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Abstract. The Cimmino algorithm is an interative projection method for
finding almost common points of measurable families of closed convex sets in
a Hilbert space. When applied to Fredholm equations of the first kind the
Cimmino algorithm produces weak approximations of solutions provided that
solutions exist. We show that for consistent Fredholm equations of the first
kind whose data satisfy some spectral conditions the sequences produced by
the Cimmino algorithm converge not only weakly but also in norm. Using
this fact we obtain an existence criterion for solutions to a class of moment
problems and show that if problems in this class have solutions, then the
Cimmino algorithm generate norm approximations of such solutions.

1. Introduction

In this paper we study the convergence behavior of the Cimmino algorithm
applied to a class of Fredholm equations of the first kind in a separable, real or
complex, Hilbert space X. Our aim is to use the properties of this algorithm in
order to deduce existence and strong approximation criteria for solutions of a class
of Fredholm equations and, in particular, for a class of moment problems. In its
general form the Cimmino algorithm (see (2.1) and (2.7)) is an iterative method of
approximating solutions to stochastic convex feasibility problems, i.e., problems of
finding almost common points of measurable families of closed convex subsets in
X. The basic convergence properties of the Cimmino algorithm are summarized in
Theorem 2.1. Theorem 2.1 shows that the Cimmino algorithm produces sequences
in X which are weakly convergent to solutions of the stochastic convex feasibility
problem provided that such solutions exist. It is known (see [4]) that, even if solu-
tions of the stochastic convex feasibility problem exist, the sequences generated by
the Cimmino algorithm may converge weakly without being strongly convergent.
Theorem 2.1(D) also shows that, if the solution set of the convex feasibility problem
is solid, then the sequences produced by the Cimmino algorithm converge strongly.
The Fredholm equations of the first kind we consider here (see (2.11)) are among
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the most typical stochastic convex feasibility problems for which the Cimmino al-
gorithm is applicable and relatively easy implementable (see Corollary 2.1 which
summarizes the special features of the Cimmino algorithm applied to such equa-
tions). However, their solution sets are never solid and, therefore, Theorem 2.1(D)
is no guarantee that the Cimmino algorithm will produce norm approximations
(as opposed to weak approximations) of solutions for Fredholm equations of the
first kind. Theorem 2.2 presents a sufficient condition for strong convergence of the
Cimmino algorithm when the Fredholm equation to which it is applied is consistent.
The condition which ensures strong convergence in Theorem 2.2 requires positivity
of the minimal spectral value of the linear, bounded and self-adjoint mapping M
defined by (2.17). It is interesting to note that Theorem 2.2 also provides a tool
for deciding whether the Fredholm equation has solutions. It essentially says that,
in the given circumstances, by computing a sequence

©
xk
ª
k∈N generated according

to the Cimmino procedure and evaluating the corresponding nonnegative numeri-
cal sequence

©
g(xk)

ª
k∈N , where g is the function given by (2.15), one can decide

whether the Fredholm equation has, or has not, solutions by observing whether or
not

©
g(xk)

ª
k∈N converges to zero. When

©
g(xk)

ª
k∈N converges to zero, solutions

of the Fredholm equation exist and the convergence of
©
xk
ª
k∈N to such a solution

is strong.
Our interest in the behavior of the Cimmino algorithm applied to Fredholm

equations of the first kind is motivated by the fact that many discrete linear mo-
ment problems occurring in mathematical statistics (cf. [1], [21], [22], [25]), image
processing (cf. [15], [16], [23]), optimal control (cf. [6]) can be equivalently repre-
sented as Fredholm equations of the first kind and solved as such. Discrete linear
moment problems (DLMP for short) require solving a system of equations

(1.1) hKk, xi = bk, ∀k ∈ N,
where {Kk}k∈N is a sequence of vectors contained in X\{0} and {bk}k∈N is a se-
quence of scalars. Using Theorem 2.2 we prove an existence criterion for solutions
of the DLMP. This criterion, Theorem 3.1, shows that if Assumptions 3.1 and
3.2, given below, are satisfied, then the DLMP has solutions and that the Cim-
mino algorithm produces strong approximations of such solutions. As noted above,
the Cimmino algorithm is relatively easy to implement when applied to Fredholm
equations of the first kind and, in particular, to DLMPs in their Fredholm equation
form. However, implementation of the Cimmino algorithm to the discrete linear
moment problems still requires precise computation of sums for infinite series in
X (see (3.18)) and this is not practically doable. Corollary 3.1 shows that, under
Assumptions 3.1, 3.2 and a certain boundedness condition concerning the problem
data, the Cimmino algorithm applied to the DLMP produces strong approxima-
tions of solutions to the DLMP by computing sufficiently long, but finite, partial
sums of the series involved.

The Cimmino algorithm studied in this paper originates in the iterative method
for solving finite systems of linear equations in Rn presented in [14]. It belongs to a
wider class of iterative methods for solving feasibility problems known as projection
algorithms (see [3] for a survey on this topic). The applicability of the Cimmino
algorithm to Fredholm equations in Hilbert spaces was first shown by Kammerer
and Nashed [24], further studied in [7], [10], [18] and extrapolated to a more general
context in [9] and [11]. Theorem 2.1 and its Corollary 2.1 are improvements of
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Theorem 5.7 in [9] when applied in a Hilbert space context and, in particular, to
Fredholm equations of the first kind. As far as we know, Theorem 2.2, Theorem 3.1
and Corollary 3.1 are essentially new. Although spectral analysis of linear operators
is commonly used in the study of Fredholm equations of the first kind and of discrete
linear moment problems, this paper seems to be the first attempt to use spectral
analysis of linear operators in the study of the Cimmino algorithm. It is interesting
to note that in the proof of Corollary 3.1 we take advantage of results established in
[12] and showing that the convergence behavior of orbits of nonexpansive operators
is not altered by summable errors. Corollary 3.1 is yet another argument in support
of the thesis that projections methods are computationally "robust" (see [17]).

2. Fredholm equations of the first kind and the Cimmino type
algorithm

In this paper X denotes a separable real or complex Hilbert space with inner
product h·, ·i and norm k·k. Let (Ω,A,µ) be a complete probability space and let
{Cω}ω∈Ω be a family of nonempty closed convex subsets of the Hilbert space X
such that the point-to-set mapping ω → Cω is measurable. We say that the family
{Cω}ω∈Ω is square-integrable (with respect to the probability space (Ω,A,µ)) if
it has a square-integrable selector, that is, if there exists a measurable function
ξ : Ω → X such that kξ(·)k2 is integrable and ξ(ω) ∈ Cω for µ-almost all ω ∈ Ω
. In this case, for each x ∈ X, the function ω → kPωxk2 is integrable when Pω
denotes the metric projection onto the set Cω (see [8, Chapter 2]). Consequently,
the operator P : X → X given by

(2.1) Px =

Z
Ω

(Pωx)dµ(ω),

as well as the the function g : X → [0,∞] given by
(2.2) g(x) = 1

2

R
Ω
kPωx− xk2 dµ(ω),

are well-defined and g is everywhere finite. We denote by C the collection of µ-
almost common points of the sets Cω, that is,

(2.3) C := {x ∈ X : x ∈ Cω, µ-a.e.} .
Clearly, this set is convex and closed.

Using the facts that the functions gω(x) = kPωx− xk2 are convex and contin-
uously differentiable (cf. [2, p. 24]) with the gradients

∇gω(x) = x− Pω(x), ∀x ∈ X,

one can easily deduce (by applying Lebesgue’s monotone convergence theorem) that
g is convex, continuously differentiable and its gradient is

(2.4) ∇g(x) = x−P(x), ∀x ∈ X.

Taking into account that each Pω is a nonexpansive operator which satisfies

(2.5) z ∈ Cω and x ∈ X ⇒ kz − Pωxk2 + kx− Pωxk2 ≤ kz − xk2 ,
one can easily deduce that P is nonexpansive and that

(2.6) z ∈ C and x ∈ X ⇒ kz −Pxk2 + kx−Pxk2 ≤ kz − xk2 .
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An orbit of the operator P is a sequence
©
xk
ª
k∈N in X such that

(2.7) x0 ∈ X and xk+1 = Pxk, ∀k ∈ N.

The following result shows that there exist natural connections between the con-
vergence behavior of the orbits of P, the set of minimizers of g and the set C of
almost common points of the sets Cω.

Theorem 2.1. If {Cω}ω∈Ω is a square-integrable family of nonempty, closed,
convex subsets of X, then the following statements are true:

(A) The next five conditions are equivalent:
(i) The set Argming of (global) minimizers of the function g is nonempty;
(ii) The set FixP is nonempty;
(iii) All orbits

©
xk
ª
k∈N of P converge weakly to points in Argming;

(iv) All orbits
©
xk
ª
k∈N of P are bounded;

(v) The operator P has a bounded orbit
©
xk
ª
k∈N .

(B) If the set C of µ-almost common points of Cω is nonempty, then the conditions
above are also equivalent to the following one:

(vi) All the orbits
©
xk
ª
k∈N of P converge weakly to points in C.

(C) If
©
xk
ª
k∈N is a bounded orbit of P, then the weak limit z = w-limk→∞ xk

exists and the following conditions are satisfied:

(vii) The sequence
©
g(xk)

ª
k∈N converges to g(z) = infx∈X g(x);

(viii) If infx∈X g(x) = 0, then z ∈ C.

(D) If Argming (= FixP) has nonempty interior, then the any orbit
©
xk
ª
k∈N

of P converges strongly to a point in Argming. In particular, if C has nonempty
interior, then any orbit

©
xk
ª
k∈N of P converges strongly to a point in C.

Proof. From (2.4) and from the convexity and differentiability of g it follows
that Argming = FixP. So, (i)⇔(ii). The implication (ii)⇒(iii) results from
[8, Theorem 2.3.6] by taking there f = 1

2 k·k2 . The implications (iii)⇒(iv) and
(iv)⇒(v) are obvious.

We prove next that (v)⇒(ii). Suppose that the sequence ©xkª
k∈N is bounded.

We associate to any bounded sequence
©
uk
ª
k∈N in X, the convex function

F (
©
uk
ª
k∈N ; ·) : X → R defined by

F (
©
uk
ª
k∈N ;x) = lim sup

k→∞

°°x− uk
°° .

The function F (
©
uk
ª
k∈N ; ·) is convex and has a unique global minimizer called the

asymptotic center of the sequence
©
uk
ª
k∈N . If

©
uk
ª
k∈N is weakly convergent, then

its asymptotic center and its weak limit coincide (cf. [20]). By the definition of
F (
©
xk
ª
k∈N ; ·), we have

(2.8) F (
©
xk+1

ª
k∈N ; ·) = F (

©
xk
ª
k∈N ; ·).
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Let z be the asymptotic center of
©
xk
ª
k∈N . By (2.8) and (2.7) we deduce that

F (
©
xk
ª
k∈N ;Pz) = F (

©
Pxk

ª
k∈N ;Pz)

= lim sup
k→∞

°°Pxk −Pz°°
≤ lim sup

k→∞

°°xk − z
°° = F (

©
xk
ª
k∈N ; z),

where the last inequality is due to the nonexpansivity of P. Since, as noted above,
z is the unique minimizer of F (

©
xk
ª
k∈N ; ·), the last inequality implies that Pz = z,

i.e., FixP 6= ∅. This completes the proof of (A).
According to [9, Theorem 5.7(C)], if C 6= ∅, then Argming = C. Thus, if

C 6= ∅, then (vi)⇔(i) and this proves (B). In order to prove (C) note that, as
shown by (A), whenever the sequence

©
xk
ª
k∈N is bounded it is weakly convergent

and we have that z := w-limk→∞ xk ∈ Argming. According to Lemma 5.6 in [9]
applied to the function f = 1

2 k·k2, if u ∈ FixP, then

ku−Pxk2 + g(x) ≤ ku− xk2 + g(u), ∀x ∈ X.

Therefore, since z ∈ Argming = FixP, we have that
0 ≤ g(xk)− g(z)(2.9)

≤ °°z − xk
°°2 − °°z −Pxk°°2

=
°°z − xk

°°2 − °°z − xk+1
°°2 .

By the nonexpansivity of P we deduce that

(2.10)
°°z − xk+1

°° = °°Pz −Pxk°° ≤ °°z − xk
°° , ∀k ∈ N,

showing that the sequence
©°°z − xk

°°ª
k∈N is nondecreasing and, hence, convergent.

This and (2.9) imply that

lim
k→∞

g(xk) = g(z) = min
x∈X

g(x).

If infx∈X g(x) = 0, then g(z) = 0 and, by the definition of g, this implies that
kPωz − zk = 0 (µ-a.e.), that is, z = Pωz ∈ Cω, µ-a.e.

Now suppose that Argming has nonempty interior. By (2.10), we deduce
that the sequence

©
xk
ª
k∈N is Fejér monotone with respect to the set Argming.

Consequently, Theorem 4.5.10 in [5] applies and it shows that
©
xk
ª
k∈N converges

strongly. This also happens when the interior of C is nonempty because, in this
case, C = Argming as noted above. ¤

Theorem 2.1 is an useful tool for analyzing and solving Fredholm equations of
the first kind requiring to find x ∈ X such that

(2.11) hK(ω), xi = b(ω), µ-a.e.,

where K : Ω → X and b : Ω → R (or C) are given measurable functions and
K(ω) 6= 0 for µ-almost all ω ∈ Ω. In order to show this, let
(2.12) Cω := {u ∈ X : hK(ω), ui = b(ω)} .
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Clearly, this is a convex closed hyperplane in X and the (metric) projection onto
it is exactly

(2.13) Pωx = x+
b(ω)− hK(ω), xi

kK(ω)k2 K(ω),

whenever K(ω) 6= 0. The following corollary, which is stated with the usual conven-
tion that that 0 ·∞ = 0 and that 1/0 = ∞, makes clear how Theorem 2.1 can be
applied in order to solve (2.11).

Corollary 2.1. Suppose that the functions K : Ω → X and b : Ω → R
(or C) are measurable, K(ω) 6= 0 for µ-almost all ω ∈ Ω, and that the function
ω → |b(ω)| / kK(ω)k is µ-square integrable, that is, the next integral exists andZ

Ω

|b(ω)|2
kK(ω)k2 dµ(ω) <∞.

Then the following statements are true:
(i) The point-to-set mapping ω → Cω is measurable and has a µ-square inte-

grable selector;
(ii) The operator P : X → X given by

(2.14) Px = x+

Z
Ω

b(ω)− hK(ω), xi
kK(ω)k2 K(ω)dµ(ω),

as well as the function

(2.15) g(x) = 1
2

R
Ω
|b(ω)− hK(ω), xi|2 kK(ω)k−2 dµ(ω),

are well-defined;
(iii) The equation (2.11) has solution if and only if there exists a bounded orbit©

xk
ª
k∈N of the operator P defined by (2.14) such that

(2.16) lim inf
k→∞

g(xk) = 0.

(iv) If the equation (2.11) has solution, then any orbit
©
xk
ª
k∈N of P converges

weakly to a solution of (2.11).
(v) If if the function g is coercive (in the sense that limkxk→∞ g(x) = +∞),

then all orbits of P converge weakly to fixed points of P.
(vi) If g is coercive and there exists an orbit

©
xk
ª
k∈N of P such that (2.16)

holds, then (2.11) has solutions and any orbit of P converges weakly to a solution
of (2.11).

Proof. Observe that, according to (2.13), if K(ω) 6= 0, then

Pω0 =
b(ω)

kK(ω)k2K(ω).

Thus, the function ω → Pω0 is a selector of the point-to-set mapping ω → Cω and
we have

kPω0k = |b(ω)|
kK(ω)k , µ− a.e.

Since the function on the right hand side is µ-square integrable, it results ω → Cω

has a µ-square integrable selector. This proves (i). The statement (ii) immediately
results from (i) and (2.13).

In our current circumstances, the function g defined by (2.2) is exactly that
given by (2.15). Thus, (iii) and (iv) follow from Theorem 2.1. If the function
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g is coercive, then it has a global minimizer because g is also convex and lower
semicontinuous. Hence, according to Theorem 2.1, all orbits of P converge weakly
to minimizers of g which are also the fixed points of P. Let

©
xk
ª
k∈N be an orbit

of P satisfying (2.16) and let z =w-limk→∞ xk. Then, by Theorem 2.1, we have
g(z) = limk→∞ g(xk) = 0 and this shows that z is a solution of (2.11). ¤

Corollary 2.1 shows that the coercivity of the function g, defined by (2.15),
implies that all orbits of P converge weakly. So, by establishing criteria for the
coercivity of g we will implicitly obtain sufficient conditions for the weak conver-
gence of the orbits of P. To this end, we consider the linear, bounded, self-adjoint,
positive semi-definite operator M : X → X given by

(2.17) Mx =

Z
Ω

hx,K(ω)i
kK(ω)k2 K(ω)dµ (ω) .

Note that the function M is well-defined becauseZ
Ω

°°°°° hx,K(ω)ikK(ω)k2 K(ω)
°°°°° dµ (ω) ≤ kxk , ∀x ∈ X.

We denote by Sp(M) the spectrum of M (see [26, p. 371]). This is a closed set
of real numbers (see, for instance, [26, Theorems 9.2.1, 9.2.2, 9.2.3 and 10.4.2])
contained in the closed interval [α(M), β(M)] with

(2.18) α(M) = inf
kxk=1

hMx, xi and β(M) = sup
kxk=1

hMx, xi ,

having the properties that α(M), β(M) ∈Sp(M) and

(2.19) kMk = β(M) = sup
kxk=1

hMx, xi .

Recall that the eigenvalues of M are elements of Sp(M). Since M is positive semi-
definite, it follows from (2.18) that α(M) ≥ 0. Therefore, ifM has an spectral value
λ 6= 0, then we also have 0 < λ ≤ β(M) = kMk showing that M is not identically
zero.

The following result shows that there is an intimate connection between the
linear operator M and the coercivity of the function g defined by (2.15).

Theorem 2.2. Suppose that the hypothesis of Corollary 2.1 is satisfied. If the
linear operator M has α(M) > 0, then the function g defined by (2.15) is coercive.
Moreover, in this circumstances, if

©
xk
ª
k∈N is an orbit of the operator P defined

by (2.14), then
©
xk
ª
k∈N is weakly convergent, its weak limit z := w-limk→∞ xk is

a fixed point of P and a minimizer of g, limk→∞ g(xk) = g(z), and one and only
one of the following statements is true:

(i) limk→∞ g(xk) = 0 in which case problem (2.11) has solutions and all orbits
of P converge strongly to solutions of (2.11);

(ii) limk→∞ g(xk) 6= 0 in which case problem (2.11) has not solution.

Proof. Observe that, by (2.15), we have that
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g(x) ≥
Z
Ω

|hK(ω), xi|2
kK(ω)k2 dµ(ω)(2.20)

−
Z
Ω

|b(ω)|2
kK(ω)k2 dµ(ω)− 2

Z
Ω

|b(ω) hK(ω), xi|
kK(ω)k2 dµ(ω)

≥
Z
Ω

|hK(ω), xi|2
kK(ω)k2 dµ(ω)

−
Z
Ω

|b(ω)|2
kK(ω)k2 dµ(ω)− 2 kxk

Z
Ω

|b(ω)|
kK(ω)kdµ(ω),

where all three integrals exist and are finite because b(ω)/ kK(ω)k is µ-square in-
tegrable. We haveZ

Ω

|hK(ω), xi|2
kK(ω)k2 dµ(ω) =

Z
Ω

hK(ω), xi hx,K(ω)i
kK(ω)k2 dµ(ω)

=

*Z
Ω

hx,K(ω)i
kK(ω)k2 K(ω), x

+
dµ(ω) = hMx, xi.

Denote

r :=

Z
Ω

|b(ω)|2
kK(ω)k2 dµ(ω) and q :=

Z
Ω

|b(ω)|
kK(ω)kdµ(ω).

Taking into account (2.20) we obtain

(2.21) g (x) ≥ hMx, xi− 2q kxk− r.

It follows from (2.18) that

(2.22) hMx, xi ≥ α(M) ||x||2 , ∀x ∈ X.

Since (2.21) holds we obtain

g(x) ≥ hMx, xi− 2q kxk− r

≥ α(M) ||x||2 − 2 ||q|| ||x||− r

= ||x||2
Ã
α(M)− 2 ||q||||x|| −

r

||x||2
!
,

for any x ∈ X, x 6= 0. Hence,

lim
kxk→∞

g(x) ≥ lim
kxk→∞

||x||2
Ã
α(M)− 2q

||x|| −
r

||x||2
!
= +∞,

because α(M) > 0. This shows that g is coercive. Applying Corollary 2.1 to the
coercive function g we deduce that any orbit

©
xk
ª
k∈N of P is weakly convergent

to a fixed point of P and that either the sequence
©
g(xk)

ª
k∈N converges to zero in

which case the weak limit of
©
xk
ª
k∈N is a solution of the DLMP, or the sequence©

g(xk)
ª
k∈N converges to a positive number and, then, the DLMP has not solutions.

It remains to show that if limk→∞ g(xk) = 0, then the orbit
©
xk
ª
k∈N converges
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strongly. Let z = w-limk→∞ xk and suppose that limk→∞ g(xk) = 0. Observe that,
according to (2.22), we have that

α(M)
°°xk − z

°°2 ≤ 
M(xk − z), xk − z

®
=

Z
Ω

¯̄K(ω), xk − z
®¯̄2

kK(ω)k2 dµ(ω)

=

Z
Ω

¯̄K(ω), xk®− hK(ω), zi¯̄2
kK(ω)k2 dµ(ω)

=

Z
Ω

¯̄K(ω), xk®− b(ω)
¯̄2

kK(ω)k2 dµ(ω) = 2g(xk),

for all k ∈ N. Since α(M) > 0, letting k → ∞ on both sides of this inequality we
obtain that

©
xk
ª
k∈N converges strongly to z. ¤

3. Solutions of the discrete linear moment problem

In this section we consider the moment problem (1.1) described in Section 1.
We make the following assumption:

Assumption 3.1: There exists a sequence {µk}k∈N of positive real numbers
such that

(3.1)
∞X
k=0

µk = 1 and
∞X
k=0

µk |bk|2 / kKkk2 < +∞.

It is obvious that this assumption holds whenever the sequences
n
|bk|2

o
k∈N

andn
kKkk2

o
k∈N

are summable because, in this case, one can take

(3.2) µk := kKkk2
 ∞X

j=0

kKjk2
−1 .

Our purpose is to show that, under certain circumstances, applications of The-
orem 2.1 and of its corollaries presented in the previous section leads to a solution
of the linear discrete moment problem. For this purpose, note that the set Ω := N
is a complete probability space in which all subsets of N are measurable and with
the probability measure

(3.3) µ(A) =
X
k∈A

µk,

where the sequence {µk}k∈N is that whose existence is ensured by Assumption 3.1.
Moreover, the problem (1.1) is a particular version of the Fredholm equation (2.11)
with the functions K(k) = Kk and b(k) = bk for which the hypothesis of Theorem
2.2 is satisfied when N is provided with the probability measure µ given by (3.3).
In this particular case we have

(3.4) Px = x+
∞X
j=0

µj
bj − hKj , xi
kKjk2

Kj ,
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(3.5) g(x) =
∞X
j=0

µj |bj − hKj , xi|2 kKjk−2 ,

and

(3.6) Mx =
∞X
j=0

µj
hx,Kji
kKjk2

Kj ,

where all the series are convergent.
For each positive integer k we denote by Gk the Gram matrix of the vectors√

µj kKjk−1Kj , (0 ≤ j ≤ k). This matrix is Hermitian and, thus, it has real
eigenvalues only (cf. [26, p. 469]) and, if w = (w0, ..., wk) ∈ Ck+1, then w̄Gkw

T ∈
R, where C stands for the set of complex numbers and w̄ = (w̄0, ..., w̄k) is the
vector whose coordinate w̄j is the conjugate of wj . We denote by λk the minimal
eigenvalue of the matrix Gk. Recall that

(3.7) λk := inf
©
w̄Gkw

T : w ∈ Ck+1, w̄ · wT = 1
ª
,

and that the sequence {λk}k∈N is nonincreasing (cf. [30, p. 54]). Let λ∗ :=
limk→∞ λk.

We denote by Xk the finite dimensional linear subspace of X spanned by the
vectors Kj with 0 ≤ j ≤ k. Recall that the sequence of vectors {Kk}k∈N is called
complete when

(3.8) cl
∞[
k=0

Xk = X.

Note that {Xk}k∈N is a nondecreasing sequence of nonempty closed convex subsets
of X and, therefore, cl

S∞
k=0Xk is exactly the Mosco limit of {Xk}k∈N (see [27,

Lemma 1.2, p. 526]). With these notations and facts in mind we are now in position
to formulate the second assumption on the DLMP data which we will make in the
sequel:

Assumption 3.2: The sequence of vectors {Kk}k∈N is complete and the limit
λ∗ := limk→∞ λk is positive.

Our aim is to prove the following existence and computability result concerning
the solutions of the moment problem stated above:

Theorem 3.1. Suppose that the data of the discrete linear moment problem
(1.1) satisfy Assumptions 3.1 and 3.2. Then the problem (1.1) has solutions and
any orbit

©
xk
ª
k∈N of P converges strongly to a solution of (1.1).

Proof. Define the bounded linear operator Mk : X → X by

(3.9) Mkx =
kX

j=0

µj
hx,Kji
||Kj ||2

Kj .

This operator is self-adjoint and positive semi-definite because for any x ∈ X we
have

hMkx, xi =
kX

j=0

µj
|hx,Kji|2
||Kj ||2

= hx,Mkxi .

Consequently, the equalities in (2.18) and (2.19) still hold when M is replaced by
Mk. They show that the spectral values of Mk and, in particular, the eigenvalues
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of Mk, if they exist, are necessarily nonnegative. Denote by Πk : X → Xk the
projection operator onto Xk. For each x ∈ X we have that

(3.10) Mkx =Mk(Πkx).

Indeed, if yk ∈ X⊥k is the unique vector in X such that x = Πkx + yk, then
Mkx = Mk(Πkx) +Mky

k, where the second term on the right hand side is null
because yk is orthogonal on all the vectors Kj with 0 ≤ j ≤ k and because of (3.9).
The equality (3.10), combined with (3.9), shows that the range of Mk is contained
in the finite dimensional space Xk. Since Mk is also bounded, it results that the
linear operator Mk is compact. Being compact and self-adjoint, the operator Mk

has eigenvalues (cf. [26, p. 469]) and all of them are real numbers. By (2.18) and
(2.19) written with Mk instead of M , if λ is an eigenvalue of Mk, then

0 ≤ α(Mk) ≤ λ ≤ β(Mk) = kMkk .
Observe that

kMkxk ≤
kX

j=0

µj
|hx,Kji|
kKjk ≤ kxk , ∀x ∈ X,

and this implies that kMkk ≤ 1. Hence, all eigenvalues of Mk are contained in the
interval [0, 1].

Now we are going to prove the following claim:
Claim 1: If the real number λ 6= 0 is an eigenvalue of Mk, then it is also an
eigenvalue of the Gram matrix Gk.

In order to prove this claim, let λ 6= 0 be an eigenvalue of Mk. Then, by (3.10),
there exists x̄ ∈ X such that x̄ 6= 0 and

(3.11)
kX

j=0

µj
hx̄,Kji
kKjk2

Kj = λx̄.

Dividing this equality by λ, it results that x̄ ∈ Xk. Also, the equality (3.11) implies
that

(3.12)

* √
µm

||Km||Km,
kX

j=0

¿
x̄,

√
µj

kKjkKj

À √
µj

||Kj ||Kj

+
= λ

¿ √
µm

||Km||Km, x̄

À
,

for m = 0, 1, ..., k. For each j ∈ {0, 1, ..., k} denote

cj =

¿
x̄,

√
µj

||Kj ||Kj

À
.

At least one of the numbers cj is different from zero since, otherwise, x̄ is orthogonal
on the linear space Xk to which it belongs and this contradicts the fact that x̄ 6= 0.
Then (3.12) is equivalent to

kX
j=0

¿ √
µm

||Km||Km,

√
µj

kKjkKj

À
cj = λcm, 0 ≤ m ≤ k,

showing that (c0, ..., ck) is an eigenvector for the matrix Gk corresponding to λ.
This proves Claim 1.

According to Assumption 3.2 the number λ∗ is positive and it was noted above
that the sequence {λk}k∈N is nonincreasing. Hence, for any nonnegative integer k,
the eigenvalues of the Gram matrix Gk are positive real numbers. This implicitly
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means that the matrix Gk is nonsingular and, therefore, that the vectors Kj with
0 ≤ j ≤ k, are linearly independent. With this in mind we are going to establish
the following fact:

Claim 2: The eigenvalues of the matrix Gk are among the eigenvalues of the oper-
ator Mk.

Suppose that λ is an eigenvalue of Gk and that w = (w0, ..., wk) ∈ Ck+1 is an
eigenvector corresponding to λ. Then we have that

kX
j=0

√
µmµj

hKm, w̄jKji
kKmk kKjk = λwm, 0 ≤ m ≤ k,

which implies that

(3.13) hy,Kmi = λ
kKmk√
µm

w̄m, 0 ≤ m ≤ k,

where

y :=
kX

j=0

√
µjw̄j

kKjk Kj .

Observe that y 6= 0 because the vectors Kj , 0 ≤ j ≤ k, are linearly independent
and, if y = 0, then we obtain that w̄j = 0 = wj for 0 ≤ j ≤ k contradicting
the assumption made above that w is an eigenvector of Gk. Multiplying the m-th
equation in (3.13) by (µmKm)/ kKmk2 and summing up the resulting equalities we
get

λy =
kX

m=0

µm
hy,Kmi
kKmk2

Km =Mky

and this shows that λ is an eigenvalue of Mk. Claim 2 is proved.
By Claim 1 and Claim 2, the matrix Gk and the operator Mk have the same

positive eigenvalues. Obviously, the operatorMk has also zero among its eigenvalues
since Mky = 0 for all y ∈ X⊥k . Note that

k(M −Mk)xk =
°°°°°°
∞X

j=k+1

µj
hx,Kji
kKjk2

Kj

°°°°°° ≤ kxk
∞X

j=k+1

µj , ∀x ∈ X,

and, therefore,

(3.14) kM −Mkk ≤
∞X

j=k+1

µj ,

for any k ∈ N. This implies that the sequence of linear operators {Mk}k∈N converges
to M (in the dual norm).

LetM 0
k be the restriction ofMk to the subspace Xk of X. By (3.9), the operator

M 0
k is an operator fromXk toXk. Using (3.10) it can be easily seen that any positive

eigenvalue of Mk is also an eigenvalue of the operator M 0
k. Since Mk and Gk have

the same positive eigenvalues, it results that M 0
k and Gk have exactly the same set

of eigenvalues. Being an operator on a finite dimensional space, the spectrum of
M 0

k consists of eigenvalues only. Consequently, the spectrum of M 0
k is exactly the
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set of eigenvalues of Gk. Hence, the minimal spectral value of M 0
k is α(M

0
k) = λk.

Thus, by (2.18) applied to M 0
k we deduce that

(3.15) hM 0
k (Πkx) ,Πkxi ≥ α(M 0

k) kΠkxk2 = λk kΠkxk2 , ∀x ∈ X\{0},
for any k ∈ N.

According to (3.10), for any x ∈ X\{0} we have that
(3.16) |hMx, xi− hM 0

k(Πkx),Πkxi| ≤
|hMx, xi− hMkx, xi|+ |hMkx, xi− hM 0

k(Πkx),Πkxi| =
|hMx, xi− hMkx, xi|+ |hMkx, xi− hMkx,Πkxi|
≤ kMx−Mkxk kxk+ kMkxk kx−Πkxk ,

where the sequence {kMx−Mkxk}k∈N converges to zero and the sequence {kMkxk}k∈N
is bounded because, as shown above, {Mk}k∈N converges to M in the dual norm.
It was noted before that, since the sequence {Kk}k∈N is complete (cf. Assumption
3.2), the sequence {Xk}k∈N of closed convex subsets of X converges in the sense
of Mosco (see [27]) to X. This implies (see, for instance, [13, Theorem 1]) that
the sequence {kx−Πkxk}k∈N converges to zero for any x ∈ X. Consequently, by
(3.16), we deduce that

lim
k→∞

|hMx, xi− hM 0
k(Πkx),Πkxi| = 0, ∀x ∈ X\{0}.

Now, taking on both sides of the the inequality (3.15) the limit as k →∞ we obtain
that

hMx,xi ≥ λ∗ kxk2 , ∀x ∈ X\{0}.
This and (2.18) imply that α(M) ≥ λ∗ > 0 and, thus, Theorem 2.2 applies. It
shows that any orbit

©
xk
ª
k∈N of the operator P converges weakly and its weak

limit z = w-limk→∞ xk is a minimizer of the function g. We prove next that z is
necessarily a solution of (1.1). If this is true then, by (3.5), we deduce that g(z) = 0
and, thus, using Theorem 2.2 again we obtain that limk→∞ g(xk) = 0 which, in
turn, implies that the convergence of

©
xk
ª
k∈N is strong. In order to prove that z is

a solution of (1.1), observe that, since z is a minimizer of the differentiable function
g, we have that ∇g(z) = 0. This, (2.4) and (3.4), taken together, imply that

(3.17) 0 = 2 ·∇g(z) = 2
∞X
j=0

µj
|bj − hKj , xi|2

kKjk2
Kj .

According to [30, Remark 1, p. 54], since λ∗ > 0, it results that the sequence of
vectors {Kk}k∈N is minimal in the sense that

Kj /∈ span {Kk : k 6= j} , ∀j ∈ N.
Consequently, by [30, Remark 1, p. 54], there exists a sequence {Lk}k∈N contained
in X which is biorthogonal to {Kk}k∈N , that is, hKk, Lji = δk,j , where δk,j is the
Knonecker delta. Using this fact and (3.17), we deduce that

0 = 2
∞X
j=0

µj
|bj − hKj , xi|2

kKjk2
hKj , Lmi = 2µm

|bm − hKm, xi|2
kKmk2

,

for any m ∈ N. This can not happen unless bm − hKm, zi = 0 for all m ∈ N, that
is, unless z is a solution of (1.1). ¤
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Theorem 3.1 indicates a method of solving the DLMP by computing a large
number of iterates xk of an arbitrary orbit of P. An intrinsic difficulty of this
method is that it requires precise computation of the iterates xk given by the rule

(3.18) xk+1 = xk +
∞X
j=0

µj
bj −


Kj , x

k
®

kKjk2
Kj ,

which involves infinitely long summations. Obviously, effectively computing the
infinite sum occurring in (3.18) is not practically doable. This leads to the question
whether Theorem 3.1 remains true if one replaces the iterates xk given by (3.18)
by "inexact" iterates yk of the form

(3.19) yk+1 = yk +

n(k)X
j=0

µj
bj −


Kj , y

k
®

kKjk2
Kj ,

where, for each k ∈ N, the nonnegative integer n(k) is sufficiently large. The fol-
lowing result shows that this is indeed the case when the sequence {|bk| / kKkk}k∈N
has a known positive upper bound.

Corollary 3.1. Suppose that Assumptions 3.1 and 3.2 are satisfied and let
γ be a positive upper bound of the sequence {|bk| / kKkk}k∈N . If, for a summable
sequence {εj}j∈N of positive real numbers, and for each k ∈ N, the number n(k) is
chosen such that

(3.20) 1−
n(k)X
j=0

µj ≤
εk

γ + kykk ,

then any sequence
©
yk
ª
k∈N given by (3.19) converges strongly to a solution of the

discrete linear moment problem (1.1).

Proof. If
©
yk
ª
k∈N is a sequence given by (3.19) with the numbers n(k) satis-

fying (3.20), then we have

°°yk+1 −Pyk°° =
°°°°°°

∞X
j=n(k)+1

µj
bj −


Kj , y

k
®

kKjk2
Kj

°°°°°°
≤

∞X
j=n(k)+1

µj

¯̄
bj −


Kj , y

k
®¯̄

kKjk ≤ ¡γ + °°yk°°¢ ∞X
j=n(k)+1

µj

=
¡
γ +

°°yk°°¢
1− n(k)X

j=0

µj

 ≤ εk,

for all k ∈ N. This implies that the sequence ©°°yk+1 −Pyk°°ª
k∈N is summable, that

is
©
yk
ª
k∈N is an inexact orbit with summable errors for P. As noted in Section 2,

the operator P is nonexpansive and, by Theorem 3.1, all orbits of P are converging
strongly to solutions of (1.1). Clearly, the set of solutions of (1.1) and the set of
fixed points of P coincide. So, the orbits of the nonexpansive operator P converge
strongly to fixed points of P . By Theorem 3, Corollary 4 and Theorem 4 in [12],
it follows that all inexact orbits with summable errors of P and, in particular, the
sequence

©
yk
ª
k∈N , converges strongly to a solution of the DLMP (1.1). ¤
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Figure 1. The minimal eigenvalues of the Gram matrices Gk

The following example shows that our assumptions in Theorem 3.1 and in
Corollary 3.1 are consistent. We present a sequence of functions {Kk}k∈N which
satisfies the hypothesis of those results.

Example 3.1: Consider the real Hilbert space X = L2[0, 5] of (Lebesgue)
square-summable functions on [0, 5] provided with the inner product

hx, yi =
Z 5

0

x(t)y(t)dt.

Let

(3.21) Kk(t) = 10
√
10 exp

£−(k + 1)2t¤ , ∀k ∈ N.
It is well known that this sequence is complete in the Hilbert space X which we
consider here. The behavior of the sequence {λk}k∈N associated with the functions
Kk(t) is shown in Figure 1. Observe that after 100 computational steps the values
of λk became stable around the positive number λ∗ = 0.0059. Hence, our functions
Kk satisfy Assumption 3.2 above.
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Note that the norms of the functions Kk are

kKkk2 = 1

2 (k + 1)2

³
1− e−10(k+1)

2
´
, ∀k ∈ N,

showing that
P∞

k=0 kKkk2 <∞. Take, for example, bk = 1/(k + 1) for any k ∈ N.
As pointed out at the beginning of this section, since both sequences {bk}k∈N and
{kKkk}k∈N are square-summable, we can take the numbers µk as defined by (3.2)
and Assumption 1 holds too.
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