a left module over itself. As a special case of a previous
definition, we get a notion of left ideal.

1.1.7. Definition. A left ideal I in a ring R is an additive subgroup I ⊂ (R,+)
satisfying the property

x ∈ I, a ∈ R =⇒ ax ∈ I.

Since R is a left module over R, a left ideal is just a left submodule of R.
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Given a left R-module M and a submodule N of M , one defines M/N , the
quotient module, as the additive factor group M/N = {m+N} endowed with the
left multiplication by the elements of R given by the formula a(m+N) = am+N .

A standard Isomorphism theorem claims that if f : M → N is a surjective
homorphism of R-modules with the kernel K then N is naturally isomorphic to
the quotient M/K.

1.1.8. We are now able to describe all R-modules generated by one element.
Let M be generated by x ∈ M . That is any element has form ax for some

a ∈ R. This defines a surjective map R → M carrying a to ax. This is a linear
map. Let us describe its kernel I = {a ∈ R|ax = 0}. Obviously, if x ∈ I and
a ∈ R then ax ∈ I, that is, I is a left ideal. We will now describe the module M
generated by x ∈M as the quotient R/I.

Note that the module M = R/I does not have a basis. It is generated by one
element x := 1 + I, so that any element of M has form ax(= a + I). But this
presentation is not unique, unless I = 0 (we write this instead of formally more
correct I = {0}).

We can already note that modules over general rings are different from vector
spaces.

• There are non-isomorphic modules generated by one element.
• Most of them have no basis.
• A surjective map M → N of modules does not necessarily split.
• An injective map of modules N →M does not necessarily split.

The last two claims require explanation. Let k be a field and let V,W be k-vector
spaces. Let f : V → W be a linear map. If f is surjective, there exists g : W → V
such that f ◦ g = idW . One describes this saying that f is right-invertible (or
that f splits). If f is injective, there exists g : W → V such that g ◦ f = idV ,
that is, f is left invertible.

Usually the surjective map R → R/I does not split (as well as the injective
map I → R).

1.1.9. Example. R = Mn(k), the matrix ring, M = kn, the vector space of
columns of length n. The left multiplication of elements of M by the elements of
R is given by matrix multiplication.

1.1.10. Exercise. Prove that R is a direct sum of n modules isomorphic to M ,
see the above example.

1.1.11. Exercises.

1. Describe modules over Z.
2. Give an example of an epimorphism of Z-modules that does not split.

We have forgotten to define homomorphism of modules. Here it is.
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1.1.12. Definition. A homomorphism of left R-modules f : M → N is a homo-
morphism of additive groups satisfying the extra condition

f(am) = af(m), a ∈ R,m ∈M.

1.1.13. Definition. 1. A sequence of R-modules and homomorphisms

. . .→Mk+1
dk+1→ Mk

dk→Mk−1
dk−1. . .

is called a complex if dk ◦dk+1 = 0. In other words, if Ker(dk) ⊃ Im(dk+1)
for all k.

2. A complex is exact at Mk if there is an equality Ker(dk) = Im(dk+1). A
complex is exact if it is exact at Mk for all k.

A short exact sequence is an exact sequence

0→M → N → K → 0.

Please verify that

1. 0→M
f→ N is exact iff f is injective.

2. M
f→ N → 0 is exact iff f is surjective.

1.2. Split exact sequences.

1.2.1. Definition. A monomorphism f : M → N is called split if there exists
s : N → M such that sf = idM . An epimorphism g : N → K is called split if
there exists t : K → N such that gt = idK .

1.2.2. Lemma. Let M
f→ N

g→ K be a short exact sequences. Then f is split iff
g is split.

Proof. Assume g is split, that is, gt = idK . We claim that N = f(M) ⊕ t(K).
In fact, the intersection is trivial: if f(x) = t(y) then 0 = gf(x) = gt(y) = y so
y = 0 and f(x) = 0. Since f is injective, x = 0. On the other hand, for any
z ∈ N z − tg(z) belongs to the kernel of g (verify!), so to the image of f . Thus,
z = f(x) + tg(z) ∈ t(K) + f(M).

We can now define the map s : N → M splitting f by the formula s(f(x) +
t(y)) = x.

The converse is similar. �

A short exact sequence satisfying the above lemma is called split. As we saw
from the proof, split short exact sequences are isomorphic to M →M ⊕K → K,
with f(x) = (x, 0) and g(x, y) = y.

1.3. Simple modules. A module is simple if it is nonzero and has no nontrivial
submodules.

1.3.1. Lemma. (Schur lemma) Let M , N be simple modules, f : M → N a
module homomorphism. Then either f = 0 or f is an isomorphism.
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1.3.2. Ring of endomorphisms of a module. Given a ring R and an R-module M ,
the ring EndR(M) is defined as follows.

• As an abelian group, this is the group of R-momomorphisms from M to
M with respect to addition.
• Multiplication is defined by composition.

In the special case R is a field and M is the vector space Rn, EndR(M) is the
matrix ring Mn(R).

According to the Schur’s lemma, endomorphisms of a simple module form
a division ring, that is a ring (not necessarily commutative) where all nonzero
elements are invertible.

Example of a division ring that is not a field: the algebra of quaternions.

1.3.3. Definition. The algebra of quaternions Q is generated over R by for ele-
ments 1, i, j, k. Multiplication is defined on the generators by the formulas

• 1 is the unit.
• i2 = j2 = k2 = −1.
• ij = −ji = k, jk = −kj = i, ki = −ik = j.

Exercise: One could have replaced in the above definition R with C and get a
ring that is a 4-dimensional vector space over C. Prove it is isomorphic to M2(C).

1.3.4. Exercise. Let R be a ring, describe the endomorphism ring of R as a left
module over itself. Answer: This is Rop.

1.3.5. Definition. A ring R is called semisimple iff it is a direct sum of simple
modules.

We will prove soon the following Wedderburn-Artin theorem.
Theorem. Let R be semisimple. Then R is a finite product of matrix rings

over division algebras.

1.4. Direct sum and direct product.

1.4.1. We will describe the operations of direct sum and direct product of modules
over a (fixed) ring A. These two operations give the same asnwer when the
number of summands is finite; in general the sum is a submodule of the product.

So, let A be a ring and Mi, i ∈ I, is a collection of A-modules. Their direct
product M =

∏
i∈IMi is defined as follows.

1. As a set, M is the cartesian product of Mi, that is, the set of collections
{mi, i ∈ I}, with mi ∈Mi.

2. The operations of sum and scalar multiplication are defined component-
wise: {mi}+ {ni} = {mi + ni} and a{mi} = {ami}.
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The direct sum of Mi, N := ⊕i∈IMi (sometimes denoted as
∐

i∈IMi), is the
submodule N ⊂

∏
i∈IMi that consists of collections {mi} for which all but finite

number of mi are zero. In the case when I is a finite set both constructions yield
the same result.

1.4.2. The following two elementary results may serve a good explanation for the
difference between two constructions.

1.4.3. Proposition. Let A be a ring, M and Mi, i ∈ I are A-modules. A
homomorphism f : M →

∏
i∈IMi is uniquely given by a collection of homomor-

phisms fi : M → Mi. The assignment carries the collection of homomorphisms
fi : M → Mi to the homomorphism f : M →

∏
Mi that carries m ∈ M to the

collection f(m) = {fi(m)}i∈I .

�

1.4.4. Proposition. Let A be a ring, M and Mi, i ∈ I are A-modules. A
homomorphism f : ⊕i∈IMi → M is uniquely given by a collection of homomor-
phisms fi : Mi → M . The assignment carries the collection of homomorphisms
fi : Mi → M to the homomorphism f : ⊕Mi → M that carries {mi} ∈ ⊕Mi to
the element f({mi}) =

∑
i∈I fi(mi). The latter formula makes sense as only a

finite number of mi is nonzero.

�
The two propositions above mean that the notions of direct product and direct

sum can be defined by universal properties. We wll discuss this later.

1.5. Semisimplicity. We will first study the notion of semisimple module.

1.5.1. Theorem. The following conditions for a module M are equivalent.

1. M is a sum of its simple submodules.
2. M is a direct sum of (some of its) simple submodules.
3. Any embedding N →M splits.

Proof. The implication 2⇒ 1 is clear.
The implication 1⇒ 2 requires Zorn lemma. We will find a maximal collection

X of simple submodules Sx such that the sum
∑
Sx is direct, that is such that

any element z in the sum has a unique presentation as z =
∑
yx with yx ∈ Sx

and the sum, of course, is finite.
This is done using Zorn lemma. We define a poset (=partially ordered set) of

collections X satisfying the above property. It is nonempty (at least if M 6= 0)
and it satisfies the requirement of Zorn lemma: any chain X1 ⊂ X2 ⊂ . . . has an
upper bound (just take the union). Let us prove that the sum M ′ =

∑
x∈X Sx

over the maximal collection X as described above gives the whole M . Assume
M 6= M ′. Since M is a sum of its simple submodules, there is a simple submodule



7

S of M such that S is not in M ′. Then S ∩M ′ = 0 as S is simple. Then X is
not maximal as one has a direct sum S ⊕M ′.

Let us deduce 2 ⇒ 3. Let N ⊂ M . Choose a maximal subset X of simple
submodules such that the sum N +

∑
x∈X Sx is a direct sum. Similarly to the

above, we see that this sum is precisely M . This gives direct decomposition
M = N ⊕

∑
x∈X Sx.

Finally, 3 ⇒ 1. The most important is to prove that any nonzero submodule
N ⊂ M contains a simple submodule. Let 0 6= x ∈ N . Then N contains Rx
(R is our ring), so we can assume N = Rx. We know that Rx is isomorphic to
R/I where I is a left ideal of R. By Zorn lemma, there exists a maximal ideal J
containing I. Hense Jx is a maximal submodule of Rx.

Let M = Jx⊕M ′. Then Rx = Jx⊕ (M ′ ∩ Rx). Since Jx is maximal in Rx,
M ′ ∩Rx is a simple module. �

Note that the equivalence of condition 3 to the rest of the condition is really
nontrivial.

1.5.2. Definition. A module M is called semisimple if it satisfied the equivalent
conditions of the above theorem.

1.5.3. Lemma. Direct sum of semisimple modules is semisimple.

Proof. Use property (2) of semisimple modules. �

1.5.4. Lemma. Every submodule and factor module of a semisimple module is
semisimple.

Proof. Let N ⊂M . In the proof of the theorem we saw that M = N ⊕
∑

x∈X Sx
for some collection X of simple modules. Then M/N is clearly a sum of simple
modules. To prove N is a sum of simple modules, we can present it as a factor
M/

∑
Sx. �

1.5.5. Definition. A ring A is called semisimple if it is semisimple as a left
module over itself.

1.5.6. Theorem. (Wedderburn-Artin) Let A be a semisimple ring. Then it is a
finite direct sum of simple modules. Let A = Ln1

1 ⊕ L
nk
k be a decomposition of A

into sum of simple modules, Li and Lj being non-isomorphic for i 6= j. Then A
is isomorphic to the direct product of rings Mni

(Di).

Proof. First of all, A is a direct sum of simple A-modules, A = ⊕i∈ILi. In partic-
ular, 1 =

∑
xi where xi ∈ Li. The last sum should be finite, and for any a ∈ A

we have a =
∑
axi. Of course, axi = 0 if xi = 0, so there is only finite number

of summands.
Thus, A = Ln1

1 ⊕ . . . ⊕ L
nk
k where Li and Lj are not isomorphic when i 6= j.

According to an exercise EndA(A) = Aop. This ring can now be canculated
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differently. Since HomA(Li, Lj) = 0 for i 6= j,

EndA(A) = EndA(Ln1
1 ⊕. . .⊕L

nk
k ) = End(Ln1

1 )×. . .×End(Lnk
k ) = Mn1(D1)×. . .Mnk

(Dk).

It remains to mention that Mn(D)op is isomorphic to Mn(Dop). The isomor-
phism is given by transpose — we leave this as an exercise. �

1.5.7. Corollary. If A is semisimple, then Aop is also semisimple.

1.5.8. Proposition. Let A be a semisimple ring. Then any A-module is semisim-
ple.

Proof. Let M be an A-module. We can choose a set X generating M (for in-
stance, X = M). Let F be the free A-module spanned by X. Then one has
a homomorphism of modules f : F → M carrying a generator x ∈ X to the
respective element of M . f is surjective. Now, F is a direct sum of X copies of
A, therefore, semisimple. M is a factor-module of F , so is also semisimple. �

1.5.9. Corollary. Any short exact sequence of modules over a semisimple algebra
is split.

1.6. The category of modules. We will start using some elementary notions
connected to categories.

A category C is the following creature:

• It has a collection of objects (denoted Ob(C)).
• For any two objects x, y ∈ Ob(C) we have a set Hom(x, y) called the

set of morphisms from x to y. We often write f : x → y instead of
f ∈ Hom(x, y). We whire HomC(x, y) to indicate what category we are
talking about.
• Given f : x→ y and g : y → z, a “composition” morphism gf : x→ z is

defined.
• The composition is associative and have “units” - morphisms idx : x→ x

that behave as unit with respect to the composition.

1.6.1. Example: the category of sets. We define the category Set as folows. Its
objects are sets, morphisms are the maps of sets. One has associative composition
and units idx that are the identity maps.

1.6.2. Example: modules over a ring. Similarly, k is a field, one defines the cate-
gory Veck of vector spaces over k. Its objects are vector spaces and morphisms are
just linear transformations. More generally, if A is an associative ring, one can
define AMod — the category of left A-modules, whose objects are left A-modules
and morphisms are A-module homomorphisms. We can also define ModA, the
category of right A-modules.

1.6.3. Example: topological spaces. The category Top has topological spaces as
objects, and continuous maps as morphisms.
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1.6.4. Functors. A category is a (sort of) mathematical object. There is an
appropriate notion of “morphism” from one category to another.

Definition. Let C, D be two categories. A functor F : C→ D consists of

• For each x ∈ Ob(C), an object F (x) in D.
• For each pair of objects x, y of C, a map F : HomC(x, y)→ HomD(F (x), F (y)).
• One requires F (idx) = idF (x) and F (gf) = F (g)F (f).

1.6.5. Examples of functors.

• The functors Veck → Set, Top→ Set, AMod→ Set forgetting the struc-
ture of a vector space, topological space or A-module.
• The functor F : Set →A Mod assigning to a set X the free A-module

spanned by X.

1.6.6. Exercise. Give more examples of functors.

1.6.7. Opposite category. If C is a category, the opposite category Cop is defined
as follows: it has the same objects, but HomCop(x, y) = HomC(y, x). Composition
is defined by an obvious formula.

A functor F : Cop → D is sometimes called a contravariant functor from C to
D.

1.6.8. Functor Hom. Given two A-modules X and Y , we want to assign an
abelian group Hom(X, Y ). We can easily see that, for fixed X, this is a functor

HomA(X, ) :A Mod→ Ab.

in fact, any homomorphism f : Y → Y ′ defines a homomorphism of abelian
groups HomA(X, Y )→ HomA(X, Y ′).

If we fix Y , we can define another functor, now from AMod
op to Ab: it car-

ries X to HomA(X, Y ) and a homomorhism f : X → X ′ to a homomorphism
HomA(X ′, Y )→ HomA(X, Y ) (pay attention to the reversion of the arrows!)

We can do even more, considering HomA as a functor from AMod
op ×A Mod to

Ab.
To do this, one has to define a product of categories; please do it as an exercise.

1.7. Properties of the functor Hom.

1.7.1. Additivity. This is the property saying that F (f + g) = F (f) + F (g). Of
course, it only makes sense when HomC(x, y) and HomD(x, y) are abelian groups
(as in our examples).

1.7.2. Aditivity — 2. Another property (it actually follows from the previous
one, but it is not that obvious) says that F preserves direct sums. We know
that Hom(X1⊕X2, Y ) = Hom(X1, Y )⊕Hom(X2, Y ) in the sense that there is a
canonical isomorphism between two abelian groups. Actually, the claim is even
more precise, but we are not yet ready to formulate it, see 1.8.
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1.7.3. Left exactness. This is what we are going to prove. Let

0→ Y ′
f→ Y

g→ Y ′′

be an exact sequence. This means that f is mono, and Ker(g) = Im(f).
We have a sequence of abelian groups and homomorphisms

(1) 0→ HomA(X, Y ′)→ HomA(X, Y )→ HomA(X, Y ′′).

Proposition. The sequence (1) is exact.

Note: pay attention that the exact sequence above does not end with zero!

Proof. First of all, (1) is a complex: a composition of two consecutive arrows is
zero. This is something we get “for free”: just because an additive functor carries
zero morphism to zero.

Let us prove that the first morphism in (1) is mono. This is quite obvious: it

carries φ : X → Y ′ to the composition X
φ→ Y ′

f→ Y . If the composition is zero,
φ = 0 as f is mono.

Let us now prove the exactness in the middle. Assume that for φ : X → Y the
composition g ◦φ is zero. This means that for any x ∈ X the image φ(x) belongs
to the kernel of g. Since Ker(g) = Im(f), φ(x) ∈ Im(f). Since f is mono, there
is a unique element y′ ∈ Y such that φ(x) = f(y′). We define ψ : X → Y ′ by
the formula ψ(x) = y′. We have verify that ψ is a homomorphism of A-modules;
this is an easy exercise (DO IT!)

This proves the result: any φ in the kernel of the second homomorphism is in
the image of the first. �

1.7.4. Left exactness — 2. Let

X ′
f→ X

g→ X ′′ → 0

be an exact sequence. This means that g is epi, and Ker(g) = Im(f).
We have a sequence of abelian groups and homomorphisms

(2) 0→ HomA(X ′′, Y )→ HomA(X, Y )→ HomA(X ′, Y ).

Proposition. The sequence (2) is exact.

Proof. As before, (2) is a complex.
Let us prove that the first morphism in (2) is mono. This is quite obvious: it

carries φ : X ′′ → Y to the composition X
g→ X ′′

φ→ Y . If the composition is
zero, φ = 0 as g is epi.

Let us now prove the exactness in the middle. Assume that for φ : X → Y
the composition φ ◦ f is zero. This means that Im(f) ⊂ Ker(φ). Since Ker(g) =
Im(f), Ker(g) ⊂ Ker(φ), so by Isomorphism theorem the map φ uniquely factors
as

X
g→ X ′′

φ̄→ Y.
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This precisely means that φ is the image of φ̄.
This proves the result: any φ in the kernel of the second homomorphism is in

the image of the first. �

1.8. Direct sum: a second look. Let M,N be A-modules. Let X = M ⊕N .
The arrows in the diagram

(3) M
i1
**
X

p1
jj

p2

44 N
i2
tt

are defined by the formulas

(4) i1(x) = (x, 0), i2(y) = (0, y), p1(x, y) = x, p2(x, y) = y.

Note that the maps i1, i2, p1, p2 satisfy the following identities.

(5) p1i1 = idM , p2i2 = idN , p2i1 = 0 = p1i2, i1p1 + i2p2 = idX .

Vice versa, given a diagram (4) satisfying the conditions (5), the module X
uniquely identifies with the direct sum of M and N : in fact, any x ∈ X has
a unique presentation as x = i1(p1(x)) + i2(p2(x)). This strange description of
direct sum (by the diagram (4) rather then as a set of pairs) is very convenient
if we want to understand what happens to direct sum after an application of
a functor: any additive functor in the sense of definition 1.7.1 preserves direct
sums. In fact, it carries diagrams (4) satisfying (5) to a diagram with the same
property.

In particular, the functor Hom preserves direct sums in both arguments. This
is a more detailed explanation of 1.7.2.

1.9. Exact functors. An additive functor F : C → D (we assume C,D to be
categories of modules, so that Hom(x, y) is always an abelian group) is called
exact if it carries any exact sequence

(6) → Xn+1 → Xn
dn→ Xn−1 →

to an exact sequence.

1.9.1. Lemma. A functor F is exact if and only if it carries any short exact
sequence into a short exact sequence.

Proof. The only if part is clear. We have to show that if short exact sequences are
preserves, any exact sequences are preserved. Here is the trick. Given a complex
(6), we can “cut” it into a number of short complexes as follows.

(7) 0→ Im(dn+1)
in→ Xn

pn→ Im(dn)→ 0.

Vice versa, given a collection of complexes (7), we reconstruct the complex (6)
defining the maps dn : Xn → Xn−1 as the composition dn = in−1 ◦ pn.
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Note that if the complex (6) is exact, the complexes (7) are short exact se-
quences, and vice versa, if (7) are short exact, then (6) is exact. This reduces
the preservation of exact sequences to short exact sequences. �

1.10. Projective modules. The functor HomA(M, ) is left exact. We now want
to know conditions for M for which it is exact.

If 0 → N ′ → N → N ′′ → 0 is a short exact sequence, we have an exact
sequence

0→ HomA(M,N ′)→ HomA(M,N)→ HomA(M,N ′′).

the only condition we have to add is that the last arrow is surjective.

1.10.1. Definition. An A-module M is projective if for any epimorphism N →
N ′′ the map HomA(M,N)→ HomA(M,N ′′) is an epimorphism. Equivalently, M
is projective if for any pair of arrows f, g with g surjective there exists f̄ making
the diagram commutative (that is, satisfying g ◦ f̄ = f).

(8) N

g
��

M
f //

f̄
==

N ′′

It turns out that there is an easy description of projective modules (it is not
very explicit, though).

First of all, one has the following.

1.10.2. Lemma. Any free A-module is projective.

Proof. This is an easy exercise. Let in the above diagram M = F (X) is free
generated by a set X. In order to define f̄ : F (X)→ N , it is sufficient to define
any map X → N , with the only condition that its composition with g gives f .
This can be done separately for every x ∈ X (using an axiom of choice) as g is
surjective. �

1.10.3. Proposition. An A-module P is projective iff there is a module Q such
that P ⊕Q is free.

Proof. Let N → N ′′ be surjective. If P ⊕Q is free, the map HomA(P ⊕Q,N)→
HomA(P ⊕ Q,N ′′) is surjective. It can be described as the sum of two maps,
HomA(P,N) → HomA(P,N ′′) and HomA(Q,N) → HomA(Q,N ′′). Therefore,
each of them is also surjective.

In the opposite direction, let P be projective. We can find a free module F
and an epimorphism g : F → P . Then the map f := id : P → P can be lifted
to f̄ : P → F , so that g ◦ f̄ = idP . This means that P is a direct summand of
F . �
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Description of projective modules is sometimes an interesting problem. Some-
times it is easy. For instance, any projective Z-module is free (that is, a free
abelian group). This follows from the following more general result.

1.10.4. Theorem. Any subgroup of a free abelian group is free.

Proof. We will ony prove the claim for finitely generated abelian groups. The
general result is also correct, but the proof requires Zorn lemma, see [L], App. 2.

Let F be a free abelian group generated by x1, . . . , xn and let P ⊂ F . We
define Fk = SpanZ(x1, . . . , xk) and Pk = P ∩ Fk. We will prove by induction
that Pk is free abelian group of rank ≤ k. For k = 1 this is clear as P1 is
isomorphic to a subgroup of Z. Assume by induction that Pk−1 is free of rank
≤ k − 1. If Pk = Pk−1, there is nothing to prove. Otherwise, there exists

x ∈ Pk, x =
∑k

i=1 aixi, such that ak 6= 0. Let us choose an element x having a
minimal possible value of |ak|. We claim that Pk = Pk−1 ⊕ SpanZ(x). In fact,
the intersection Pk−1 ∩ Z · x is obviously zero. On the other hand, if y ∈ Pk has

form y =
∑k

i=1 bixi, bk should be divisible at ak (otherwise some y− cx will have
a smaller coefficient of xk), say, bk = cak, which implies that y − cx ∈ Pk−1. �

1.11. Injective modules. One can formally do the same thing with the functor
F = HomA( , N). It is always left exact, and we would like to know for which
A-modules N is it exact. We get the following definition.

1.11.1. Definition. An A-module N is injective if for any monomorphism M ′ →
M the map HomA(M,N)→ HomA(M ′, N) is an epimorphism. Equivalently, N
is injective if for any injective g : M ′ →M , any f : M ′ → N can be extended to
f̄ : M → N .

(9) M
f̄

!!
M ′

g

OO

f // N

There are no obvious examples of injective modules.
The folloowing result allows one to simplify the verification of injectivity.

1.11.2. Lemma. A left A-module N is injective iff for each left ideal I ⊂ A and
for any f : I → N homomorphism of A-modules there exists x ∈ N such that
f(a) = ax.

Proof. If N is injective, f can be extended to a homomorpism f̄ : A→ N which
is uniquely given by x = f̄(1). Then f̄(a) = ax.

The other implication is slightly less trivial. Let g : M ′ → M be monomor-
phism and f : M ′ → N be given. We will use Zorn lemma to extend f “as much
as possible”. Then we will prove that we extended it to the whole of M . This is
done as follows.
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Define the following poset (=partially ordered set) X. An element of X is
a pair (K,φ : K → N) where K is a submodule of M containing g(M ′) and
φ ◦ g = f . The order on X is very natural: (K,φ) ≤ (K ′, φ′) if K ⊂ K ′ and
φ = φ′|K .

It is standard to verify that the condition of Zorn lemma is fulfilled. Therefore,
there is a maximal element (K,φ) in X. It remains to prove that K = M . If
not, there is x ∈ M \K. Denote K ′ = F + Ax. We will show that in this case
the map φ : K → N extends to φ′ : K ′ → N . In fact, a map φ′ is uniquely given
by its restriction φ : K → N and by y = φ(x), with the condition that these two
maps φ and Ax → N coincide at the intersection. Let I = {a ∈ A|ax ∈ K}.
This is a left ideal in A and φ : K → N defines a homomorphism α : I → N
by the formula α(i) = φ(ix). By the assumption, there exists y ∈ N such that
α(i) = iy. This means that the map φ′ : K ′ → N can be defined by the formula
φ′|K = φ, φ′(x) = y. This proves that our assumption K 6= M cannot possibly
hold. �

We can now describe injective abelian groups.

1.11.3. Definition. N is divisible if for any x ∈ N and for any nonzero integer
n there exists y ∈ N such that x = ny.

1.11.4. Theorem. An abelian group is injective iff it is divisible.

This is now an exercise.

1.11.5. Projective resolutions. Any A-module M can be presented as an image
of a projective A-module: we can, for instance, present M as an image of a free
A-module, to get

P
f→M → 0.

If A = Z (or any PID, principal ideal domain, see Homework 2), Ker(f) ⊂ P is
also free, so, any A-module M can be presented by a short exact sequence

0→ P1 → P0 →M → 0,

where Pi are projective. Such exact sequence is called a projective resolution of
M and we say that any module over a PID has a projective resolution of length
≤ 1.

Projective modules have a projective resolution of length 0, so the minimal
length of a projective resolution can serve as a measure of “non-projectivity” of
a module.

There is a similar story about injectivity, and we will now explain it. The
main important fact here is that any module can be embedded into an injective
module. ONce we know this, we can repeat the above story about projective
resolutions, inverting all arrows and replacing projective modules with injective
modules. Details are in the next subsection.
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1.12. Injective modules, 2.

1.12.1. Direct sum and direct product. For two modules M,N there is no differ-
ence between direct sum and direct product.

We will now explain the difference, when the number of factors / summands
is infinite. We start with an explicit construction.

Let Mi, i ∈ I, be a collection of modules.

Definition. Direct product
∏

i∈IMi is defined as the cartesian product (as a set),
endowed with the componentwise operations: (xi) + (yi) = (zi) with zi = xi + yi,
and a(xi) = (axi).

Definition. Direct sum ⊕i∈IMi is the submodule of
∏

i∈IMi consisting of the
collections (xi) such that only finite number of xi is nonzero.

At the moment, the definitions look strange, but we will explain what is going
on.

First of all, one has projection maps pi :
∏
Mi → Mi and injection maps

ri : Mi → ⊕Mi.
(of course we can compose these maps with the embedding ⊕Mi →

∏
Mi and

get p′i : ⊕Mi → Mi and r′i : Mi →
∏
Mi, but the maps p′i and r′i will not satisfy

the very important properties we will now formulate.
The properties of direct product and direct sum are categorical in nature, that

is, make sense for any category.
The property of

∏
Mi is that, a map f : X →

∏
Mi is uniquely defined by its

compositions pi ◦ f : X →Mi. Formally, for any X the map

(10) Hom(X,
∏

Mi)→
∏

Hom(X,Mi)

carrying f : X →
∏
Mi to (pi ◦ f), is a bijection.

Note that the product on the right is the usual cartesian product of sets.
The property of direct sum is, in a sense, dual.
It says that a map f : ⊕Mi → Y is uniquely defined by the compositions

f ◦ ri : Mi → Y . Formally, that for any Y the map

(11) Hom(⊕Mi, Y )→
∏

Hom(Mi, Y )

carrying f : ⊕Mi → Y to (f ◦ ri), is a bijection.
One has to think a little bit to see the difference. If we have a collection of

maps fi : Mi → Y , we will define the corresponding map f : ⊕Mi → Y as the
one carrying (xi) to

∑
fi(xi). Note that in order to be able to calculate the sum,

it has to be finite!
As an easy result of the above definition, we have

1.12.2. Lemma. 1. One has

HomA(⊕Mi, N) =
∏

HomA(Mi, N).
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2. One has

HomA(M,
∏

Ni) =
∏

HomA(M,Ni).

�
And an easy corollary of the above formula.

1.12.3. Proposition. 1. If Pi are projective, ⊕Pi is also projective.
2. If Ji are injective,

∏
Ji is also injective.

Proof. One has Hom(⊕Pi, N) =
∏

Hom(Pi, N). Direct product of a collection of
epimorohisms is an epimorphism. The same reasoning proves the second claim.

�

We are now back to studying injective modules.

1.12.4. Abelian groups. We will first prove that any abelian group N can be
embedded into a divisible group.

Proposition. For any abelian group N there exists a monomorphism N → J
into a divisible group J .

Proof. First of all, if G is a divisible group then any factor G/H is divisible
(explain this!). The group Q is clearly divisible, so Q/Z is also divisible.

For any abelian group G we define G∨ = Hom(G,Q/Z). If G = F (X), G∨ =∏
x∈X Hom(Z,Q/Z) =

∏
x∈X Q/Z is injective.

In general there is an epimorphism F → G → 0, so an exact sequence 0 →
G∨ → F∨. Thus, G∨ embeds into a divisible group.

It remains to note that there is a natural map i : G → (G∨)∨ defined, as for
vector spaces, by the formula (x ∈ G, φ ∈ G∨) i(x)(φ) = φ(x). Let us show i is
injective. If i(x) = 0, all homomorphisms φ : G → Q/Z carry x to 0. Assume
x 6= 0.

Look at the subgroup H of G generated by x. This is a cyclic group and there
is a nonzero homomorphism f : H → Q/Z.

(in fact, if H is an infinite cyclic group, any nonzero choice for f(x) ∈ Q/Z
gives a nonzero homomorphism H → Q/Z. Otherwise, if ord(x) = n, we can
define f(x) = 1

n
+ Z).

Now, since Q/Z is injective, f can be extended to a homomorphism f̄ : G →
Q/Z. It cannot be zero as its restriction f is nonzero. Contradiction.

Finally, G embeds into (G∨)∨ which embeds into a divisible group. �

1.12.5. Over any ring A. We will now deduce the existence of embedding of an
arbitrary A-module into an injective module from the similar result for abelian
groups.

The main tool for doing this is a functor from abelian groups to A-modules
defined as follows.
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Let T be an abelian group. Look at the abelian group HomZ(A, T ). We can
convert it into a left A-module as follows. Let a ∈ A and f ∈ Hom(A, T ). we
define af : A → T by the formula (af)(b) = f(ba). It is an easy exercise to
verify that this formula defines a left A-module HomZ(A, T ). This is definitely a
functor Ab→A Mod. We will show that this functor preserves injective modules:
it carries divisible groups to injective A-modules. To verify this, we need a nice
formula for the group of A-homomorphisms HomA(X,HomZ(A, T )). It is given
by the following lemma.

Lemma. One has a natural isomorphism of abelian groups

(12) θ : HomA(X,HomZ(A, T ))→ HomZ(X,T ).

Proof. We will present the isomorphism. Then we will comment what does the
word “natural” mean in the formulation of the lemma.

Any A-linear map f : X → HomZ(A, T )) allows one to construct a Z-linear
map φ : X → T by the formula φ(x) = (f(x))(1): f(x) is a map A → T ,
and we evaluate it at 1 ∈ A. Vice versa, any Z-linear map φ : X → T defines
f : X → HomZ(A, T ) by the formula

f(x)(a) = φ(ax).

It is easy to verify that the constructions above are mutually invervse.
Now, a comment about the meaning of the word “natural”. Both expressions,

HomA(X,HomZ(A, T )) and HomZ(X,T ) are functor in two arguments, X ∈A Mod

and T ∈ Ab (contravariant in X). Naturality of the isomorphism means that for
different values of X and T the respective isomorphisms are compatible.

In more detail, let f : X → Y be a homomorphism of A-modules. Then we
have a diagram of abelian groups presented below.

(13) HomA(X,HomZ(A, T ))
θ // HomZ(X,T )

HomA(Y,HomZ(A, T ))

f∗

OO

θ // HomZ(Y, T )

f∗

OO

The “naturality” means that this diagram is commutative: different θ’s are com-
patible with variation of the “parameters” X and T . Commutativity of the
diagram has to be verified (but the verification is very easy, it is left as an exer-
cise).

1.12.6. Naturality, in general. Here is the general picture. We have two cate-
gories, C and D, and two functors F,G : C→ D.

A morphism α : F → G of functors is the collection of morphisms α(x) :
F (x)→ G(x) in D for each x ∈ Ob(C), satisfying the following condition.
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For each f : x→ y in C the diagram

(14) F (x)

F (f)

��

α(x)
// G(x)

G(f)

��
F (y)

α(y)
// G(y)

is commutative.
Obviously, naturality of the isomorphism θ in the lemma is a special case of

the above definition.
This is an isomorphism of two functors: HomA( ,HomZ(A, T )) and HomZ( , T ).

1.12.7. The end of the construction. Recall that or aim is to construct, for any
A-module M , an embedding M → J into an injective A-module. Here is what
we do. Look at M as an abelian group. Let φ : M → T be an embedding
of M into a divisible group T . According to the lemma, we deduce from this
embedding a map of A-modules f : M → HomZ(A, T ). We will verify that f is
also an embedding and HomZ(A, T ) is an injective A-module. The first claim is
very easy: if f(x) = 0 then f(x)(1) = 0, that is φ(x)=0. Since φ is injective, f is
injective.

The second claim is also very easy. We have to verify that the functor HomA( ,HomZ(A, T ))
is exact. The lemma says that this functor is isomorphic to HomZ( , T ) which is
exact as T is an injective Z-module.

�

2. Rings, modules, II

The topics we will study here include:

• Finitely generated modules over PID.
• Finite length modules in general.
• Tensor product of modules.

2.1. Modules over PID. Semisimple rings have a simplest possible category of
modules: there is a finite number of isomorphism classes of simple modules, and
any module is a direct sume of these. Complete description of modules is seldom
possible. We will now study the next class of rings where it is possible to describe
all finitely generated modules. These are PID — principal ideal domains. The
examples of PID include

• Z.
• k[x] where k is a field.
• Z[i], the ring of Gaussian numbers — these are complex numbers a + bi

with a, b ∈ Z.
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A special case of the theorem we are going to prove we know from Linear
algebra — this is the theorem on Jordan form of a matrix. We will start with
reformulating this Linear algebra theorem in our language.

2.1.1. Jordan normal form. Let k be an algebraically closed field, V a finitely
dimensional vector space over k and let T : V → V be a linear operator. The
pair (V, T ) determines on V a structure of k[x] modules, where x acts on V as
the operator T .

Thus, the classification of pairs (V, T ) is the same as the classification of k[x]-
modules that are finite-dimensional as k-vector spaces.

Jordan normal form is a presentation of (V, T ) in a standard form — as a direct
sum of “Jordan blocks”, where a Jordan block of size n with the eigenvalue λ
(we will denote it Jn(λ)) is the vector space with the basis e1, . . . , en, and with
the operator T givem by the formulas

T (e1) = λe1, T (ek) = ek−1 + λek (k > 1).

Let us describe the k[x]-module Jn(λ). It is generated by one element en (verify
this!) so it has form k[x]/I where I is the set of polynomials annihilating en. It
is easy to see (verify this!) that I is generated by the polynomial (x− λ)n. This
gives the following reformulation of the classical theorem.

Theorem. (Jordan normal form) Let k be an algebraically closed field and T :
V → V and endomorphism of a finite-dimensional vector space V . Then (V, T )
considered as a k[x]-module is isomorphic to a direct sum

k[x]/((x− λ1)m1)⊕ . . .⊕ k[x]/((x− λk)mk).

2.1.2. PID: basis facts. Recall that a ring A is called PID if it satisfies the fol-
lowing properties.

• It is a commutative domain (that is, has no zero divisors).
• Any ideal in A is principal (that is, of the form (a) for some a ∈ A.

An element p 6= 0 is called prime if it is not invertible and if p = ab implies a
or b is invertible.

If A is a PID, any nonzero element in it has a unique (up to obvious ambiguity)
decomposition as a product of primes.

If A has no primes, A is a field.
Note

Lemma. Let I be an ideal in A and let ρ : A → A/I be the natural homomor-
phism. Then, for any proper ideal K in A/I the preimage J = ρ−1(K) is a proper
ideal in A and K = ρ(J).

Proof. Obviously ρ(J) ⊂ K. Since ρ is surjective, for any element x ∈ K the
preimage ρ−1(x) is nonempty. If J = A, ρ(J) = A/I. �
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Lemma. Let A be PID that is not a field, p a prime element of A. Then A/(p)
is a field.

Proof. We will prove that A/(p) has no nonzero nontrivial ideals. If K is a
nonzero nontrivial ideal in A/(p) then its preimage J in A is nontrivial, so J = (x)
where x is not invertible. x 6∈ (p) as otherwise its image K would be zero.
Obviously, (x) ⊃ (p) so p = xy is a nontrivial decomposition of p — contradiction.

�

We will now formulate the main result we want to prove.

2.1.3. Theorem. Let A be a PID. Any finitely generated A-module M can be
presented

M = F ⊕ A/(pm1
1 )⊕ . . .⊕ A/(pmk

k ),

where F is a free A-module of finite rank. The rank of F , as well as the elements
pi and the powers mi are uniquely defined.

Remark: as usual, pi are uniquely defined up to invertible and up to reordering.

2.1.4. Applications. The first application is Jordan normal form, see above. Here
is another one.

Corollary. Any finitely generated abelian group can be pre sented as a direct sum

A = F ⊕ Z/pm1
1 Z⊕ . . .⊕ Z/pmk

k Z.

The rank of F , as well as the collection of numbers pi (primes) and mi is uniquely
defined by A.

2.2. The proof of the theorem.

2.2.1. Torsion part. Let M be an A-module, when A is an integral domain. We
denote M t = {x ∈M |∃a 6= 0 : ax = 0}. This is the torsion part of M .

It is obvious M t is a submodule of M .

Lemma. The quotient M/M t has no torsion.

Proof. Let x ∈ M such that the image of x is M/M t is a torsion element. This
means that for some a 6= 0 ax ∈ M t so for some b 6= 0 abx = 0. Since A has no
zero divisors, ab 6= 0 and so x is a torsion element. �

From now on A is PID. We will prove later that

• A submodule of a finitely generated module is finitely generated. This
will imply that M t is f.g.
• Any f.g. module without torsion is free. This will imply that M is iso-

morphic to a direct sum of M t and the free module M/M t.
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This will divide the classification problem into two: uniqueness of rank of a
free A-module (this has place over any commutative ring), and description of f.g.
torsion modules.

First of all, let us carefully define the rank of a free module.

2.2.2. Definition. Let F be a free module generated by a set X. Rank of F is,
by definition, the cardinality of X.

It is not immediately clear that a free module has uniqely defined rank. We
will show this now for PID. Almost the same proof will work for any commutative
ring (this will be an exercise).

2.2.3. Lemma. Let F (X) and F (Y ) be isomorphic free A-modules, where A is a
PID. Then |X| = |Y |.
Proof. If A is a field, this is a standard fact of Linear algebra (notion of dimension
of a vector space).

If not, any A-module M defines A/(p)-module M/pM . If M is free with a
basis X, M/pM will be a free A/(p)-module with the same basis. This reduces
the claim to the case A is a field. �

The following result has already been proven for A = Z and given as a home-
work for a general PID.

2.2.4. Lemma. Let M be a submodule of a free A-module F of rank k. Then M
is free of rank ≤ k.

2.2.5. Corollary. • A factor of a finitely generated module is finitely gen-
erated.
• Let A be PID. Then any submodule of a finitely generated module is finitely

generated.

Proof. The first claim is obvious: If X spans M , the images of X in M/N span
M/N . Let us prove the second claim. If M is f.g., one can present M as the
image of F (X) where X is a finite set. If N ⊂M , let Ñ ⊂ F (X) be the preimage
of N . Then Ñ is finitely generated free, and N is finitely generated as a quotient
of Ñ . �

2.2.6. Proposition. Let M be a torsion-free f.g. A-module. Then M is free.

Proof. Let {x1, . . . , xn} be a finite set generating M and let {y1, . . . , ym} be a
maximal subset of {xi} which is independent over A. For each k = 1, . . . , n xk
cannot be added to {yj}, so there is a linear dependence

akxk +
∑

bjyj = 0

that is, akxk ∈ F := SpanZ(y1, . . . , ym). Put a =
∏
ak. We get axk ∈ F . This

means that multiplication by a ∈ Z defines a monomorphism M → F . Thus, M
is isomorphic to a submodule of F and is, therefore, free. �
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We now have a surjective map M → M/M t with M/M t free. We know that
each surjective map to a free module splits. Therefore, there is an isomorphism
M = M t ⊕ F where F = M/M t is a free module (of finite rank).

We now reduced everything to the study of f.g. torsion modules.

2.3. Finitely generated torsion modules. In this subsection A is a PID.
Note that torsion modules are not necessarily finitely generated (exercise: give

an example).
Let M be a f.g. torsion module. If M is generated by x1, . . . , xn, and akxk = 0

(all elements are torsion elements) then for a =
∏
ak we have axk = 0 so aM = 0.

Thus, any torsion f.g. module is annihilated by a nonzero element. We can define
I = {a ∈ A|aM = 0}. This is a nonzero ideal in A, so it is generated by one
element. Let I = (a), so that a ∈ A is “the smallest” element annihilating M .

One has a unique decomposition a = u
∏n

i=1 p
mi
i where u is invertibe and pi

are different primes in A.
For any prime p we define

M(p) = {x ∈M |∃n : pnx = 0}.

2.3.1. Proposition. 1. For any prime p ∈ A M(p) = 0 if p 6 |a.
2. M(pi) = {x ∈M |pmi

i x = 0}.
3. M = M(p1)⊕ . . .⊕M(pn).

This proposition reduces the general case to the case M is annihilated by a
power of p.

Proof. 1. If p 6 |a and x ∈ M(p) then pkx = 0, so, if y denotes the last nonzero
element in the sequence

x, px, . . . , pkx,

py = 0 as well as ay = 0, so gcd(p, a)y = 0 that is y = 0. Contradiction.
2. We have to verify that, if for some m pmi x = 0 than pmi

i x = 0. This follows
from the fact that gcd(a, pmi ) = pmi

i .
3. For any q ∈ A (not necessarily prime!) we defnie Mq = {x ∈ M |qx = 0}.

We have M = Ma. We will now verify that, if a = bc with gcd(b, c) = 1, then
Ma = Mb ⊕Mc. This will imply by induction that M = Mp

m1
1
⊕ . . .⊕Mpmn

n
.

In fact, there exist r, s ∈ A such that rb+sc = 1. Then any x ∈M decomposes
as x = rbx+scx where rbx ∈Mc and scx ∈Mb. This implies that Ma = Mb+Mc.
The intersection is obviously zero as b, c are coprime. This proves the claim. �

Our final step is decomposition of a single M(p) = Mpm for p = pi for some i.

2.3.2. Proposition. Let M be a f.g. A-module annihilated by a power of p. Then
M can be presented as a direct sum of cyclic submodules of form A/(pr) for some
r.
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Proof. Let M be generated by x1, . . . xn. We will prove the claim by induction
in n.

We that M is annihilated by pm where m is minimal possible. This means
that all xi are annihilated by pm and some of them, say, p1 is not annihilated by
pm−1. We have a short exact sequence

0→ Ax1 →M → N → 0

with N = M/Ax1 generated by the images of x2, . . . , xn. By induction, N is
a direct sum of cyclic submodules, which means that there exist y2, . . . , yt such
that N = Ay2 ⊕ . . . ⊕ Ayt. Let yj, j = 2, . . . , t, be annihilated by pmj and not
by a smaller degree of p. We will find, for each j, a preimage xj in M satisfying
the additional property pmjxj = 0. This will give (as we will show) a direct
decomposition of M .

There is no problem of finding a preimage x′j of y if we do not require our extra
condition: the map M → N is surjective.

We will now correct x′j. We will be looking for xj in the form xj = x′j − cx1

where c ∈ A is the parameter we can play with.
The element xj has image yj in N as x1 is in the kernel. It remains to fit c ∈ A

so that xj is annihilated by pmj . Let’s do this.
We have pmjx′j belongs to the kernel of the epimorphism M → N as pmjyj = 0.

Therefore, pmjx′j = ax1 for some a ∈ A. Since pm annihilates the whole of M ,
0 = pm−mjpmjx′j = pm−mjax1, therefore, a is divisible by pmj . We put c = a

pm+j

and we are done.
Finally, it is easy to see that the collection of xj as above provides a splitting

of the projection M → N . �

We will now take care of uniqueness.

2.3.3. Proposition. Let A be a PID, M a finitely generated A-module. Then the
decomposition

M = F ⊕ A/(pm1
1 )⊕ . . .⊕ A/(pmk

k )

of M as a direct sum of a free module and of cyclic primary modules is unique
in the following sense. Let

(15) F ⊕ A/(pm1
1 )⊕ . . .⊕ A/(pmk

k ) = F ′ ⊕ A/(qn1
1 )⊕ . . .⊕ A/(qnl

l ).

Then F and F ′ have the same ranks, k = l, and, after changing the orders of the
summands, pi = qi (up to invertible factor) and mi = ni.

Proof. The torsion pari M t is uniquely defined, so F and F ′ are isomorphic as
both are isomorphic to M/M t. Therefore, as we have already proven, their ranks
are the same. Furthermore, the decomposition of M t =

⊕
M t(p) is also unique,

so everything reduces to the case M is annihilated by a power of a prime p.
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Thus, M = A/(pm1)⊕ . . .⊕A/(pmk) is isomorphic to A/(pn1)⊕ . . .⊕A/(pnl),
where mi ≥ 1 and nj ≥ 1, and we have to verify that k = l and the collection of
ni coincides with the collection of mi. Let us describe Mp = {x ∈ M |px = 0}.
For the first decomposition we see that Mp = (A/(p))k and for the second Mp =
(A/(p))l. This implies that k = l and alloows us to prove the result by induction:
replace M with M/Mp, we will get two decompositions

M/Mp = A/(pm1−1)⊕ . . .⊕ A/(pmk−1)

and

M/Mp = A/(pn1−1)⊕ . . .⊕ A/(pnl−1).

By induction we may assume that these two decompositions coincide, that is that
the nonzero numbers among mi − 1 and nj − 1 coincide. Since we already know
that k = l, this proves the claim. �

2.4. Chain conditions. A module M has ascending chain condition, a.c.c. if
any ascending chain of submodules

M1 ⊂M2 ⊂ . . .

stabilizes (Mk = Mm+1 = . . .).
Another name: noetherian module (Emmi Noether).
A module M has descending chain condition, d.c.c. if any descending chain of

submodules

M1 ⊃M2 ⊃ . . .

stabilizes (Mk = Mm+1 = . . .).
Another name: artinian module (Emil Artin).
All four possibilities are possible for modules: the satisfy both conditions, any

one of them and none.
Here are most interesting examples.

2.4.1. Z as abelian group is noetherian and not artinian.

2.4.2. Look at H ⊂ Q consisting of the fractions a
pn

with fixed prime p. Let

G = H/Z. This is an abelian group whose all elements have order pk. One can
prove that all nontrivial subgroups of G are of the form 〈 1

pk
〉. This shows that G

is artinian but not noetherian.

2.4.3. Proposition. Let

0→M ′ i→M
p→M ′′ → 0

be an exact sequence. Then

• M is noetherian iff M ′ and M ′′ are.
• M is artinian iff M ′ and M ′′ are.



25

Proof. The proof is very easy and we will indicate it only for the noetherian
property. If M is noetherian, then obviously any ascenting chain of submodules
of M ′ stabilizes, so M ′ is noetherian. If {M ′′

k } is an ascending chain in M ′′,
the preimages Mk of M ′′

k form an ascending chain in M . Thus, the chain Mk

stabilizes, therefore, M ′′
k stabilizes.

In the opposite direction, any ascending chain {Mk} in M gives rise to two
chains, M ′

k = i−1(Mk) in M ′ and M ′′
k = p(Mk) in M ′′. If M ′ and M ′′ are

noetherian, both chains stabilize. Let us show that this implies that the original
chain stabilizes. In fact, assume M ′

n = M ′
m+1 and M ′′

n = M ′′
n+1. We will show that

this implies Mn = Mn+1. Let x ∈ Mn+1. We want to show that x ∈ Mn. Here
is what we do. The image p(x) is in M ′′

n+1 = M ′′
n , so, there is y ∈ Mn such that

p(x) = p(y). Then x− y belongs to Mn+1 and to Ker(p) = Im(i) so x− y = i(z)
with z ∈M ′

n+1 = M ′
n. This means that i(z) ∈Mn and then x = y+ z ∈Mn. We

are done. �

2.4.4. Corollary. A finite direct sum of noetherian (artinian) modules is noe-
therian (artinian).

�

2.4.5. Proposition. A module is noetherian iff any its submodule is finitely gen-
erated.

Proof. Let any submodule of M is f.g. and let {Mk} be an ascending chain of
submodules. Put N =

⋃
Mk. This is a submodule of M , so it is generated by

a finite set of elements x1, . . . , xn. Each xi belong to some Mk, so all of them
belong to some MK for K big enough. Then N = MK and the chain stabilizes.

In the opposite direction, let M be noetherian and let N be a submodule of M .
It is also noetherian. Look at the collection N of all finitely generated submodules
of N . It has a maximal element: if there were no one, we could find a sequence
N1 ⊂ N2 ⊂ . . . of submodules which would not stabilize.

Well, thus, there is N0 maximal among f.g. submodules of N . If N0 6= N ,
choose x ∈ N −N0. Then N0 +Ax is a f.g. submodule of N strictly greater than
N0. Contradiction. Thus, N0 = N and we are done. �

2.4.6. Definition. • A ring is (left or right) noetherian if it is noetherian
as a (left or right) module over itself.
• A ring is (left or right) artinian if it is artinian as a (left or right) module

over itself.

2.4.7. Example. • A semisimple ring is artinian and noetherian.
• A PID is noetherian but not artinian.
• k[x1, x2, . . .], ring of polynomials of infinite number of generators, is not

noetherian.

We will prove later (Hilbert basis theorem) that k[x1, . . . , xn] is noetherian.
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Any artinian ring is automatically noetherian. We will probably prove this for
commutative rings.

2.4.8. Proposition. Let A be noetherian. Then any f.g. A-module is noetherian.

Proof. M is f.g, therefore there exists F , f.g. free A-module and a sujective
homomorphism F →M . A is noetherian, therefore F is noetherian, hence M is
noetherian. �

2.5. Modules of finite length. A module M is of finite length if there exists
a finite sequence of submodules

M = M0 ⊃M1 ⊃ . . . ⊃Mn = 0

such that all quotients are simple. Such a sequence is called a composition
series.

The number n in the definition is called the length of the composition series.
A module M is called of finite length of it has a composition series.
We will prove that

• Any series of submodules can be completed to a composition series.
• Lengths of all composition series are the same.
• A module is of finite length iff it is both noetherian and artinian.
• Collection of composition factors of a module of finite lenth is independent

of the choice of a composition series.

2.5.1. Proposition. Let M have a composition series of length n. Then every
composition series has length n and any chain can be completed to a composition
series.

Proof. Let l(M) denote the smallest length of a composition series (or∞ if there
is no composition series). Then one has the following.

• N ⊂M implies l(N) < l(M). In fact, given a composition series (Mk) for
M , denote Nk = N ∩Mk. One has Nk/Nk+1 ⊂ Mk/Mk+1 so each step is
simple or zero. Thus, (Nk) will become a composition series for N if one
throws out all repetitions. In particular, l(N) = l(M) would mean there
are no repetitions, so all Nk/Nk+1 → Mk/Mk+1 are isomorphisms which
is only possible when Nk = Mk (induction in k) and, therefore, N = M .
• Any chain in M has length ≤ l(M). In fact, of (Mk) is a chain of length
n, l(M) = l(M0) > . . . > l(Mn) = 0, that is l(M) ≥ n. This implies
that any composition series has length l(M) as, by definition, l(M) is the
minimal length of a composition series.
• Finally, any chain, if it is not a composition series, can be completed,

and since the length of a chain is bounded, it can be completed to a
composition series.

�
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2.5.2. Proposition. M has finite length iff it satisfied both a.c.c. and d.c.c.

Proof. If M has finite length l(M), any chain has length ≤ l(M), so M satisfied
both a.c.c. and d.c.c.

Conversely, let M satisfy both chain conditions.Put M = M0 and define M1 as
a maximal submodule different from M0. Such submodule exists by a.c.c. In the
same way one can find M2 maximal submodule of M1 et cetera. The sequence
M0 ⊃M1 ⊃ . . . stabilizes by d.c.c. This gives a composition series. �

One has

2.5.3. Theorem. (Jordan-Hölder) Let M have length n and let (Mk), (Nk) be
its two composition series. Then there exists a permitation s ∈ Sn such that
Mi/Mi+1 is isomorphic to Ns(i)/Ns(i)+1.

Proof. The proof will go by induction in n. There is nothing to prove if n = 1.
In general, there are two cases: N1 = M1 and N1 6= M1. In the first case we

immediately get the result by induction, so we can think N1 6= M1.
In this case N1 + M1 = M as this is the submodule of M strictly containing

M1. Look at K = M1 ∩ N1. One has M1/K ' M/N1 and N1/K ' M/M1.
Choose a composition series for K, K = K0 ⊃ . . . ⊃ Km, and complete it in two
ways to a composition series for M :

M ⊃M1 ⊃ K ⊃ . . .

and
M ⊃ N1 ⊃ K ⊃ . . . .

They have obviously the same composition factors. But, by inductive hypothesis,
the first one has the same factors as

M ⊃M1 ⊃ . . . ⊃Mn,

whereas the second has the same factors as

M ⊃ N1 ⊃ . . . ⊃ Nn.

This implies the claim. �

2.6. Tensor product, I. We will define now a new operation with modules,
their tensor product.

• It is very important in both algebra and geometry.
• It is intimately related to the functor assigning to a pair of modules, M

and N , the group of module homomorphisms Hom(M,N).

We will first study tensor product of vector spaces. Fix a field k.

2.6.1. Definition. Let V,W,X be three vector spaces over k. A k-bilinear map
f : V ×W → X is a map satisfying the following properties.

1. f(v + v′, w) = f(v, w) + f(v′, w).
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2. f(av, w) = af(v, w) for any a ∈ k.
3. f(v, w + w′) = f(v, w) + f(v, w′).
4. f(v, aw) = af(v, w) for any a ∈ k.

Of course, we have already seen this definition in a special case V = W and
X = k — this was the definition of a bilinear form on V .

The set of bilinear maps V × W → X is a vector space: the sum of two
bilinear maps is bilinear and a bilinear map multiplied by a constant is bilinear.
We denote Bil(V,W ;X) this vector space.

2.6.2. It is easy to see that Bil(V,W ;X) is a functor in three arguments, covari-
ant in X and contravariant in V and in W . Here is the precise statement.

Given a : V ′ → V , b : W ′ → W and c : X → X ′ linear maps, a map

Bil(V,W ;X)→ Bil(V ′,W ′, X ′)

is defined as the one carrying f : V ×W → X to the composition

V ′ ×W ′ a×b−→ V ×W f→ X
c→ X ′.

Of course, one has to verify that the above composition remains bilinear.

2.6.3. It turns out, for given V and W , there exists a universal bilinear map
u : V ×W → U in the following sense.

As we said above, any linear map φ : U → X defines, by composition, a bilinear
map φ ◦ u : V ×W → X.

Definition. A bilinear map u : V ×W → U is called universal if for any vector
space X the map

Hom(U,X)→ Bil(V,W ;X)

is a bijection (an isomorphism of vector spaces).

The definition above says nothing about existence or uniqueness of the univer-
sal bilinear map. We will prove existence later. We will start explaining in what
sense it is unique.

2.6.4. Lemma. Let u : V ×W → U and u′ : V ×W → U ′ be both universal.
Then there exists a unique isomorphism θ : U → U ′ such that u′ = θ ◦ u.

Proof. Since u is universal, there exists a unique homomorphism θ : U → U ′ such
that u′ = θ ◦ u. Similarly, since u′ is universal, there exists a unique homomor-
phism θ′ : U ′ → U such that u = θ′ ◦ u′. We claim that θ and θ′ are inverse to
each other. In fact, θ′ ◦ θ : U → U satisfies the property

u = (θ′ ◦ θ) ◦ u
and idU should be the only map U → U satisfying this property (once more,
because of universality of u). The proof of θ ◦ θ′ = idU ′ goes along the same
lines. �
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2.6.5. Existence. We will now prove existence of a universal bilinear map. Let X
be a basis of V and Y a basis of W . This means that any v ∈ V can be uniquely
presented as a lilnear combination of elements of X, and any element w ∈ W
has a unique presentation of elements of Y . A bilinear map f : V ×W → Z is
uniquely defined by its values on X × Y , f(x, y) ∈ Z. This is the reasoning we
know from the theory of bilinear forms.

This leads us to the following construction of a universal bilinear map. Set U to
be the vector space with the basis X×Y . We will denote the pair (x, y) ∈ X×Y
considered as an element of the basis of U , as x⊗ y. (At the moment, this is just
a notation!)

The map u : V ×W → U is the one carrying the pair (x, y) ∈ V ×W to the
basis vector x⊗ y of U .

The above description is not easy to understand. To understand it better, let
us add that, for v =

∑
cixi, w =

∑
djyj, ci, dj ∈ k, xi ∈ X, yj ∈ Y , one has

u(v, w) =
∑
i,j

cidjxi ⊗ yj.

This easily follows from bilinearity of U and from the condition u(xi, yj) =
xi ⊗ yj.

2.6.6. We define the tensor product of V and W as “the” universal bilinear map
u : V ×W → U . We denote U = V ⊗W . This is a vector space, together with a
bilinear map u : V ×W → U ⊗W defined uniquely up to a unique isomorphism.

We also denote u(v, w) as v ⊗ w ∈ V ⊗W . This extends the notation x ⊗ y
we introduced in the construction of V ⊗W .

2.6.7. Corollary. dim(V ⊗W ) = dim(V ) dim(W ).

�

A bilinear map f : V × W → X can be otherwise defined as a linear map
f̃ : V → Hom(W,X) from V to the vector space Hom(W,X) of linear maps from
W to X. Since one has a bijection Bil(V,W ;X) = Hom(V ⊗W,X), we get a
functorial isomorphism

(16) Hom(V ⊗W,X)
∼→ Hom(V,Hom(W,X)).

The above formula connects two functors: tensor product and Hom. In the
language of category theory, this means that the functors ⊗ and Hom are adjoint.

2.6.8. There is another conection between tensor product and the functor Hom.
We know that, if V and W have (finite) dimensions m and n respectively, than
both V ⊗W and Hom(V,W ) have dimension mn. Here is a more precise con-
nection between the two notions.

For amy pair of vector spaces V and W we define a linear map
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θ : V ∗ ⊗W → Hom(V,W )

as follows. We start with a bilinear map

Θ : V ∗ ×W → Hom(V,W )

by the formula
Θ(f, w)(v) = f(v) · w.

Linearity in f ∈ V ∗ and in w ∈ W is obvious. Therefore, by universality of tensor
product, we have a linear map θ. We have

Proposition. Assume that V is finite dimensional. Then θ is an isomorphism.

Proof. Choose a basis v1, . . . , vn of V . Let f1, . . . , fn be the dual basis for V ∗.
Recall that this means that fj(vj) = δij, the Kronecker’s delta. If {wα} is a basis
for W (finite or infinite), the pairs (fi, wα) form a basis for V ∗ ⊗W . The map θ
carries such pair to the map φi,α : V → W carrying vi to wα and vj for j 6= i to
zero. Such φi,α form obviously a basis for Hom(V,W ). �

2.6.9. A k-algebra A is a vector space over k with an associative bilinear operation

A× A→ A.

Bilinearity is expressed in the distributive properties,

(17) (x+ y)z = xz + yz, x(y + z) = xy + xz,

as well as the properties

(ax)y = a(xy), x(ay) = a(xy).

Thus, we can encode these properties by saying that one has a map A⊗A→ A
satisfying the associativity property.

2.7. Tensor product, II. We will now generalize the notion of tensor product
to modules over commutative rings.

Note that there is a notion of tensor product for modules over non-commutative
rings. We will comment on this notion later, but won’t study it in detail.

2.7.1. Bilinear maps. We follow the same approach as for the vector spaces –
starting with the notion of bilinear map.

Definition. Let M,N,X be three modules over a commutative ring A. An
A-bilinear map f : M ×N → X is a map satisfying the following properties.

1. f(m+m′, n) = f(m,n) + f(m′, n).
2. f(am, n) = af(m,n) for any a ∈ A.
3. f(m,n+ n′) = f(m,n) + f(m,n′).
4. f(m, an) = af(m,n) for any a ∈ A.
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2.7.2. Universal bilinear map. Also in this more general context, we define tensor
product of M and N (denoted M ⊗A N or M ⊗ N if the basic ring A is clear
from the context) as the universal A-bilinear map

u : M ×N →M ⊗N.
Precisely as for veector spaces we deduce that, if a universal A-bilinear map

exists, it is unique up to unique isomorphism.
It remains to prove existence.

2.7.3. Construction. We cannot construct a tensor product of modules by choos-
ing a basis: very few modules have a basis.

This is why our construction will be slightly more sophisticated.
The first step is to define a free module F whose basis is the direct product (of

sets) M × N . Let us denote the basis element corresponding to a pair (m,n) ∈
M × N by m ∗ n. An element of F is a finite linear combination of different
m ∗ n with coefficients in A. For any A-module X a homomorphism f : F → X
is uniquely defined by the collection of f(m ∗ n) ∈ X.

We define ũ : M×N → F by the formula ũ(m,n) = m∗n. We have a bijection

(18) HomA(F,X) = Map(M ×N,X)

between the set of A-linear homomorphisms from F to X and the set of maps
M ×N → X, carrying f ∈ HomA(F,X) to f ◦ ũ.

The bijection (18) is slightly similar to what we need, but not precisely. Instead
of all mapsM×N → X in the right-hand side, we want to describe only those that
are A-bilinear. Let us repeat what does bilinearity mean. A map f : M×N → X
is bilinear iff

1. f(m+m′, n) = f(m,n) + f(m′, n).
2. f(am, n) = af(m,n) for any a ∈ A.
3. f(m,n+ n′) = f(m,n) + f(m,n′).
4. f(m, an) = af(m,n) for any a ∈ A.

We will rewrite these properties once more, using the homomorphism f̃ : F →
X extended by linearity from f . We can rewrite

1. f̃((m+m′) ∗ n−m ∗ n−m′ ∗ n) = 0.

2. f̃((am) ∗ n− a(m ∗ n)) = 0 for any a ∈ A.

3. f̃(m ∗ (n+ n′)−m ∗ n−m ∗ n′) = 0.

4. f̃(m ∗ (an)− a(m ∗ n)) = 0 for any a ∈ A.

Now we can use the Isomorphism theorem. Define F ′ as the A-submodule of
F generated by all the expressions of the form

(m+m′)∗n−m∗n−m′∗n, (am)∗n−a(m∗n), m∗(n+n′)−m∗n−m∗n′, m∗(an)−a(m∗n).

A homomorphism f̃ : F → X satisfying the above conditions, is the same as a
homomorphism from F/F ′ to X. Thus, if we denote M ⊗AN = F/F ′ and define
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u : M ×N →M ⊗N as the composition of ũ with the canonical projection, we
get the required properties.

2.7.4. Functoriality of the tensor product. Here A is a commutative ring. We will
write M ⊗N instead of M ⊗A N for simplicity.

Given a bilinear map M × N → X and a homomorphism M ′ → M , the
composition M ′ × N → M × N → X is bilinear. This, by universality, defines
a homomorphism M ′ ⊗ N → M ⊗ N . Thus, tensor product is a functor in the
first argument. In the same way it is a functor in the second argument.

2.7.5. Commutativity. Let us compare M⊗N with N⊗M . One has two universal
bilinear maps:

uM,N : M ×N →M ⊗M
and

uN,M : N ×M → N ⊗M.

We also have an obvious map s : M × N → N ×M carrying (m,n) to (n,m).
The map s is a bijection and so both uM,N and uN,M ◦ s are universal bilinear
maps.

This has to be verified; the verification is immediate and is left to reader.
This implies that there is a unique isomorphism θ : M ⊗ N → N ⊗ N such

that

θ ◦ uM,N = uN,M ◦ s.
the last equality can be rewritten as

θ(m⊗ n) = n⊗m.

2.7.6. Associativity. We can consider trilinear maps M ×N ×K → X and look
for a universal such map. As usual, it is unique up to unique isomorphism, if it
exists. Now, it is easy to present two such universal maps:

• M ×N ×K → (M ⊗N)⊗K defined as the composition

M ×N ×K s→ (M ×N)×K → (M ⊗N)×K → (M ⊗N)⊗K,

• M ×N ×K →M ⊗ (N ⊗K) defined as the composition

M ×N ×K s→M × (N ×K)→M × (N ⊗K)→M ⊗ (N ⊗K).

Also here the trilinearity and the universality has to be verified.
This gives a unique isomorphism

(M ⊗N)⊗K →M ⊗ (N ⊗K).

This is the correct formulation of associativity property of tensor product.
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2.7.7. Adjunction. Similarly to the case of vector spaces, see isomorphism (16),
we have an isomorphism of functors

(19) HomA(M ⊗N,X)
∼→ HomA(M,HomA(N,X)).

This immediately follows from the fact that a bilinear map f : M ×N → X can
be equivalently described a homomorphism from M to HomA(N,X).

2.7.8. Distributivity. We will prove that there is a natural isomorphism∑
i∈I

Mi ⊗N =
∑
i∈I

(Mi ⊗N).

We will denote by L the left-hand side of the formula and by R the right-
hand side of the formula. Let X be an arbitrary A module and let us describe
HomA(R,X). We have

HomA(R,X) =
∏
i∈I

HomA(Mi ⊗N,X)

as HomA( , X) carries direct sums to direct products. On the other hand,

HomA(L,X) = HomA(
∑
i∈I

Mi,HomA(N,X)) =
∏
i∈I

HomA(Mi,HomA(N,X)) =∏
i∈I

HomA(Mi ⊗N,X).

we get the same formula, so L and R should be isomorphic.
We will explain the last point giving a precise general (category theory) argu-

ment.

2.7.9. Lemma. Assume we have an isomorphism

θX : Hom(L,X)→ Hom(R,X)

functorial in X. Then there is a unique isomorphism t : R → L such that θX
carries f : L→ X to the composition f ◦ t.

Proof. We put t = θL(idL). This is an isomorphism as its inverse is θ−1
R (idR). It

remains to verify that the isomorphism t satisfies the required property θX(f) =
f ◦ t. This follows from functoriality of θ leading to the following commutative
diagram.

(20) Hom(L,L)

f

��

θL // Hom(R,L)

f

��
Hom(L,X)

θX // Hom(R,X)

The diagram implies the formula θX(f) = f ◦ θL(idL) �
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2.7.10. Right exactness. We remember that the functor Hom is left exact. We
will now prove that the tensor product functor is right exact. To do so, we will
prove a converse to 1.7.4:

Lemma. Let

(21) M ′ f→M
g→M ′′ → 0

be a complex, so that for any module P the complex

0→ HomA(M ′′, P )→ HomA(M,P )→ HomA(M ′, P )

is exact. Then the original complex is exact.

Proof. Put P = M ′′/ Im(g). The natural projection M ′′ → P goes to zero, so
P = 0 that is g is surjective. Now put P = M/ Im(f) and let p : M → P be the
natural projection. By the conditions of the lemma, p factors through g which
implies that Ker(g) ⊆ Ker(p) = Im(f). �

Now are now ready to prove the following.

Proposition. Let (21) be exact. Then for any A-module N the sequence

M ′ ⊗N →M ⊗N →M ′′ ⊗N → 0

is also exact.

Proof. According to the above lemma, it is sufficient to prove that, for any P the
sequence

0→ Hom(M ′′ ⊗N,P )→ Hom(M ⊗N,P )→ Hom(M ′ ⊗N,P )

is exact. Using the adjunction isomorphism, we can rewrite this sequence as

0→ Hom(M ′′,Hom(N,P ))→ Hom(M,Hom(N,P ))→ Hom(M ′,Hom(N,P ))

�

which is exact by left exactness of the functor Hom.

2.7.11. Examples. Tensor product of free modules look similar to tensor product
of vector spaces:

F (X)⊗ F (Y ) = F (X × Y ).

Let us think about ⊗Z.
I claim that for any abelian group G one has an isomorphism

Zn ⊗G→ G/nG.

By definition, this tensor product is a universal bilinear map f : Zn×G→ X.
A bilinear map f : Zn × G → X is uniquely given by a group homomorphism
φ : G → X where φ(g) = f(1, g). This is because by bilinearity f(r, g) =
rf(1, g) = rφ(g). However, not every homomorphism φ defines a bilinear map f .
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One should have φ(ng) = nφ(g) = f(n, g) = 0. Thus, bilinear map Zn×G→ X
are uniquely described by the homomorphisms φ : G → X satisfying the condi-
tion φ(ng) = 0. In other words, they are uniquely described by homomorphisms
G/nG → X. This actually proves that the univervsal bilinear map is given by
f : Zn ×G→ G/nG defined by the formula f(r, g) = rg + nG.

2.8. Flat modules.

2.8.1. Definition. A module M is called flat if the functor ⊗AM is exact.

One has the following equivalent characterization of flat modules.

2.8.2. Proposition. The following conditions for an A-module M are equivalent.

1. M is flat.
2. For any injective map N ′ → N the induced map N ′ ⊗AM → N ⊗AM is

injective.
3. For any ideal I ⊂ A the map I ⊗AM → A⊗AM = M is injective.
4. For any injective module J the module HomA(M,J) is injective.

Proof. The tensor product is right exact, so the conditions 1 and 2 are equivalent.
Furthermore, Condition 2 trivially implies condition 3.

Let us show that 3 implies 4. To verify injectivity of HomA(M,J), it is enough
to prove that for any ideal I in A the restriction map

HomA(A,HomA(M,J))→ HomA(I,HomA(M,J))

is surjective. By adjointness, this is equivalent to the surjectivity of

HomA(A⊗AM,J)→ HomA(I ⊗AM,J).

This condition holds since J is injective and M satisfies Condition 3.
Let us now deduce Condition 2 from 4. Let K be the kernel of the map

N ′ ⊗AM → N ⊗AM .
Let J be any injective module. The sequence

HomA(N ⊗AM,J)
φ→ HomA(N ′ ⊗AM,J)→ HomA(K, J)→ 0

is exact. The map φ is surjective as, by Condition 4, the module HomA(M,J) is
injective. Therefore, HomA(K, J) = 0 for any injective J . This is only possible
if K = 0 as otherwise K can be embedded into an injective and this embedding
yields a nonzero map. �

2.9. Variants. Assume now that A is not necessarily commutative. It turns out
that we still can define A-bilinear maps.

2.9.1. Definition. Let M be a right A-module, N a left A-module, X an abelian
group. A map

f : M ×N → X

is called A-bilinear if the following conditions are fulfilled.
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1. f(m+m′, n) = f(m,n) + f(m′, n).
2. f(m,n+ n′) = f(m,n) + f(m,n′).
3. f(ma, n) = f(m, an).

Similarly to the commutative case, we define tensor product as a universal
A-bilinear map u : M ×N →M ⊗A N .

Thus, tensor product of a right A-module with a left A-module gives an abelian
group.

One can get more if M or N (or both) has an extra structure.

2.9.2. Definition. Let A and B be two rings. An (A,B)-bimodule is a left
A-module M having a structure of a ring B-modules, such that

(am)b = a(mb).

Given three rings A,B,C, an (A,B)-bimodule M and a (B,C)-bimodule N ,
the tensor product M ⊗B N has a structure of (A,C)-bimodule, so that a(m ⊗
n)c = am⊗ nc.

Here is how to verify this. We have a universal B-linear mapM×N →M⊗BN .
Given a ∈ A, we have a composition

M ×N →M ×N u→M ⊗B N,
with the first map carrying (m,n) to (am, n). By universality of u, it defines a
unique map M ⊗ N → M ⊗ N which is action of a ∈ A on the left. The right
C-module structure is defined similarly.

One has to verify that these two module structures are compatible
Many properties of tensor product over a commutative ring (except for com-

mutativity) have a non-commutative analog.

2.9.3. Base change. Given a homomorphism of rings f : A → B and a left B-
module X, we define f ∗(X) as the same module, considered as A module via the
formula a · x = f(a)x.

Similarly, B acquires a structure of (B,A)-bimodule defined by the formula
b′ · b = b′b, b · a = bf(a).

If N is a left A-module, B⊗AN becomes a left B-module. the tensor product
B ⊗A N has a structure of B-module, and A-module structure on X is defined
by

2.9.4. Proposition. One has a natural isomorphism

HomB(B ⊗A N,X) = HomA(N, f ∗(X)).

Proof. By definition, homomorphisms of abelian groups B⊗AN → X are in one-
to-one correspondence with A-bilinear maps B ×N → X. This correspondence
assigns to F : B ⊗A N → X its composition f with the map B ×N → B ⊗A N
carrying (b, n) to b⊗ n.
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The elements b ⊗ n generate B ⊗A N as an abelian group. Therefore, they
generate it as well as a B-module. So, F : B ⊗A N → X is B-linear iff for any
b′ ∈ B and (b, n) ∈ B ×N one has

F (b′b⊗ n) = F (b′(b⊗ n)) = b′F (b⊗ n),

that is

(22) f(b′b, n) = b′f(b, n).

It remains to describe A-bilinear maps f : B × N → X satisfying the property
(22). Any such map carry (b, n) to gf(1, n). Denote φ : N → X, φ(n) = f(1, n).
The map f(b, n) = bφ(n) is A-bilinear iff φ is A-linear. This yields the required
claim. �

Sometimes people allow themselves to write X instead of f ∗(X).
The functor N 7→ B ⊗A N is called base change. The proposition means that

base change is left ajoint to f ∗.

2.9.5. Adjoint functors, in general. Here is a general definition. Given two cate-
gories, C and D, and a pair of functors

F : C→ D, G : D→ D,

an adjunction between F and G is a functorial isomorphism

HomD(F (x), y)
iso→ HomC(x,G(y)).

Note that F and G have different roles in the definition. F is called left adjoint
to G, and G is called a right adjoint to F .

Here are examples of adjoint pairs of functors.

• The functor F : Set→ Ab of free abelian group is left adjoint to the for-
getful functor G : Ab→ Set carrying each abelian group to the underlying
set.
• For a commutative ring A and an A-module N , the functor ⊗AN is left

adjoint to HomA(N, ).
• For a homomorphism of rings A → B, the functor B ⊗A from left A-

modules to left B-modules, is left adjoint to the forgetful functor in the
opposite directions.

3. Representations of finite groups

We will now apply some of the algebraic ideas we studied to studying group
prepresentations.
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3.1. Basic definitions and basic examples. Let G be a finite group and V a
vector space over a fixed field k.

3.1.1. Definition. A representation of G in V is a group homomorphism ρ : G→
GL(V ).

In other words, a representation ρ assigns to each g ∈ G a linear operator
ρ(g) : V → V , so that ρ(g)ρ(h) = ρ(gh).

If we choose a basis in V , the elements ρ(g) are presented by matrices, so
we have got a presentation of elements of G by matrices. This explains the
terminology.

Recall that a group G defines a k-algebra kG = ⊕g∈Gk · g (group algebra)
with the multiplication defined by the multiplication in G. Here is an equivalent
definition of representation.

3.1.2. Definition. A representation of G is just a kG-module.

Thus, we do not have to repeat the notions of subrepresentation (=submodule),
direct sum of representations, irrreducible representation (=simple module).

Here is a first remarkably easy fact.

3.1.3. Theorem. Assume char(k) and |G| are coprime (no condition if char(k) =
0). Then the group algebra kG is semisimple.

Proof. The condition on char(k) is equivalent to saying that |G| is invertible in
k. Recall that a ring is semisimple if the category of left modules is semisimple,
that is, if any epimorphism f : M → N splits. Let g : N → M be a linear
transformation splitting f . We will “correct” g so that the result g̃ will be a
morphism of representations, and it will still split f .

We define g̃ : N →M by the following formula.

g̃(n) =
1

|G|
∑
x∈G

x(g(x−1(n))).

Let us verify the conditions. First of all, let us verify that g̃ is a map of repre-
sentations. This means that, for any n ∈ N and y ∈ G we should verify that
g̃(yn) = yg̃(n). We have

(23) |G|g̃(yn) =
∑
x∈G

x(g(x−1(yn))) = y
∑
x∈G

y−1x(g(x−1(yn))) = y · |G|g̃(n).

It remains to verify that g̃ splits f . We have

(24) f(g̃(n)) =
1

|G|
∑
x∈G

f(x(g(x−1(n)))) =
1

|G|
∑
x∈G

n = n.

�

We can say even more if k is algebraically closed.
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3.1.4. Lemma. (Schur lemma) Let k be algebraically closed and V be an irre-
ducible representation of G. Then any G-endomorphism of V is a multiplication
by c ∈ k.

Proof. We proved a form of Schur lemma saying that endomorphisms of V form
a division algebra. We now prove a stronger claim.

First of all, any irreducible represntation is finite-dimensional — this imme-
diately follows from the fact that dim(kG) = |G| < ∞. Let f : V → V be a
G-endomorphism. Since k is algebraically closed, f gas an eigenvalue λ ∈ K.
Then f − λ · id is not invertible, therefore, is zero. �

3.1.5. Corollary. Let k be algebraically closed and let V1, . . . , Vm be (representa-
tives of) all irreducible representations of G. Then kG is isomorphic to a product
of matrix rings over k.

3.1.6. One-dimensional representations. For any group G one-dimensional vector
space k with the trivial action, g(x) = x, is a representation called the trivial
representation.

Let us describe all one-dimensional representations. These are group homo-
morphisms χ : G→ k∗.

For any g, h ∈ G one has χ(ghg−1h−1) = 1 as k∗ is commutative. So χ
is trivial on the commutator subgroup [G,G] of G. Thus, description of one-
dimensional representations reduces to description of homomorphisms of abelian
groups Gab := G/[G,G]→ k∗.

In the case when G is finite, Gab is also finite, so is isomorphic to a direct sum
of cyclic groups. A homomorphism from a cyclic group Zn to k∗ is given by an
n-th root of unity in k.

This solves the problem.
Group homomorphisms χ : G→ C∗ are called multilicative characters of G.
The trivial character χ = 1 corresponds to the trivial representation.
Exercises: Describe all multilicative characters of Zn. Prove that an abelian

group of order n has n different multiplicative characters.

3.1.7. The case G is commutative. We claim

Proposition. Any irreducible representation of a finite commutative group G
over an algebraically closed field is one-dimensional.

Proof. Any irreducible representation is finite dimensional. We will now prove
that such representation V has a vector v which is common eigenvector for all
g ∈ G. We do the following. Choose an eigenvector v ∈ V for some g ∈ G.
Assume λ ∈ k∗ is the respective eigenvalue. Let V ′ = {x ∈ V |g(x) = λx}. By
Lemma below V ′ is a subrepresentation of G. Since V is irreducible, V ′ = V , so
g acts on V as multiplication by λ. �
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3.1.8. Lemma. Let f, g be two commuting operator on a vector space V . Let
λ ∈ k and V ′ = {x ∈ V |g(x) = λx}. Then V ′ is an invariant subspace with
respect to f .

Proof. If x ∈ V ′, g(f(x)) = f(g(x)) = f(λx) = λf(x). This implies that f(x) ∈
V ′ as required. �

3.1.9. More examples. Let X be a set and let G act on X. Denote V = kX the
vector space generated by X (X is a basis of V ). Then a prepresentation of G
in V is defined. for instance, the group Sn acts on the set {1, . . . , n} in a natural
way. This defines an n-dimensional representation of Sn.

Exercise: prove this representation is not irreducible (Hint: it has a trivial
subrepresentation).

3.2. Operations with representations. Given two vector spaces V and W ,
we can define Hom(V,W ) and V ⊗W . If V and W are representations of G,
there is a natural structure of G module on Hom(V,W ) and V ⊗W .

3.2.1. Remark. The tensor product and the Hom considered here are not over
kG: they are tensor product and Hom of vector spaces!

3.2.2. Hom. Let V and W be representations of G. For f : V → W we define
g(f) : V → W by the formula g(f)(v) = g(f(g−1v)). Things to verify:

• That g(f) so defined is linear.
• That g so defined is linear, that is that g(av + bv′) = ag(v) + bg(v′).
• That g(h(v)) = (gh)(v).

All verifications are routine.

3.2.3. Dual representation. In particular, take W = k — the trivial representa-
tion. We get the representation of G on V ∗ = Hom(V, k). It is given by the
formula

g(f)(v) = f(g−1(v)).

The vector space V ∗ with the defined above structure of G-module is called
the dual representation.

3.2.4. Another Hom. We have just defined a representation Hom(V,W ) whose
underlying vector space is the space of all linear maps from V to W .

There is another one, the vector space of all kG-homomorphism from V to W .
We will denote it by HomG(V,W ).

By definition, Hom(V,W ) ⊂ Hom(V,W ). Since G ⊂ kG generates the whole
ring,

HomG(V,W ) = {f : V → W |∀(g ∈ G)f(g(v)) = g(f(v))}.
Taking into account the G-module structure on Hom(V,W ), we get the following.

Proposition. HomG(V,W ) = {f ∈ Hom(V,W )|∀(g ∈ G)g(f) = f}.
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3.2.5. Tensor product. Given V and W as above, we will define a representation
of G in the vector space V ⊗W . For any g ∈ G we have to define g : V ⊗W →
V ⊗W . This is done by functoriality: the maps gV : V → V and gW : W → W
define g := gV ⊗ gW : V ⊗W → V ⊗W . All verifications are obvious.

The following formula defines the actiuniquely determines the G-module struc-
ture on V ⊗W .

g(v ⊗ w) = g(v)⊗ g(w).

3.2.6. Properties. One has the adjunction isomorphism of vector spaces.

Hom(V ⊗W,U) = Hom(V,Hom(W,U)).

If V , W and U are representations of G, we have the structures of G-module
on the left and on the right-hand side. We claim that the above isomorphism is
compatible with these structures.

This is an easy exercise.
Here is another compatibility. We know that, if W is finite dimensional, the

map

V ∗ ⊗W → Hom(V,W )

is an isomorphism. We claim that this isomorphism is also an isomorphism of
G-modules, once V and W have G-module structures.

3.3. Characters. Group homomorphisms χ : G → C∗ classify one-dimensional
representations. We called them multiplicative characters. We will now assign
to each finite dimensional representation V of a group G a map χV : G → C
called a character of V . This will be a generalization of the notion of multiplica-
tive character. We will see that characters contain a lot of information about
representation, so that one can reduce a study of representations to studying
characters.

3.3.1. Definition. Given a complex finite dimensional representation V of G, we
define χV : G→ C by the formula

χV (g) = tr{g : V → V }.

In the case dimV = 1 the character of V is precisely the group homomorphism
χ : V → C∗ we met before.

3.3.2. Proposition. Let V be a complex representation of dimension n, χ = χV .

1. χ(1) = n.

2. χ(g−1) = χ(g).
3. χ(hgh−1) = χ(g).
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Proof. Note that g has finite order, so all its eigenvalues are roots of unity, so
satisfy the property λ−1 = λ. The element g−1 has the eigenvalues inverse to
that for g. This implies Claim 2. �

A function χ : G → C is called a class function. The proposition above says
that any character is a class function.

3.3.3. Regular representation. Look at CG as a module over itself. It gives a
representation of dimension n = |G| called the regular representation. Let us
calculate its character.

We have

Lemma. The character χreg of the regular representation takes value n at 1 and
0 otherwise.

Proof. For g 6= 1 the matrix of g in the standard basis has no nonzero entries in
the diagonal. �

It is ineresting to see what happens to the characters under different operations
with represenations.

3.3.4. Proposition. 1. χV⊕W = χV + χW .
2. χV⊗W = χV · χW .
3. χHom(V,W ) = χV · χW .

Proof. The following idea simplifies the reasoning. We have to compare two
functions on G. To do so, we are allowed, for any g ∈ G, to choose a basis for all
representations so that g will be presented by a diagonal matrix.

1. This claim is obvious.
2. Choose bases v1, . . . , vn in V and w1, . . . , wm for W so that g is diagonal:

g(vi) = aivi, g(wj) = bjwj. Then the collection vi⊗wj fors a basis for V ⊗W , g
is diagonal in this basis with the eigenvalues aibj. Their sum is (

∑
ai)(

∑
bj).

3. With the same bases for V andW , Hom(V,W ) = V ∗⊗W has basis {v∗i⊗wj}.
It remains to add that if g(vi) = aivi then g(v∗i ) = aiv

∗
i . �

3.3.5. We will now determine,in terms of the character, the dimension of the
invariant subspace of a representation V .

For a representation V we denote

V G = {x ∈ V |∀g ∈ G g(v) = v}.
The following observation is very important.

Lemma. The linear operator

ρ : V → V, ρ(v) =
1

|G|
∑
g∈G

g(v)

is a projection of V to V G.
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Proof. The lemma claims that ρ(V ) ⊂ V G and that ρ|V G = id. Let us first verify
the second claim. If v ∈ V G, ρ(v) = 1

|G|
∑

g∈G v = v. For the first claim,

h(ρ(v)) =
1

|G|
h(
∑
g∈G

g(v)) =
1

|G|
∑
g∈G

hg(v) = ρ(v).

�

Corollary. One has dimV G = 1
|G|

∑
g∈G χV (g).

Proof. This is because dimV G = tr(ρ). �

3.4. Inner product. Given φ, ψ : G → C we define their inner product by the
formula

(φ|ψ) =
1

|G|
∑
g∈G

φ(g)ψ(g).

We have the following result.

3.4.1. Theorem. 1. Let V,W be two representations. Then

dim HomG(V,W ) = (χV |χW ).

2. Characters of irreducible prepresentations have length one; different irre-
ducible representations are orthogonal.

Proof. We know that HomG(V,W ) = Hom(V,W )G, so

dim HomG(V,W ) =
1

|G|
∑
g∈G

χV (g)χW (g) = (χV |χW ).

The second claim follows from Schur lemma. �

We will now prove that the characters of the irreducible representations form
an orthonormal basis in the space of class functions.

The characters of irreducible representations are called the irreducible charac-
ters.

3.4.2. Theorem. Let f : G→ C be a central function orthogonal to all irreducible
characters. Then f = 0.

Proof. Define an element ρf ∈ CG by the formula

ρf =
1

|G|
∑
g∈G

f(g)g.

The element ρf defines, for any representation V , an endomorphism ρf : V →
V carrying v ∈ V to 1

|G|
∑

g∈G f(g)g(v). Since f is a class function, ρf is an

endomorphism of CG-modules, that is, that for any h ∈ G one has hρf = ρfh.
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Therefore, for any irreducible representation V the endomorphism ρVf of V
guven by ρf , acts as multiplication by a constant, call it cV . Let us calculate it,
in terms of χV .

We have tr(ρVf ) = cV · dim(V ) = 1
|G|

∑
g∈G f(g)χV (g) = (f |χV ). Therefore,

cV =
1

dim(V )
(f |χV ).

We deduce that if f is orthogonal to all irreducible characters, ρf acts trivially on
all irreducible modules. Therefore, it acts trivially on all modules, in particular,
on the regular representation. Recall that the regular representation has a basis
{vg}, g ∈ G with the action h(vg) = vhg. By definition, ρf (v1) = 1

|G|
∑

g∈G f(g)vg.

So, ρf (v1) = 0 implies f(g) = 0 for all g. �

3.4.3. Corollary. The characters of irreducible representations of G form an
orthonormal basis of the space of all class functions on G.

Proof. The space of class functions has the inner product defined as the restriction
of the inner product defined in the beginning of this subsection. The characters
of irreducible prepresentations are orthonormal. They generate a subspace whose
orthogonal complement is zero by the previous theorem. �

3.5. Consequences. Character theory gives a bunch of immediate consequences.

3.5.1. Corollary. The number of irreducible represenntations of a finite group G
coincides with the number of conjugacy classes of G.

3.5.2. Corollary. Let V be an irreducible representation of G of dimension d.
Denote by R the regular representation. The representation V appears precisely
d times in the decomposition of R into a sum of irreducible representations.

Proof. The number of copies of V in the decomposition of R is dim HomG(V,R) =
(χV |χR). Since χR(1) = |G| and χR(g) = 0 for g 6= 1,

(χV |χR) =
1

|G|
|G|χV (1) = d.

�

3.5.3. Corollary. Let V1, . . . , Vk be all irreducible representations of G and let
dim(Vi) = di. Then

|G| =
k∑
i=1

d2
i .

Proof. Immediately follows from the decomposition

R = ⊕ki=1V
di
i .

�
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3.5.4. Product of groups. We will now study representations of a product G×H
of groups. First of all, any representation V of G can be considered to by a
representation of G×H, so that (g, h) ∈ G×H acts on V like g.

Given V , a representation of G, and W , a representation of H, one defines
V � W , a representation of G × H, as the tensor product of V and W , both
considered as representations of G×H. It is easy to prove the following result.

3.5.5. Theorem. The tensor products V �W , where V is an irreducible represen-
tation of G and W is an irreducible representation of W describe all irreducible
representations of G×H.

Proof. First of all, the conjugacy classes of G × H are in one-to-one correspon-
dence with the pairs of conjugacy classes of G and of H. We will calculate the
characters of V �W where V and W are irreducible, and show the orthonormality.
This will give the result.

First of all, we claim that χV �W (g, h) = χV (g) · χW (h). This immediately
follows from the character formula for the tensor product of representations.
This allows one to calculate the inner product

(χV �W |χV ′�W ′) = (χV |χV ′)(χW |χW ′).

This implies that the length of χV �W is one, and that different V � W are
orthogonal. �

3.6. Examples.

3.6.1. G = Z/nZ. This is an abelian group so all its irreducible representations
are one-dimensional. It is instructive to write down explicit formulas for the
characters of all irreducible representations and to write down the orthogonality
formulas for them. We leave this as an exercise. These formulas look very similar
to the formulas for Fourier series and Fourier transform. In fact, this is what is
called discrete Fourier transform (see Wikipedia).

3.6.2. G = S3. The group G has three conjugacy classes, and, correspondingly,
three irreducible representations. There are two one-dimensional representations
(which one?), so the the formula 6 = 12 +12 +d2 we deduce d = 2. That is, apart
of the one-dimensional representations, there is a two-dimenaional irreducible
representation. The group G = S3 has a standard 3-dimensional representation
V = C3 whose coordinates are permuted by G. The vector (1, 1, 1) spans a trivial
representation, so V is a sum of the trivial representation and an irreducible
representation of dimension 2. See the Exercise.

3.6.3. Dihedral group D8. It is easy to see that in this case Gab = Z2 × Z2, so
there are four one-dimensional representations. Since 8− 4 = 22, this leaves only
one irreducible 2-dimensional representation.
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It is easy to see that the natural representation of D8 on R2 gives an irreducible
2-dimensional complex representation. So, all representations are described.

3.6.4. Real representations. Our main results were formulated for complex rep-
resentations. Given a real representation V of a group G, one can define its
“complexification” as VC := C⊗R V .

If V is reducible, VC is also reducible. But the converse does not always hold.
Here is an easy example one should have in mind.
Let G = Zn. The group G acts on R2 by rotations: the standard generator

rotates R2 by 2π
n

. This is obviously an irreducible representation. As we know,
there are no 2-dimensional irreducible representations of Zn over C. Exercise:
describe the decomposition of the complexification of the 2- dimensional real
representation described above.

4. Commutative algebra, 1

We start studying commutative rings. First of all, we need a motivation.

4.1. Systems of algebraic equations. Let k be a field, f1, . . . , fm ∈ k[x1, . . . , xn]
polynomials of n variables.

It is a classical question to find all solutions of the system of polynomial equa-
tions

f1(x1, . . . xn) = . . . = fm(x1, . . . xn) = 0.

4.1.1. We know what to do if n = 1. Any collection of polynomials geerate an
ideal which is generated by one element. So, a system of polynomial equations
is equivalent to a single equation f = 0. A solution of this equation in k is
equivalent to a ring homomorphism k[x]/(f)→ k. Even if there are no solutions
in k, it makes sense to look for solutions in a field K containing k. To get all
solutions, we have to present f as a product of irreducible polynomials pi. Each
one of them defines a field extension K = k[x]/(pi), and one has a tautological
solution x+ (pi) ∈ K of the equation.

4.1.2. Some motivational questions. The example of n = 1 immediately tells
us what can be expected in general. The first step is to replace the system of
equations fi = 0 with an ideal I = (f1, f2, . . .) in the polynomial ring.

One can ask: is I always principal? Well, obviously, no. However, I is finitely
generated — this is a famous Hilbert basis theorem. We will prove it soon.

A next question. Let A = k[x1, . . . , xn]/I. Let K be a field extension of k. A
collection of solution (X1, . . . , Xn) ∈ Kn of the system of equations f(X1, . . . , Xn) =
0, f ∈ I is given by ring homomorphisms φ : A→ K. What ideal can appear as
a kernel of such homomorphism?
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The answer is easy: these are prime ideals (see definition below). Thus, study
of prime ideals can be seen as a very general approach to studying solutions of
systems of polynomial equations.

4.2. Prime ideals and maximal ideals. Let A be a commutative ring.

4.2.1. Definition. An ideal p ⊂ A, p 6= A, is called prime if the following
equivalent conditions are satisfied.

• for a, b ∈ A ab ∈ p implies a ∈ p or b ∈ p.
• The quotient A/p is an integral domain.

In particular, if A is a PID, the ideal (a) is prime iff a is a prime element.
It is clear that for any ring homomorphism φ : A → K to a field the kernel

Ker(φ) is prime: the qutient A/Ker(φ) is isomorphic to a subring of K which has
no zero divisors.

We will now show that the converse holds.

4.2.2. Field of fractions. Given an integral domain A, we will define an injective
homomorphism φ : A→ K into a field.

This will show that any prime ideal p of A can be kernel of a homomorphism
to a field: it is enough to embed the integral domain A/p into a field K and
define φ as the composition A→ A/p→ K.

Given an integral domain A, we define its fraction field K as follows. First
of all, then X be the set of pairs (a, b) with a, b ∈ A and b 6= 0. We define an
equivalence relation on X:

(a, b) ∼ (a′, b′)⇔ ab′ = a′b.

(We will have to use the fact that A is integral domain to verify that this is an
equivalence relation.)

We define K = X/ ∼. We denote the equivalence class of (a, b) as a
b
.

The operations are defined as the usual operations with fractions:

a

b
+
a′

b′
=
ab′ + a′b

bb′
,
a

b

a′

b′
=
aa′

bb′
.

4.2.3. As a result, studying of prime ideals in a commutative ring A is a problem
very close to studying ring homomorphisms A→ K to fields.

Any prime ideal p ⊂ A defines the integral domain A/p which canonically
embeds into its field of fraction which we will denote k(p). Thus, any ring ho-
momorphism φ : A → K with p = Ker(φ) can be canonically decomposed as
A→ k(p)→ K.
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4.2.4. Assume A is a PID. Any ideal in A has form (a) where a ∈ A. It is prime
iff a is either 0 or a prime (=irreducible) element. Thus, we have the following
prime ideals in A:

• (0)
• (p) where p is a prime element of A.

(0) is the minimal ideal and all (p) are the maximal ideals of A.

4.2.5. Maximal ideals. Recall that m ⊂ A is called a maximal ideal if m is max-
imal among those 6= A. Equivalently, m is maximal iff A/m is a field. This is
because for any ideal I in A there is a one-to-one correspondence between the
ideals of A/I and the ideals of A containing I. (Describe this correspondence
explicitly!).

In particular, A/m is a field iff it has no nontrivial ideals iff A has no nontrivial
ideals containing m.

In particular, any maximal ideal is prime.
This implies existence of prime ideals in any (nonzero) commutative ring.

4.2.6. Lemma. Any (nonzero) commutative ring has a maximal ideal.

Proof. Immediate, using Zorn lemma. �

We are now ready to define a “size” of a commutative ring, its (Krull) dimen-
sion.

4.2.7. Definition. Dimension of a commutative ring A is the greatest number n
for which there exists a chain of prime ideals

p0 ⊂ p1 ⊂ . . . ⊂ pn.

The dimension is ∞ if one can find chains of prime ideals of arbitrary length.
For instance, the only prime ideal of a field is 0, thedimension of a field is zero.

The dimension of PID (that is not a field) is one.
We will prove later that the dimension of k[x1, . . . , xn] is precisely n. The

inequality dim(k[x1, . . . , xn]) ≥ n is obvious as one has a chain of prime ideals
defined by the formula pk = (x1, . . . , xk).

4.2.8. An element a ∈ A is nilpotent if an = 0 for some n. If p is a prime ideal,
it contains all nilpotent elements of A. In fact, if an = 0, p 3 an so ... p 3 a.

Definition. Nilradical of A, N(A), is the set of all nilpotent elements of A.

4.2.9. Proposition. N(A) is the intersection of all prime ideals of A.

Note that this implies that N(A) is an ideal (it is easy however to give a direct
proof of this fact).
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Proof. Let a be not nilpotent. Denote Σ the set of all ideals of A that do not
contain any power of a. Σ is nnonempty as it contains (0). We will verify that
Σ satisfies the conditions of Zorn lemma, and that any maximal element in Σ is
a prime ideal.

1. Given a chain Iα of elements in Σ let I = ∪Iα. This is a nontrivial ideal.
and it obviously does not contain any power of a.

2. Let p ∈ Σ be a maximal element. Let bc ∈ p. if b 6∈ p, (b) + p contains a
power of a. Similarly, if (c) + p contains a power of a, (bc) + p contains a power
of a. This gives a contradiction. �

4.2.10. Lemma. The quotient A/N(A) has no nilpotent elements.

Proof. If a+N is nilpotent, an ∈ N for some n, so anm = 0 that is a ∈ N . �

4.2.11. Jacobson radical. We define the Jacobson radical of A, J(A), as the in-
tersection of all maximal ideals of A.

One has an alternative characterization of J(A).

Proposition. x ∈ J(A) iff 1 + xy is invertible for all y ∈ A.

Proof. If x ∈ J(A), then 1+xy does not belong to any maximal ideal. Therefore,
this element is invertible. Conversely, if x 6∈ m for some maximal ideal m, (x) +
m = A, so one can present 1 = xy + z with z ∈ m. Then 1 − xy = z is not
invertible. �

One has obviously J(A) ⊃ N(A) for all A. The important result that we
will prove in this course, Hilbert’s Nullstellensatz (theorem of zeros) claims that
J(A) = N(A) for the rings A = k[x1, . . . , xn]/I.

(Its importance is not completely obvious. It implies, for instance, that if k is
algebraically closed and if I 6= (1), the system of polynomial equations f(x) = 0
for all f ∈ I has a solution in k.)

4.2.12. Local rings. A commutative ring A is local if it has only one maximal
ideal. Equivalently, A is local if all non-invertible elements form an ideal (this is
the unique maximal ideal of A).

As an example, if A is a PID, A/(a) is local iff a power of a prime (this is an
exercise).

Some questions about general commutative rings can be reduced to questions
about local rings.

4.3. Operations with ideals.

4.3.1. Sum. If I and J are ideals of A, the sum I + J is the smallest ideal
containing both. It is just the sum of the respective additive subgroups. One can
also define the sum of any family of ideals.

4.3.2. Intersection. Nothing to say: intersection of a family ideals is an ideal.
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4.3.3. Product. Product of two ideals, I ad J , is the ideal generated by all prod-
ucts xy where x ∈ I and y ∈ J . One obviously has IJ ⊂ I ∩ J .

One can similarly define the product of any finite number of ideals; in partiular,
In is generated by all products x1 · · ·xn with xi ∈ I.

The ideals I and J are called coprime if I + J = A.
Let A be a ring, I1, . . . In be ideals in A. Denote φ : A→

∏
iA/Ii the obvious

homomorphism.

4.3.4. Lemma. 1. φ is injective iff ∩Ii = 0.
2. φ is surjective iff Ii and Ij are coprime for i 6= j.
3. If Ii are coprime for different i,

∏
Ii = ∩Ii.

Proof. The first claim is obvious.
The second claim: assume φ is surjective. For some a ∈ A φ(a) = (1, 0, . . . , 0),

that is, a = 1 mod (I1) and a ∈ I2, so that 1 = (1 − a) + a is the required
decomposition. In the opposite direction, assume Ii + Ij = A, and let us find a
such that φ(a) = (1, 0, . . . , 0). Since I1 and Ii are coprime for i 6= 1, there are
decompositions 1 = ui + vi such that ui ∈ I1 and vi ∈ Ii. Then

∏
vi is 0 modulo

Ii for all i 6= 1 and
∏

(1− ui) = 1 mod (I1).
The third claim is proven by induction in n. If n = 2, 1 = a1 + a2 with ai ∈ Ii,

then for any x ∈ I1 ∩ I2 we have

x = x(a1 + a2) = xa1 + xa2 ∈ I1I2.

Now, for n > 2, assume by induction that J =
∏n−1

i=1 Ii = ∩n−1
i=1 Ii. We want

to verify that JIn = J ∩ In. We will show that J and In are coprime. Choose
decompositions of 1, 1 = ui + vi, with ui ∈ Ii and vi ∈ In, for any i 6= n. Then∏
ui =

∏
(1− vi) = 1 mod In. This proves the assertion. �

Here is a special property of prime ideals.

4.3.5. Proposition. 1. Let I ⊂ ∪ni=1pi, pi prime. Then for some i one has
I ⊂ pi.

2. Let p ⊃ ∩ni=1Ii. Then p ⊃ Ii for some i. If p = ∩Ii then p = Ii for some
i.

Proof. The first claim. Let I 6⊂ pi for all i. We can assume by induction that I
is not in the union of all primes but one. Thus, for each i there exists xi in I
but not in ∪j 6=ipj. Of course, xi ∈ pi, so the product yi =

∏
j 6=i xi belongs to all

pj, j 6= i but not to pi. Then the sum y =
∑
yi does not belong to any pi, so

y 6∈ ∪pi.
The second claim. Assume p 6⊃ Ii for all i, then there exist xi ∈ Ii − p. Then

the product of xi is in the intersection of Ii but not in p. Finally, if p = ∩Ii then
p ⊂ Ii therefore there is the equality. �
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4.4. Finitely generated modules. The following result is very important.

4.4.1. Proposition. Let A be a commutative ring, I an ideal in A, M a finitely
generated A-module. Assume f : M → M so that f(M) ⊂ IM . Then there
exists a polynomial p(x) = xn + a1x

n−1 + . . .+ an with ai ∈ I such that p(f) = 0.

4.4.2. Remark. In the special case A a field and I = 0 we get a known claim
from the linear algebra — it is a cosequence of Cayley-Hamilton theorem.

Proof. We fix a finite sequence of generators m1, . . . ,mn of M . One can write

f(mi) =
∑
j

cjimj,

with cji ∈ I. We will now find an interesting way of interpreting the above
equations.

The A-module structure of M can be exteded to the A[X]-module structure,
if we decide that X acts as the endomorphism f : M →M . We can now rewrite
the system of equalities above as∑

j

(cji − δji ·X)mj = 0.

The matrix A = (cji − δji · X) is an n × n-matrix over the commutative ring
A[X]. We can multiply it on left with adj(A) and get the matrix det(A)I. We
still get det(A)I(mi) = det(A)mi = 0, that is, det(A)M = 0. It remains to note
that det(A) is a polynomial of degree n of the required form. �

4.4.3. Remark. One can use the same way to prove Cayley-Hamilton theorem
without using the induction, the passage to algebraic closure of the field, and
existence of eigenvectors of an operator over an algebraically closed field. The
reason this proof is not usually presented in Linear algebra course — because, to
understand it, one has to understand that the notion of determinant works over
k[X] in the same way as it works over fields.

4.4.4. Corollary. Let M be f.g., IM = M . Then there exists a ∈ 1 + I such that
aM = 0.

Proof. We put f = idM . �

4.4.5. Corollary. (Nakayama lemma) Let M be f.g., JM = M , where J is the
Jacobson radical. Then M = 0.

Proof. An element a ∈ 1 + J is invertible. �

Assume now that A is a local ring with the unique maximal ideal m. We will
now explain that any f.g. A-module has a meaningful notion of a minimal set of
generators.

Note that of M is a module over A, M/mM is a module over a field A/m.
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4.4.6. Lemma. A,m as above, M a f.g. A-module. A collection of elements
m1, . . .mn of M generated M iff the collection of the images m̄1, . . . , m̄n in M̄ =
M/mM generates M̄ .

Proof. “Only if” part is obvious. Let N be the submodule of M generated by
mi. Then N + mM = M , that is, M/N = mM/N . This implies M/N = 0 that
is N = M . �

4.4.7. Definition. Let A be a local rong, M a f.g. A-module. A minimal set of
generators of M is a set whose image is a basis in the vector space M/mM .

In particular, the cardinality of a minimal set of generators ofM is dimA/mM/mM .

4.5. Hilbert basis theorem. Recall that a ring is called Noetherian if every its
ideal is finitely generated.

4.5.1. Theorem. Let A be a commutative noetherian ring. Then A[x] is also
noetherian.

Proof. Let I ⊂ A[x] be an ideal. We define Jk as the set of a ∈ A that appear
as a leading coefficient of a degree k polynomial in I. It is easy to see that Jk
is an ideal in A and that Jk ⊂ Jk+1. We denote J = ∪Jk. This is an ideal in A
and J = Jn for some n. The ideals Jk, k = 0, . . . , n are finitely generated. Let
ak,1, . . . , ak,mk

be generators of Jk. We choose fk,l a degree k polynomial from I
with the leading term ak,l. We will now prove that the polynomial s fk,l generate
I. Let f ∈ I be a degree d polynomial. We will prove, by induction in d, that f
belongs to the ideal generated by fr,s. If d > n, Jd = Jn, so there are a1, . . . , amn

such that f − xd−n
∑
ajfn,j is in I and has a smaller degree.

If d < n, there are a1, . . . , amd
such that f −

∑
ajfd,j is in I and has a smaller

degree. This proves the theorem. �

4.5.2. Corollary. Any commutative ring A = k[x1, . . . , xn]/I is noetherian.

Proof. Recall that a ring is noetherian if it is noetherian as a module over itself.
Recall as well that a factor of a noetherian module is noetherian. �

4.6. Rings of fractions. Let f : A→ B be a ring homomorphism. Define

S = {a ∈ A|f(a) is invertible }.
The S is multiplicatively closed: 1 ∈ S and if s, t ∈ S, then st ∈ S.

In this subsection we will present a construction which allows, for a give mul-
tiplicatively closed subset S of a ring A, of a ring homomorphism f : A → B
carrying S to invertible elements of B, and universal in an appropriate sense.

The ring B will be called the ring of fractions and will be denoted S−1A.
In the special case when A is a domain and S = A − {0}, we get the fiend of

fractions described before.
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4.6.1. Ring of fraction: definition. Let A be a commutative ring, S ⊂ A a mul-
tiplicatively closed set. A ring of fractions of A with respect to S is a ring
homomorphism

f : A→ A′

carrying S to invertible elements of A′ and satisfying the following universal
property:

For any ring homomorphism g : A → B carrying S to invertible elements of
B, there exists a unique homomorphism h : A′ → B such that g = h ◦ f .

A ring of fractions of A with respect to S, if it exists, is unique up to a unique
isomorphism.

This is a general property of universal objects.
We will now construct a ring of fractions.
We define X = A× S, the set of pairs (a, s) with a ∈ A and s ∈ S. We define

an equivalence relation on X as follows.

(a, s) ∼ (b, t) iff there exists r ∈ S such that r(at− bs) = 0.

It is easy to verify that the above formula defines an equivalence relation. We
denote a/s the equivalence class of the pair (a, s).

We can now define the operations on A′ = X/ ∼ by the standard formulas

a/s+ b/t = (at+ bs)/st, a/s · b/t = ab/st.

One defines f : A→ A′ by the formula f(a) = a/1.
Let us now verify that the above defined ring homomorphism satisfies the

universal property.
Given g : A → B such that g(s) is invertible for any s ∈ S, we can define

h : A′ → B by the formula h(a/s) = g(a)/g(s). The universality is very easy to
verify.

The ring of fractions of A with respect to S is usually denoted S−1A. Note
that S−1A = 0 if and only if 0 ∈ S.

4.6.2. Localization. Given a prime ideal p ⊂ A, the complement S = A \ p is
multiplicatively closed.

The ring of fractions S−1A, for S = A \ p, is usually denoted Ap. This is a
local ring: a/s is not invertible if and only if a ∈ p, so pAp is the unique maximal
ideal in Ap.

The ring Ap is called the localization of A at p.

4.6.3. Modules over the ring of fractions. Let A′ = S−1A be the ring of frac-
tions. The canonical homomorphism i : A → A′ defines the forgetful functor
i∗ : ModA′ → ModA that identifies ModA′ with a full subcategory of ModA. This
means that
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• If an A-module has an A′-structure, it is unique. In fact, an A-module
M has an A′-structure iff s : M →M is an automorphism for any s ∈ S.
In this case a/s : M → M is the composition of a : M → M and of the
inverse to s : M →M .
• If M,N are A′-modules, any A-homomorphism from M to N is automat-

ically an A′-homomorphism.

4.6.4. Lemma. Let S ⊂ A be multiplicatively closed, I ⊂ A an ideal. Denote
S̄ ⊂ A/I the image of S in A/I. Then one has a canonical isomorphism

S̄−1(A/I) = S−1A/S−1I.

Proof. The natural homomorphism from A to any of them is universal among
ring homomorphisms A→ B carrying the elements of I to zero and the elements
of S to invertible elements. �

4.6.5. Module of fractions. Similarly, for S,A as above and an A-module M , we
define a module of fraction (of M with respect to S) as a homomorphism of
A-modules M → M ′ such that any s ∈ S is invertible, when considered as an
endomorphism of M ′, and universal with respect to this property.

Similarly to the above, the module of fractions is unique up to unique isomor-
phism. It has an explicit construction similar to that of ring of fractions. In more
detail, put Y = M × S and define the equivalence relation by the formula

(m, s) ∼ (n, t) iff there exists r ∈ S such that r(mt− ns) = 0.

We denote M ′ = Y/ ∼ and denote by m/s the equivalence class of (m, s). The
module operations are defined by the formulas

m/s+ n/t = (tm+ sn)/st, a/s ·m/t = am/st.

The map f : M → M ′ carries m to m/1. The module of fractions of M with
respect to S is usually denoted S−1M .

4.6.6. Module of fractions, 2. The module of fractions S−1M has a canonical
structure of S−1A-module as, by definition, any s ∈ S defines an invertible en-
domorphism of S−1M . Therefore, the localization functor can be considered as
a functor from ModA → ModA′ . Moreover,

HomS−1A(S−1M,N) = HomA(M,N)

which means that S−1M = S−1A×AM .
The above reasoning is a little bit too abstract. A more concrete prove would

consist of defining
j : S−1A⊗AM → S−1M
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as the map defined by the bilinear map carrying (a/s,m) to am/s.

4.6.7. Proposition. The localization functor M 7→ S−1M is exact. That is,
given an exact sequence

M
f→ N

g→ K

the complex

S−1M
f ′→ S−1N

g′→ S−1K.

Proof. One has n/s ∈ Ker(g′) iff g(n)/s = 0 iff tg(n) = 0 for some t ∈ S, that is
if tn ∈ Ker(g) for some n. Since the original sequence is exact, this is equivalent
to saying that there exist m ∈ M and t ∈ S such that f(m) = tn. The latter
means that n/s = f ′(m/st). This proves the assertion. �

4.6.8. Corollary. The A-module S−1A is flat.

Proof. Localization is tensoring by S−1A. Since this is an exact functor, S−1A is
flat. �

4.6.9. Local properties. A property P of a ring is called local if A satisfies P iff
all localizations Ap satisfy P. One defines in a similar way locality of a property
of a module or of a homomorphism of modules.

4.6.10. Lemma. The following properties of an A-module are equivalent.

1. M = 0.
2. Mp = 0 for any p prime.
3. Mm = 0 for any m maximal.

Proof. Obviously (1) ⇒ (2) ⇒ (3). Let us prove that (3) implies (1). Assume
M 6= 0. Let 0 6= m ∈M and let I = Ann(m). Choose m ⊃ I. The element m/1 ∈
Mm should be zero, so there exists s 6∈ m such that sm = 0 — contradiction. �

4.6.11. Lemma. Let f : M → N be an A-module homomorphism. The following
is equivalent.

1. f is injective (resp., surjective).
2. fp : Mp → Np is injective (resp., surjective) for any p prime.
3. fm : Mm → Nm is injective (resp., surjective) for any m maximal.

4.6.12. Lemma. The following properties of an A-module are equivalent.

1. M is flat.
2. Mp is a flat Ap-module for any p prime.
3. Mm is a flat Am-module for any m maximal.

The proof of the last two claims is an exercise.
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4.6.13. Behavior of the ideals. Let f : A→ B be a homomorphism of commuta-
tive rings. For J an ideal in B we denote J c the preimage f−1(J). Conversely,
for I an ideal in A we denote Ie the ideal f(I)B.

The meaning of the notation: “c” stands for contraction, e for extension.
We denote C the set of contracted ideals of A and E the set of extended ideals

of B. Here are the general properties of the contraction / extension operations.

Lemma. 1. I ⊂ Iec, J ⊃ J ce.
2. J c = J cec, Ie = Iece.
3. C = {I|Iec = I}, E = {J |J ce = J}, and the map I 7→ Ie establishes a

bijection between C and E with the inverse J 7→ J c.

�
We will now study the contraction and extension operations for a localization

B = S−1A.

4.6.14. Proposition. 1. Any ideal in B = S−1A is extended.
2. For I ⊂ A one has Iec = ∪s∈S(I : s) where (I : s) = {x ∈ A|sx ∈ I}.
3. I ∈ C iff no s ∈ S is zero divisor in A/I. In particular, if I is prime,
I ∈ C iff S ∩ I = ∅.

4. The prime ideals of B are in one-to-one correspondence with the primes
of A that have no intersection with S.

Proof. 1. Let J ⊂ B and x ∈ J . One has x = a/s for some a ∈ A and s. Then
a/1 ∈ J ce and therefore x = a/s = 1

s
a/1 ∈ J ce.

2. If x ∈ (I : s) then sx ∈ I so x/1 = 1
s
(sx) ∈ Ie, thus, x ∈ Iec. Conversely,

if x ∈ Iec then x/1 ∈ Ie that is x/1 = 1
s
y for some y ∈ I. Then sx ∈ I so

x ∈ (I : s).
3. I ∈ C iff Iec = I that is (I : s) = I for all s ∈ S.
4. According to the lemma J 7→ J c establishes a one-to-one corresondence

between C and E. All ideals of B are in E. If J is prime, J c is prime in A.
Conversely, if I = J c is prime in A, the ideal Ie is prime as B/Ie = S−1(A/I)
which has no zero divisors. �

4.6.15. Corollary. The prime ideals of the localization Ap, where p is a prime
ideal of A, are in one-to-one correspondence with the prime ideals of A contained
in p.

4.6.16. Lemma. The nilradical of S−1A is the extension of the nilradical of A.

Proof. Obviously, N(A)e ⊂ N(S−1(A)). It remains to prove that any nilpotent
element of S−1(A) belongs to N(A)e. In fact, if a/s is nilpotent, tan = 0 for some
t ∈ S, n ∈ N. Then ta ∈ N(A) and a/s = ta/ts ∈ N(A)e. �
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4.7. Integral dependence. Let A be a subring of B. An element b ∈ B is
integral over A if it is a root of a polynomial equation

xn +
n∑
i=1

aix
n−i = 0

with coefficients in A.
Similarly, one can say, for a ring homomorphism f : A → B that b ∈ B is

integral over A if it is integral over f(A) ⊂ B.

4.7.1. Example. Let x ∈ Q be integral over Z. We will show that x ∈ Z. In fact,
let x = a

b
be a presentation of x as a fraction with a, b ∈ Z coprime. Then

an +
n∑
i=1

aia
n−ibi = 0,

which is impossible as an is not divisible by b.

4.7.2. Example. Let B = k[t] polynomial ring, A = Span(1, t2, t3m. . .) ⊂ B.
This is obviously a subring in B and t ∈ B is integral over A as it satisfies the
equation x2 − t2 = 0 with coefficients in A. Note that A and B have the same
field of fractions k(t).

4.7.3. Theorem. Let A ⊂ B. The following conditions on x ∈ B are equivalent.

1. x is integral over A.
2. A[x], the subring of B generated by A and x, is a f.g. A-module.
3. A[x] is contained in a subring C of B that is a f.g. A-module.
4. There exists a faithful A[x]-module M finitely generated as an A-module.

Recall that a module is faithful if it is not annihilated by a nonzero element of
the ring.

Proof. (1) implies (2). In fact, if xn = −
∑n

i=1 aix
n−i, this allows one, by induc-

tion, to prove that for any N xN ∈ SpanA(x0, . . . , xn−1). Thus, A[x] is f.g.
(2) implies (3). Obvious as one can put C = A[x].
(3) implies (4). Obvious as M := C is faithful C-module.
(4) implies (1). In fact, we can apply 4.4.1 to the A-module M and to the

endomorphism φ : M → M given by multiplication with x. We put I = A. We
deduce that there exist ai ∈ A such that φn +

∑
aiφ

n−1 = 0 as an endomorphism
of M . This endomorphism is given by xn +

∑
aix

n−1. Since M is faithful, this
element of A[x] is zero. �

4.7.4. Corollary. If x1, . . . , xn are integral over A then A[x1, . . . , xn] is f.g. A-
module.

Proof. By induction, using that if M is a f.g. B-module and B is a f.g. A-module,
then M is a f.g. A-module. �
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4.7.5. Corollary. Let B be a finitely generated A-algebra. Then B is integral
over A if and only if B is a f.g. A-module.

�

4.7.6. Corollary. Let A ⊂ B. The set C of elements x ∈ B integral over A, is a
subring of B (it is is called the integral closure of A in B).

�
If A is the integral closure of A in B, A is called integrally closed in B.
A domain A is called integrally closed (or normal) if it is integrally closed in

its field of fractions. For instance, Z is integrally closed.
Actually, any UFD (=unique factorization domain) is integrally closed (Exer-

cise).

4.7.7. Proposition. Let A ⊂ B ⊂ C. If B is integral over A and C is integral
over B then C is integral over A.

Proof. Let c ∈ C. There exists a polynomial xn +
∑
bix

n−i in B[x] that vanishes
at c. The A-algebra A[b1, . . . , bn] is a f.g. A-module and A[b1, . . . , bn, c] is a f.g.
A[b1, . . . , bn]-module. Therefore, A[b1, . . . , bn, c] is a f.g. A-module containing c.
This roves the assertion. �

4.7.8. Corollary. Let C be the integral closure of A in B. Then C is integrally
closed in B.

4.7.9. Proposition. Let A ⊂ B be an integral extension. Then, for any ideal
J ⊂ B the extension A/J c → B/J is integral. Similarly, for any multiplicatively
closed S ⊂ A the map S−1A→ S−1B is integral.

Proof. The first part is obvious. In the second claim we have to find a polynomial
vanishing at b/s, with b ∈ B and s ∈ S. If b is a root of a polynomial xn +∑
aix

n−i, b/s is a root of the polynomial xn +
∑

ai
si
xn−i. �

4.8. Going-up theorem. We will now compare chains of prime ideals if A and
in B when A ⊂ B is an integral extension.

4.8.1. Lemma. Let A ⊂ B be domains, B integral over A. Then A is a field iff
B is a field.

Proof. Let A be a field, 0 6= x ∈ B. The subalgebra A[x] of B is a domain, and
is f.g. as A-module. Then multiplication by x is an injective endomorphism of a
finitely dimensional vector space over A, therefore, by the Linear algebra version
of the pigeon hole principle, is bijective.

Let B be a field, 0 6= x ∈ A. Then x−1 is integral over A, so x−n+
∑
aix

i−n = 0
for some ai ∈ A. Multiplying the equality by xn−1, we get the expression of x−1

as −
∑
aix

i−1 ∈ A. �
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4.8.2. Corollary. Let A ⊂ B be an integral extension, q ∈ Spec(B), p = qc.
Then p is maximal in A iff q is maximal in B.

Proof. Apply the previous lemma to A/p ⊂ B/q. �

4.8.3. Corollary. Let A ⊂ B be an integral extension. Let q ⊂ q′ be prime ideals
in B such that p = qc = q′c. Then q = q′.

Proof. Localize A and B at p. We get an integral extension Ap ⊂ Bp, the maximal
ideal pAp and two prime ideals qBp and q′Bp (they are proper ideals as (A−p)∩q =
∅ and the same for q′). The should be both maximal and contain one the other,
so they coincide, qBp = q′Bp. Therefore, their restrictions to B coincide; we
know they give q and q′ respectively. �

4.8.4. Proposition. A ⊂ B is an integral extension, p ∈ Spec(A). Then there
exists a prime ideal q in B such that p = qc.

Proof. Localize A and B at p. We get an integral extension Ap → Bp. If m is a
maximal ideal of Bp, m

c is maximal if Ap, so mc = pAp. We now define the ideal
q of B as the restriction of m. Obviously, its restriction in A is the restriction of
pAp, that is p. �

And now, the main theorem.

4.8.5. Theorem. (Going-up theorem) Let A ⊂ B be an integral extension,

p0 ⊂ . . . ⊂ pn

be a chain of prime ideals in A and let

q0 ⊂ . . . ⊂ qm

(m < n) be a partial lifting of this chain to B (that is, pi = qci). Then one can
extend the chain in B to a chain

q0 ⊂ . . . ⊂ qn

such that pi = qci for all i.

Proof. It is enough to prove the theorem for n = 1, m = 0. Let Ā = A/p0, B̄ =
B/q0. The extension Ā ⊂ B̄ is integral, therefore, by the previous proposition
there exists a lifting q̄1 ⊂ B̄ of p̄1, the image of p1 in Ā. It remains to define q1

as the preimage of q̄1.
�

4.8.6. Corollary. Let A ⊂ B be an integral extension. Then dim(B) = dim(A).
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5. Commutative algebra, II

5.1. Noether normalization lemma.

5.1.1. Theorem. Let A be a finitely generated algebra over a field k. Then there
exists a subring B of A isomorphic to a polynomial ring k[x1, . . . , xd] such that
B ⊂ A is an integral extension.

We will prove soon that the dimension of k[x1, . . . , xd] is precisely d (meanwhile
we only know that it is ≥ d). According to the Going-up Theorem, d in the above
theorem is the dimension of A. In other words, for algebras finitely generated
over a field, their dimension is the maximal number of algebraically independent
elements.

We will only prove the result in the case k is infinite. It remain equally correct
for finite fields, but the proof for finite fields is slightly more difficult.

We start with some simple general assertions about infinite fields.

5.1.2. Lemma. Let k be an infinite field and let f ∈ k[x1, . . . , xm] be a nonzero
polynomial. The there exist c1, . . . , cm ∈ k such that f(c1, . . . , cm) 6= 0.

Proof. Induction in m. For m = 0 the claim is vacuous. If m > 0, write f =∑
gkx

k
m where gk are polynomials in x1, . . . xm−1. There exist k such that gk 6= 0

so there exist c1, . . . , cn−1 such that f(c1, . . . , cm−1, xn) is a nonzero polynomial of
xm. Since k is infinite, there exists cm such that it does not vanish at xm = cm. �

5.1.3. Corollary. Let k be an infinite field and let F ∈ k[x1, . . . , xm] be a nonzero
homogeneous polynomial of m variables.. Then there exist c1, . . . , cm−1 such that
F (c1, . . . , cm−1, 1) 6= 0.

Proof. Let d be the degee of F . Then F/xdm is a polynomial in x1/xm, . . . , xm−1/xm.
The claim follows by applying the previous lemma to this polynomial of m − 1
variables. �

Proof of the theorem. Let A be generated over k by a1, . . . , an.
Here is an example of why this theorem is not obvious. We could try to define

the algebra B as generated over k by a maximal set of algebraically independent
generators among ai. Let, for instance, A = k[x, y]/(xy). The elements x, y
generate A, x is algebraically independent (that is, there is no polynomial p in
one variable such that p(x) = 0 in A), and y is dependent, since xy = 0. But y
is not integral over k[x] as the xy considered as a polynomial in y is not monic.
So, one has to find a clever way of choosing the generators for B.

We will prove the assertion by induction in n. If all ai are algebraically in-
dependent, A is a polynomial ring and there is nothing to prove. Otherwise
a1, . . . , an satisfy some nontrivial polynomial equation f(a1, . . . , an) = 0, where
0 6= f ∈ k[x1, . . . , xn].

Let f =
∑N

k=0 Fk where Fk is homogeneous of degree k and FN 6= 0.



61

Since k is an infinite field, there exist c1, . . . , cn−1 ∈ k such that FN(c1, . . . , cn−1, 1) 6=
0.

We put a′i = ai − cian for i = 1, . . . , n − 1. Obviously, A is generated by
a′1, . . . , a

′
n−1, an and f(a′1 + c1a

′
n, . . . , a

′
n−1 + cn−1a

′
n, a

′
n) = 0. Let us decompose

the polynomial f(x1+c1xn, . . . , xn−1+cn−1xn, xn) into homogeneous components.
The highest degree component will be FN(x1 + c1xn, . . . , xn−1 + cn−1xn). It does
not vanish at (0, . . . , 0, 1), so it contains xNn as a summand. This implies that in
the new coordinates an is integral over k[a′1, . . . , a

′
n−1]. By inductive hypothesis

the latter ring is integral over a certain polynomial subring. By transitivity, A is
also integral over the same polynomial subring. �

5.2. Nullstellensatz. Nullstellensatz is the (German) name of one of celebrated
theorems by David Hilbert. The name means “theorem of zeros”, and it has to
do with existence of solutions of a system of polynomial equations.

Here is the theorem in its simplest form.

5.2.1. Proposition. Let k be algebraically closed, fi ∈ k[x1, . . . , xn] a collection
of polynomials generating a proper ideal I = (fi) 6= (1). Then there is a solution
(a1, . . . , an) ∈ kn of the system of equations fi(a1, . . . , an) = 0.

Proof. Let A = k[x1, . . . , kn]/I. A 6= 0, so, by the normalization lemma there
exists a polynomial subring ring B = k[y1, . . . , ym] of A such that A is integral
over B. Choose any maximal ideal n = (y1− b1, . . . , ym− bm) in B (for instance,
take bj = 0). There is a maximal ideal m in A such that n = mc. The extension
k = B/n → A/m is integral and finitely generated as algebra. Therefore, its is
finite. Thus, A/m is a finite field extension of k. Since k is algebraically closed,
A/m = k. Finally, let us consider the preimage J of m in k[x1, . . . , xn]. This
is the ideal containing I such that k[x1, . . . , xn]/J = k. If ai is the image of xi
under the canonical homomorphism ρ : k[x1, . . . , xn]→ k, J contains xi − ai, so
J = (x1−a1, . . . , xn−an). The inclusion J ⊃ I implies that (a1, . . . , an) vanishes
at each polynomial f ∈ I. �

5.2.2. Corollary. Let k be algebraically closed. All maximal ideals of k[x1, . . . , xn]
have form (x1 − a1, . . . , xn − an).

�
And here is a more general formulation.

5.2.3. Theorem. Let k be algebraically closed, fi ∈ k[x1, . . . , xn] a collection of
polynomials generating an ideal I = (fi) 6= (1). Let f ∈ k[x1, . . . , xn] satisfy the
following property.

For any a = (a1, . . . , an) ∈ kn, a common zero of all fi, a is also a zero of f .
Then there exists n such that fn ∈ I.

Proposition 5.2.1 follows from this theorem. In fact, assuming the elements of
I have no common zeros, we apply the theorem to f = 1 and deduce that 1 ∈ I.
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Proof. We will deduce the theorem from Proposition 5.2.1. Let I = (f1, . . . , fm).
We consider the ideal J in k[x0, . . . , xn] generated by f1, . . . , fm and 1− x0f .

The polynomials f1, . . . , fm and 1 − x0f have no common roots, so by 5.2.1
J = (1). That is, there are polynomials g0, . . . , gm ∈ k[x0, . . . , xn] such that

(25) g0(1− x0f) +
m∑
i=1

gifi = 1.

This is an equality in k[x0, . . . , xn].
Look at the ring homomorphism

(26) e : k[x0, . . . , xn]→ k[x1, . . . , xn]f

(to the ring of fractions) carrying x0 to 1
f

and xi to xi for i > 0.

The homomorphism e carries the left-hand side of (25) to
∑
e(gi)fi, so one has∑

e(gi)fi = 1

in k[x1, . . . , xn]f . after multiplying both sides of the equation with a big enough
power of f , we get the required assertion. �

5.3. Primary ideals. Recall that a finitely generated module over a PID A has
form

M = F ⊕M1 ⊕ . . .⊕Mn

where F is free and each one of Mi is primary cyclic, that is isomorphic to A/(pk)
where p is a prime element.

A weak form of this theorem for noetherian commutative rings requires a gen-
eral notion of a primary ideal, something like a power of a prime, but not quite
so.

5.3.1. Definition. An ideal q of a commutative ring A is called primary if q 6= A
and xy ∈ q implies either x ∈ q or yn ∈ q for some n.

The same can be expressed in terms of A/q: q is primary if and only if any
non-zero divisor in A/q is nilpotent.

Here are the first properties.

5.3.2. Lemma. 1. Any prime is primary.
2. If q is primary in B and A → B is a ring homomorphism then qc is

primary in A.

Proof. The first claim is obvious; the second claim is true as A/qc is isomorphic
to a subring of B/q. �

5.3.3. Lemma. Let q be a primary ideal of A and let p =
√
q. Then p is prime

(and it is the smallest prime containing q).

Proof. if xy ∈ p then xnyn ∈ q that is either xn ∈ q or ynm ∈ q. This implies the
claim. �
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5.3.4. A primary ideal q with the radical p is called p-primary. Thus, an ideal q
is p-primary iff xy ∈ q implies that either x ∈ q or y ∈ p.

5.3.5. Examples. Primary ideals are something like powers of primes, but not
quite so. Here are a few examples.

1. A = Z, all ideals are principal, a (p)-primary ideal is (pn). The same
answer we have for any PID.

2. A = k[x, y], q = (x, y2). A/q = k[y]/y2 so q is primary with the radical
p = (x, y). However, q is not a power of p.

3. Here is an example showing that a power of a prime is not necessarily
primary. Let A = k[x, y, z]/(xy − z2) and p = (x̄, z̄), where ā ∈ A denote
the image of a ∈ k[x, y, z]. The quotient A/p is isomorphic to k[y], so p is
prime. On the other hand, x̄ȳ = z̄2 ∈ p2 but x̄ 6∈ p2 and ȳ 6∈ p. Therefore,
p2 is not primary.

The primary ideals whose radical is maximal, are easy to describe.

5.3.6. Proposition. Let m be a maximal ideal in A. An ideal q is m-primary iff√
q = m.

Proof. A/q has only one prime ideal, m/q. Therefore, it is nilpotent. Thus, any
zero divisor in A/q is nilpotent, therefore, q is primary. �

5.3.7. Definition. Let p be a prime ideal of A. Its n-th symbolic power, p(n) is
defined as the restriction of pnAp with respect to the localization map A→ Ap.

The ideal p(n) is p-primary.

5.4. Krull’s theorem. We are now ready to prove the following important the-
orem.

For a prime ideal p ∈ Spec(A) we denote ht p = dim(Ap) the maximal length
of a chain of prime ideals lying in p.

5.4.1. Theorem. Let A be a noetherian ring, x ∈ A, and let p be a minimal
prime containing (x). Then ht p ≤ 1.

Proof. We assume that, to the contrary, ht p > 1. Then there exists a chain of
prime ideals p ⊃ q ⊃ q0 in A. We can replace A with Ap and nothing will change.
We can replace A with A/q0 and nothing will change.

Thus, we are allowed to assume that p is the unique maximal ideal in A and
q0 = 0, that is, that A is an integral domain.

The ring A/(x) has a unique prime ideal, so it is nilpotent. Since A/(x) is
noetherian, the factors pn/pn+1 have finite length, so A/(x) has a finite length.

Look at the symbolic powers q(n). The images of these ideals in A/(x) form a
decreasing chain, so it has to stabilize. Therefore,

q(n+1) + (x) = q(n) + (x)
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for all n ≥ N for some N , that is,

(27) q(n) ⊂ q(n+1) + (x).

We will now deduce from this that

(28) q(n) = q(n+1) + xq(n).

In fact, left u ∈ q(n). By (27) we can write u = q + xr where q ∈ q(n+1).
Then xr = −q ∈ q(n). We have x 6∈ q as p is the minimal among the primes
containing x. Therefore, r ∈ q(n) as symbolic powers are primary. This implies
(28). Finally, put M = q(n)/q(n+1) and deduce that M = xM . By Nakayama
lemma we have M = 0, that is, the symbolic powers q(n) stabilize for big n. This
is impossible as A → Aq is injective, q(n) ⊂ (qAq)

n, and these ideals of Aq have
the zero intersection by Nakayama lemma. �

5.4.2. Corollary. Let A be a noetherian ring, p a minimal prime containing
I = (x1, . . . , xn). Then ht p ≤ n.

Proof. We prove the assertion by induction in n. For n = 0 I = 0, p is a minimal
prime, so ht p = 0. The case n = 1 has already been proven. Assume n ≥ 2. Let
us assume that ht p > n so there exists a chain

p = pn+1 ⊃ . . . ⊃ p0.

If x1 ∈ p1, we replace A with A/p1, and then p/p1 will be a minimal prime
containing (x2, . . . , xn). This will immediately give a contradiction with the in-
ductive hypothesis.

Let us show that we can replace the chain above with another one, having
the same length, and satisfying the condition p1 3 x1. Let us assume that
x1 ∈ pk−pk−1. We will show that there exists a prime p′k−1 between pk and pk−2,
such that x1 ∈ p′p−1. Then, continuing this process, we will get the the chain

p = pn+1 ⊃ p′n ⊃ . . . ⊃ p′1 ⊃ p0

with p′1 3 x1. This will prove the theorem.
We can replace A with Apk and then factor by pk+2. We reduce everything

to the case of a two-dimensional local domain A with the maximal ideal pk and
pk+2 = 0, and an element x1 in it. Any minimal ideal containing x1 has height
one. Choose any and call it p′k−1. This proves the claim. �

5.4.3. Corollary. dim(k[x1, . . . , xn]) = n.

Proof. First of all, let k̄ be an algebraic closure of k. The ring extension

k[x1, . . . , xn] ⊂ k̄[x1, . . . , xn]

is integral as all elements of k̄ as well as xi are integral. Therefore, by the Going-
Up theorem, the rings have the same dimension.
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This reduces the claim to the case k is algebraically closed. In this case,
by Nullstellensatz, all maximal ideals are of the form (x1 − a1, . . . , xn − an), in
particular, they are generated by n elements. By 5.4.2 the height of any maximal
ideal is at most n.

It cannot be less then n as the ideals pi = (x1, . . . , xi), i = 0, . . . , n, form a
chain of length n. �
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