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I. INTRODUCTION

The consistent convex feasibility problem is: Given m closed and convex subsets C1, ..., Cm of R
n

such that the set

C :=

m
⋂

i=1

Ci (I.1)

is nonempty, find a point x ∈ C . Many projection methods are known to provide, in various ways,

solutions of this problem (see [1] and [6] for surveys on this topic). Our purpose here is to present a

scheme for generating a large class of (metric) projection methods that we call amalgamated projection

methods. Among the amalgamated projection methods are most of the already known metric projection

methods for solving convex feasibility problems, as well as a plethora of new procedures that, to the

best of our knowledge, were not studied before. In particular, we give a variant of the method that can

be used to steer a convex functional towards its minimum subject to consistent convex constraints.

If C ⊆ R
n and x ∈ R

n, then

d(x,C) = inf {‖x − y‖ : y ∈ C} . (I.2)

If C is also closed and convex, then there is one and only one y ∈ C , such that ‖x − y‖ = d(x,C);

we call this y the projection of x onto C and denote it by PC(x). In what follows, we abbreviate the

projection operator PCi
by Pi.

By an index vector we mean a vector ω = (ω1, ..., ωp) whose coordinates ωj are in the set {1, ...,m} .

If ω = (ω1, ..., ωp) is an index vector, then we denote

P [ω] := Pωp
◦ ... ◦ Pω1

. (I.3)

A set Ω of index vectors is called fit (to the given feasibility problem) if, for each i ∈ {1, ...,m},

there exists ω = (ω1, ..., ωp) ∈ Ω such that ωs = i for some s ∈ {1, ..., p} . We denote by Ωi the

set of those ω ∈ Ω having i among its coordinates. If Ω is a fit set of index vectors, then a function

w : Ω → R++ = (0,∞) is called a fit weight function if
∑

ω∈Ω w(ω) = 1. A pair (Ω, w) consisting of a

fit set of index vectors and a fit weight function defined on it is called an amalgamator. We define the

operator P : R
n → R

n by

Px=
∑

ω∈Ω

w(ω)P [ω] x. (I.4)

This operator is continuous because each Pi is a continuous function on R
n. With these notions and
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notations, the amalgamated projection method for the amalgamator (Ω, w) is:

x0 ∈ R
n,

xk+1 = Pxk, ∀k ∈ N.

(I.5)

Many known projection methods can be described as amalgamated projection methods. For instance,

if Ω = {ω} with ω = (1, 2, ...,m), then w(ω) = 1 and the amalgamated projection method with the

amalgamator (Ω, w) gives the cyclic projection method originating in [12]; if the amalgamator (Ω, w)

consists of Ω = {ω1, ..., ωm} , where, for each i ∈ {1, ...,m} , ωi = (i), and w(ωi) = wi > 0 with
∑m

i=1 wi = 1, then the amalgamated projection method gives a generalization of the Cimmino algorithm

originating in [7]. More generally, it can be seen easily by direct comparison that the unrelaxed versions

of many projection methods for solving convex feasibility problems, such as those discussed in [1], [5],

and [14], can be described as amalgamated projection methods.

In order to see that some relaxed projection methods are also describable as amalgamated projection

methods, observe that the convex feasibility problem is equivalent to: Find a common point of the sets

C1, ..., Cm, Cm+1 where

Cm+1 := R
n. (I.6)

In this case, Pm+1x = x, for all x ∈ R
n. If (Ω, w) is an amalgamator of the original problem of finding a

common point of the sets C1, ..., Cm, then for any α ∈ (0, 1), the pair (Ω′, w′), where Ω′ = Ω∪{(m + 1)}

and w′ : Ω′ → R+ is defined by

w′(ω) =



















αw(ω), if ω ∈ Ω,

1 − α, if ω = (m + 1),

(I.7)

is an amalgamator of the problem of finding a common point of the sets C1, ..., Cm+1 , and the amalga-

mated projection method for the amalgamator (Ω′, w′) is the relaxed iterative algorithm:

x0 ∈ R
n,

xk+1 = (1 − α)xk + αPxk, ∀k ∈ N.

(I.8)

In Section II we prove a theorem that states that an amalgamated projection method converges to a

solution of the given consistent convex feasibility problem, and its convergence is stable under summable

perturbations of the iterates. Precisely, we prove:
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Theorem. Let Ci, 1 ≤ i ≤ m, be closed convex sets with a nonempty intersection C . If {βk}k∈N
is

a sequence of positive real numbers such that
∑∞

k=0 βk < ∞ and
{

vk
}

k∈N
is a bounded sequence of

vectors in R
n, then for any amalgamator (Ω, w) the procedure

x0 ∈ R
n,

xk+1 = P(xk + βkv
k), ∀k ∈ N

(I.9)

converges, and its limit is in C.

The stability under perturbations of the convergence of projection methods for solving convex feasibility

problems was also considered in [1], where the behavior of such procedures is studied under the

assumption that the sets Ci are given by approximations. By contrast, our Theorem deals with the situation

in which the sets Ci are precisely given, but the projections Pi on them are determined only approximately.

A result similar to our Theorem was obtained in [8] concerning the following: Fix w ∈ R
m
++ such that

∑m
i=1 wi = 1 and use the procedure

x0 ∈ R
n,

xk+1 =

m
∑

i=1

wi

[

Pi(x
k) + βkv

k
]

, ∀k ∈ N.
(I.10)

We have noted that many known algorithms for solving convex feasibility problems can be described

as amalgamated projection methods. The functioning of some amalgamated projection methods with not

so standard features is described in Section III. In Section IV we present a variant using subgardients

that can be used to approximate the solutions of some constrained convex optimization problems [15].

II. PROOF OF THE THEOREM

The proof is in two stages. In the first, we prove that the Theorem is true when there are no perturbations

of the computational process, that is, we prove:

Claim 1: If βk = 0 for all k ∈ N, then the Theorem is true.

Note that, in this instance, the procedure (I.9) reduces to (I.5). Let i ∈ {1, ...,m} and recall that the

projection operator Pi is 1-attracting with respect to Ci (in the sense given to this term in [1]), that is,

it satisfies

‖z − Pix‖
2 + ‖Pix − x‖2 ≤ ‖z − x‖2 , (II.1)
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for any z ∈ Ci and x ∈ R
n. Therefore, according to [1, Proposition 2.10], the operator P [ω] is 2−p(ω)-

attracting with respect to the set C, that is, for any z ∈ C and x ∈ R
n,

‖z − P [ω]x‖2 +
1

2p(ω)
‖P [ω]x − x‖2 ≤ ‖z − x‖2 , (II.2)

where p(ω) is the length of the index vector ω. In particular, for any z ∈ C and k ∈ N, we have that
∥

∥

∥
z − P [ω]xk

∥

∥

∥

2
+ 2−p(ω)

∥

∥

∥
P [ω]xk − xk

∥

∥

∥

2
≤

∥

∥

∥
z − xk

∥

∥

∥

2
. (II.3)

Let

p∗ := max
ω∈Ω

p(ω). (II.4)

By (II.3) we deduce that, whenever z ∈ C and k ∈ N,
∥

∥

∥
z − P [ω]xk

∥

∥

∥

2
+ 2−p∗

∥

∥

∥
P [ω]xk − xk

∥

∥

∥

2
≤

∥

∥

∥
z − xk

∥

∥

∥

2
. (II.5)

Multiplying both sides of this inequality by w(ω), summing up the resulting inequalities, and taking into

account that, for each u ∈ R
n, the function x → ‖u − x‖2 is convex, we deduce that, for all z ∈ C and

k ∈ N,
∥

∥

∥
z − xk+1

∥

∥

∥

2
+ 2−p∗

∥

∥

∥
xk+1 − xk

∥

∥

∥

2
≤

∥

∥

∥
z − xk

∥

∥

∥

2
, (II.6)

and, consequently,
∥

∥

∥
z − xk+1

∥

∥

∥
≤

∥

∥

∥
z − xk

∥

∥

∥
. (II.7)

This implies that the sequence
{∥

∥z − xk
∥

∥

}

k∈N
converges. By (II.6) we have that, for all z ∈ C and

k ∈ N,

2−p∗

∥

∥

∥
xk+1 − xk

∥

∥

∥

2
≤

∥

∥

∥
z − xk

∥

∥

∥

2
−

∥

∥

∥
z − xk+1

∥

∥

∥

2
,

and the right hand side converges to zero. Hence,

lim
k→∞

∥

∥

∥
xk+1 − xk

∥

∥

∥
= 0. (II.8)

Since C is nonempty and, for z ∈ C, the sequence
{∥

∥z − xk
∥

∥

}

k∈N
converges (and, hence, is bounded),

the sequence
{

xk
}

k∈N
is bounded and, thus, has cluster points. Let x∗ be such a cluster point and let

{

xik

}

k∈N
be a subsequence of

{

xk
}

k∈N
converging to x∗. Then

x∗ = lim
k→∞

xik = lim
k→∞

xik+1 = lim
k→∞

Pxik = Px∗, (II.9)

where the second equality follows from (II.8), the third one from (I.5), and the last one is due to the

continuity of P. This implies that x∗ is a fixed point of P. According to [1, Proposition 2.12(i)],

FixP =
⋂

ω∈Ω

Fix P [ω]. (II.10)
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Hence,

x∗ ∈ Fix P [ω], ∀ω ∈ Ω, (II.11)

where, by [1, Proposition 2.10(ii)], if ω = (ω1, ..., ωp), then

FixP [ω] =

p
⋂

j=1

Fix Pωj
=

p
⋂

j=1

Cωj
. (II.12)

Note that since Ω is a fit set of index vectors, for each i ∈ {1, ...,m} , there exists ω ∈ Ωi. Consequently,

for each i ∈ {1, ...,m} and for each ω ∈ Ωi, we have that

x∗ ∈ Fix P [ω] ⊆ Fix Pi = Ci. (II.13)

This implies that x∗ ∈ C. Since x∗ was an arbitrary cluster point of
{

xk
}

k∈N
, it follows that all cluster

points of
{

xk
}

k∈N
are contained in C. By [1, Proposition 2.16(ii)] the sequence

{

xk
}

k∈N
, having the

property (II.7), can have at most one cluster point in C. Hence, the sequence
{

xk
}

k∈N
has a single

cluster point, i.e., it converges to a point in C and the proof of Claim 1 is complete.

To complete the proof of the Theorem, we prove:

Claim 2: If {βk}k∈N
and

{

vk
}

k∈N
are sequences satisfying the hypotheses of the Theorem, then any

sequence generated according to (I.9) converges, and its limit is in C.

Observe that in the procedure (I.9), the operator P is nonexpansive. Thus, for each k ∈ N, we have

that
∥

∥

∥
xk+1 −Pxk

∥

∥

∥
=

∥

∥

∥
P(xk + βkv

k) −Pxk
∥

∥

∥
(II.14)

≤
∥

∥

∥
(xk + βkv

k) − xk
∥

∥

∥
= βk

∥

∥

∥
vk

∥

∥

∥
.

Consequently, denoting by M a finite upper bound of the bounded sequence
{∥

∥vk
∥

∥

}

k∈N
, we have that

∞
∑

k=0

∥

∥

∥
xk+1 −Pxk

∥

∥

∥
≤ M

∞
∑

k=0

βk < ∞, (II.15)

showing that the sequence
{
∥

∥xk+1 −Pxk
∥

∥

}

k∈N
is summable. According to [2, Theorem 4], this summa-

bility implies that the sequences generated by (I.9) converge if, and only if, the sequences generated by

(I.5) converge, and the summability also implies that if the sequences given by (I.5) converge to fixed

points of P, then the sequences given by (I.9) also converge to fixed points of P. Taking into account the

already proved Claim 1 that shows that the sequences generated according to (I.5) converge to elements

of C (which, obviously, are fixed points of P), we deduce that the sequences generated by (I.9) converge
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to fixed points of P. Since, according to (II.10) and (II.12) combined with the fact that Ω is a fit set of

index vectors, we have that

C ⊆ FixP =
⋂

ω∈Ω

Fix P [ω] (II.16)

=

m
⋂

i=1

⋂

ω∈Ωi

FixP [ω] ⊆

m
⋂

i=1

Ci = C,

and so C = FixP and, hence, the sequences generated by (I.9) converge to points in C. �

III. ILLUSTRATIONS

In this section we illustrate the way in which the amalgamated projection methods function in some

particular instances and how they compare with the cyclic projection method whose convergence behavior

is well researched.

Consider the amalgamator (Ω, w) for which Ω consists of m index vectors of the form

(1), (2, 1), (3, 2, 1), . . . , (m,m − 1, ..., 1), (III.1)

and w(ω) = 1/m. The functioning of the corresponding algorithm (which we call here the averaged

projection method) in the case m = 3 is illustrated by Figure 1, where two iterates x1 and x2 are

indicated in parallel with the first two iterates of the cyclic projection method starting from the same

initial point x0. In the illustrated case, the second iterate of the cyclic projection method is closer to the

common point of the lines C1, C2 and C3 than the second iterate of the averaged projection method.

x

x1 0

2method

method

Cyclic projection
method  2x

x1Cyclic projection method

C

C
C 2

3

1

x

Averaged projection

Averaged  projection

Fig. 1. Illustration of the cyclic projection and the averaged projection methods for m = 3.

January 29, 2007 DRAFT



8

3

x1
x0

P P P
2   3   12   3   1

1   2   3
P P P

P P P

P P P
3   2   1

P P P
3   1   2

2   1   3
P P P

1   3   2

C

C 1

C 2

Fig. 2. A step of the algorithm with amalgamator (Ω, w) for which Ω contains all permutations of {1, 2, 3} and w(ω) = 1/6 for

all ω.

Another possible amalgamator (Ω, w) is one for which Ω consists of all m! permutations of the set

{1, ...,m} and w(ω) = 1/ (m!) for each ω ∈ Ω. The functioning of the resulting amalgamated projection

method is illustrated in Figure 2. It is interesting to note that, in Figure 2, the point marked P3P2P1 is, in

fact, the first iterate of the cyclic projection method. This is not as close to the solution of the feasibility

problem as the iterate x1 generated by the amalgamated projection method.

IV. APPLICABILITY TO OPTIMIZATION IN TOMOGRAPHY

The Theorem guarantees the convergence of the amalgamated projection method when the calculation

of the iterates is affected by summable perturbations. We can make use of this property to steer the

iterates towards the minimizer of a given convex function.

Consider a convex function φ : R
n → R which has a minimizer over the set C. For any k ∈ N, let

sk ∈ ∂φ(xk), the subgradient of φ at xk, and define

vk =



















− sk

‖sk‖ , if sk 6= 0,

0, if sk = 0.

(IV.1)

Clearly, the sequence
{

vk
}

k∈N
defined by (IV.1) is bounded. Therefore, by the Theorem, for any

summable sequence of positive real numbers {βk}k∈N
, the sequence

{

xk
}

k∈N
generated according to

(I.9) converges to an element of C.
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The relevance of this is seen in the context of the theory of projection subgradient methods for solving

constrained convex optimization problems [15]. The iterative step of a projection subgradient method is

yk+1 = PC(yk + βkv
k), (IV.2)

where the vectors vk are given by (IV.1) and PC is the metric projection operator onto the set C.

Determining projections onto C can be a computationally complicated process even if the sets Ci defined

by the constraints of the problem of minimizing φ over C are relatively simple sets, such as hyperplanes

or half-spaces. By contrast, calculating the projections onto the individual Ci is frequently easy and, in

such cases, implementation of (I.9) instead of (IV.2) can be very advantageous from the point of view

of the computational burden.

In our implementation, we use the following methodology for generating the real numbers {βk}k∈N.

We define, for an x ∈ R
n,

Res(x) =

√

√

√

√

m
∑

i=1

[d(x,Ci)]2. (IV.3)

Clearly, x ∈ C if, and only if, Res(x) = 0. Furthermore, if Res(x) > 0, then its size indicates how badly

x violates the given collection {C1, . . . , Cm} of constraints. An approximate solution x to the convex

optimization problem (for φ) under these constraints should have a small value of Res(x) and should aim

at finding, among all x with similar (or smaller) value of Res(x), an x for which φ(x) is small relative

to the others. Guided by this principle, we generate {βk} as follows. We initialize β to be an arbitrary

positive number. (We have always used β = 1.) The original value of β is in fact the β0 in (I.9). In the

process of the iterative step from xk to xk+1, we also update the value of β, which is (in the notation of

(I.9)) βk at the beginning of the iterative step and βk+1, at its end, according to the following pseudocode

(in which vk is defined by (IV.1)).

1: logic = true;

2: while (logic)

3: z = xk + βvk

4: if ( φ(z) ≤ φ(xk) )

5: then

6: xk+1 = P(z)

7: if ( Res(xk+1) < Res(xk) )

8: then logic = false

9: else β = β/2
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10: else β = β/2

We terminate the iterative process when we find an xk such that Res(xk) < ε, where ε is a user-specified

small positive number.

We illustrate our approach on an example from image processing: tomographic reconstruction of images

that are not uniquely determined from the available data, with the help of a convex functional φ that

assigns to each image a nonnegative number that indicates, in some sense, the “undesirability” of the

image. (For example, we may know that most images in our application area should be “piece-wise

smooth.” In that case, φ(x) should measure the extent to which piece-wise smoothness is violated in the

image represented by x.)

Figure 3(a) shows a phantom that is a 243 × 243 digitized image (thus n = 59, 049), representing

a cross-section of a human head [11, Section 4.3]. The components of x represent the average X-ray

attenuations within the 59, 049 pixels, each of each is of size 0.0752×0.0752 (the assumed unit of length

is 1 cm). The values of these components range from 0 to 0.5637; for display purposes, any value below

0.1945 is shown as black (gray value 0) in Figure 3, and any value above 0.2200 is shown as white (gray

value 255), with a linear mapping of the x-component values into gray values in between. Data were

collected by calculating line integrals through the digitized image for 82 sets of equally spaced parallel

lines. Each such line integral gives rise to a linear equation in the components of x; the set of x that is

consistent with such a line integral is a hyperplane in R
n. The phantom itself lies in the intersection of

all these hyperplanes. In our experiments, we used measurements for 25, 452 lines, making our problem

very much underdetermined. (The intersection of all the hyperplanes is an at least 33, 597-dimensional

subspace of R
59,049). In the terminology of our paper m = 25, 452 and, for 1 ≤ i ≤ m, Ci is one of the

hyperplanes.

A classical method for finding a common point in such hyperplanes is the cyclic projection method,

which is commonly known as ART in tomography [11, Chapter 11]. If it is initialized with x0 being the

zero vector, it is known [11, Section 11.2] to converge to that point x in the intersection of the hyperplanes

for which ‖x‖ is minimal. In practice, ART needs to be stopped after a finite number of steps. In Figure

3(b) we show the result obtained by ART when we stopped at a k for which Res(xk) < 0.005. On

an Intel Xeon 1.7 MHz processor 1 G RAM workstation, obtaining such a good fit to the data by ART

required just over 112 minutes. (To demonstrate that 0.005 is indeed a small value in our context, we

point out that Res(x0) = 330.204.)

There are some obvious differences between the phantom in Figure 3(a) and the ART reconstruction

in Figure 3(b). This indicates that ‖x‖ may not be a particularly good measure of the undesirability of
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TABLE I

NUMERICAL VALUES FOR THE OUTPUTS OF THE ALGORITHMS

Method norm TV distance time

ART 46.04 1300.8 3.644 112.6

TV-reducing (ours) 46.19 457.2 0.223 14.6

TV-minimizing (from [9]) 46.17 471.3 0.390 59.9

x in this situation. Many research workers in image processing have been advocating the use of total

variation rather than the norm; e.g., [3], [10], [13], [16], [17], and [18]. For a K × L image p whose

pixels are denoted by pk,l (1 ≤ k ≤ K, 1 ≤ l ≤ L), the total variation (TV) of p is

TV (p) =

K−1
∑

k=1

L−1
∑

l=1

√

(pk+1,l − pk,l)2 + (pk,l+1 − pk,l)2. (IV.4)

By mapping p into a (K ×L)-dimensional vector x (by stacking into a single column all the columns

of p), this definition gives rise to a functional φ that can be used in our algorithm designed above. As for

ART, we selected P to be that of the cyclic projection method. The only difference between ART and

this new algorithm comes from the perturbations aimed at reducing the total variation. Again we started

the process with x0 being the zero vector and stopped it when Res(xk) < 0.005. Figure 3(c) illustates

the output of the algorithm. It is visually superior to the reconstruction of Figure 3(b). (As a numerical

measure, the norm of the difference between the ART reconstruction and the phantom is more than 16

times greater than the norm of the difference between the TV-reducing reconstruction and the phantom.)

What is particularly interesting is that the TV-reducing algorithm is significantly less expensive than

ART: The total time required was less than 15 minutes. The reduction in Res(xk) as a function of

computer time is plotted in Figure 4 for both algorithms. Even though a single iterative step of ART is

less expensive than that of the TV-reducing algorithm, the perturbations in the latter steer it towards the

correct result (i.e., in the general direction of the phantom) and so much fewer steps are needed to get

Res(xk) below a given ε.

In the first two rows of Table I, we report on the values of the norm and TV for the outputs of the two

algorithms (as well as the distance between the reconstruction and the phantom and the time in minutes

needed to obtain the reconstruction). As can be seen, the algorithms tend to minimize the function that

they are supposed to be minimizing; the superiority of the reconstruction in Figure 3(c) to that in Figure

3(b) is due to TV minimization being a more appropriate aim than norm minimization in the current

circumstances.
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Finally, to show how well our new method is doing at minimizing TV as compared to an established

procedure, we ran a TV-minimizing version of Algorithm 6 in [9] on our data. Again, starting the process

with the zero vector and stopping it when Res(xk) < ε = 0.005, we obtained an output for which the

TV value is 471.3, which is not quite as low as obtained by our new algorithm (457.2). Also, the time

required to get to termination was just over 4 times longer for the algorithm of [9] than for our new

algorithm. All the relevant numbers for this algorithm are also reported in Table I.

All the computational work reported here was done using snark05 [4]; the phantom, the data, the

reconstructions, displays, and plots were all generated within this same environment. In particular, this

implies that differences in the reported reconstruction times are not due to the different algorithms being

implemented in different environments.

V. SUMMARY

We have proposed a class of projection methods for solving the consistent convex feasibility problem

and proved their convergence to a feasible point even under summable perturbations. We have discussed

how this property can be used to steer the iterative process towards minimizing a convex function, and have

illustrated the potential usefulness of this by applying it to the problem of total variation mimimization

in tomography.
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(a)

(b)

(c)

Fig. 3. Illustrative example of optimization in tomography. (a) The phantom for which data were collected. (b) Norm-minimizing

reconstruction (cyclic projection method, ART). (c) TV-reducing reconstruction (cyclic projections with perturbations).
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Fig. 4. Plots of Res(xk) for ART (blue) and the new TV-reducing algorithm (green) both plotted against computer time.
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