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Abstract. We describe a category of towers of spaces in which
the v-periodic homotopy groups of a space X with respect to any
map v : ΣdM → M are representable. Using this description
we construct a spectral sequence converging to the vn-periodic ho-
motopy groups of the suspension of a space X of type n, with
E

2-term depending only on v
−1

n π⋆(X; M ).

1. Introduction

Given a self map v : ΣdM → M of some space M , the t-th
v-periodic homotopy group of a space X , denoted v−1πt(X; M), is
defined to be the direct limit of

[ΣtM , X]
(Σtv)#

−→ . . . [Σt+rdM , X]
(Σt+rdv)#

−→ [Σt+(r+1)dM , X] . . . (for t ≥ 0).

The main case of interest is when M is a p-torsion finite complex
of type n for some prime p and v is a vn-self map (see §7.1 below). In
the past decade there has been much work done on such vn-periodic
homotopy groups, both stable (cf. [R1, DHS, HS, Ma2]) and unstable
(cf. [Ma1, T2, MT]). Recently Bousfield and Dror-Farjoun have devel-
oped a general framework for studying (unstable) periodic phenomena
by means of localizations (see [Bo3, DF1, DF2], and section 7 below).

These localizations – and thus in particular the vn-periodic homo-
topy groups – behave quite well with respect to products, fibration
sequences, loops, and other homotopy (inverse) limits – see [DS, The-
orems B,C] and [DF2]. However, there is no evident relation between
the (unstable) vn-periodic homotopy groups and homotopy colimits ,
even in the simplest cases, such as the suspension. (Unlike ordinary
homotopy groups, there is not even a stable range in which such a
relation exists).
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Our interest in this subject was first raised by the following seemingly
innocuous question: given a vn-self map v = ΣdM → M and a map
f : X → Y which induces an isomorphism in v−1π∗(−; M), does
Σf : ΣX → ΣY induce such an isomorphism, too? This appears
to be a hard question, even if we replace the v-periodic groups by
“homotopy groups with coefficients in M”: that is, by the groups

πt(−; M)
Def
= [ΣtM ,−] for 0 ≤ t < ∞ (see [BT]).

The question for the vn-periodic groups has been answered in the
meantime by Bousfield, under somwhat limiting assumptions (see sec-
tion 7 below). Here we present a first approach to a more delicate
question: in what way do the (unstable) vn-periodic homotopy groups
of a space X determine those of its suspension ΣX? Our main result
in this direction is:

Theorem A: Let v = ΣdM → M be a vn-self map and X a
sufficiently connected space X with v−1

m π∗(X; Vm−1) = 0 for 0 ≤
m < n (where Vm−1 is a suitable complex of type m); then there is
a first quadrant spectral sequence converging to v−1π∗(ΣX; M), with
E2-term isomorphic to the derived functors of a certain (algebraic)

functor Σ̂ applied to v−1π∗(X; M).

(This is stated more precisely in Theorem 10.1 below.) Once more
the answer we give requires somewhat restrictive assumptions on X.
As with Bousfield’s result, it is still not clear to what extent these are
inherent in the problem, and to what extent they are dues to technical
difficulties in the approach we take.

This approach is based on Stover’s construction of the simplicial
resolution of a space which he used to attack the analogous question of
determining the homotopy groups of a wedge π⋆(X ∨ Y ) from π⋆X

and π⋆Y – cf. [St]; as in his case, our results generalize to other
homotopy colimits.

1.1. outline. In order to use Stover’s approach, we need a version of
periodic homotopy in which the periodic homotopy groups are repre-
sentable in some (homotopy) category. The naive approach would be
to use towers of spaces, as described in section 2 (see (4.3)). However,
this does not quite suit our purpose, mainly because infinite wedges
of towers do not constitute a categorical coproduct. So we are forced
to extend our original category to one of “virtual towers” (in section
3): these should be thought of as a “cocompletion” of the category
of (ordinary) towers with respect to homotopy colimits, an idea which
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may be of use in other contexts too. In this category the construc-
tion of [St] can be made to work: we construct a simplicial v-periodic

resolution Ĵ• of an arbitrary tower X in section 5.
Next, we need a Quillen spectral sequence relating a simplicial tower

X̂• to its realization ‖X̂•‖ (which for X̂• = Ĵ• should be closely
related to the original X). This is done by means of mapping spaces
for towers, which translate questions about a simplicial tower and its
realization back into questions about simplicial spaces and their real-
izations. These are considered in section 6.

In section 7 we summarize some results of Bousfield on localization
with respect to vn-self maps; the most important is Corollary 7.9,
which tells us in particular that if f : X → Y induces an isomorphism
in v−1

m π∗(−; Vm−1) for 0 ≤ m ≤ n (and if X, Y are sufficiently
connected) then Σf does, too.

Section 8 then allows us to apply Bousfield’s results to towers. It
is the technical difficulties here which force us to restrict attention to
spaces of type n; otherwise, it would appear that a full knowledge of
{v−1

m π∗(X; Vm−1)}
n
m=1 should suffice to determine v−1

n π∗(ΣX ; Vn−1)}.
Finally, the appropriate analogue of the concept of a Π-algebra –

which encodes the “algebraic” information regarding the v-periodic ho-
motopy operations on v−1π∗(X; M) needed to recover v−1π∗(ΣX; M)
– is defined in section 9. This is used in section 10 to describe the
E2-term of the suspension spectral sequence of Theorem A.

1.2. conventions and notation. Let T⋆ denote the category of con-
nected pointed CW -complexes, with base-point preserving maps. All
spaces will be assumed to lie in T⋆, unless otherwise stated.

M will denote a model space. For simplicity we shall assume it
is a homotopy-commutative co-H space which is a finite-dimensional
CW complex. We adopt the stable convention that M r denotes the
suspension of M with top cell(s) in dimension r (so that M r does not
necessarily exist for small r). The homotopy groups with coefficients

in M of any space X ∈ T⋆ are πk(X; M)
Def
= [M k, X].

Let v : M d+r0 → M r0 be a fixed self-map (with d > 0 unless
otherwise noted), which we shall assume to be a co-H map. We shall
denote all its suspensions Σr−r0v : M r+d → M r simply by v : M d →
M , unless there is danger of confusion. We also assume that v is not
nilpotent – i.e., that for all n, the composite v ◦Σdv ◦ . . .Σndv is not
nullhomotopic.
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With this notation, we define the t-th v-periodic homotopy group of
X with coefficients in M to be

v−1πt(X; M)
Def
= colimn { [M t, X]

v#

−→ . . . [M t+nd, X]
v#

−→ [M t+(n+1)d, X] . . .}.

In any category, the direct limit, or colimit , over a diagram scheme
I will be denoted by colimI , while the (inverse) limit will be denoted
by limI . Similarly, a (pointed) homotopy colimit over I (in T⋆) will
be denoted by hocolimI .

Apology 1.4. We wish to apologize for the somewhat technical nature
of what was originally intended to be a “conceptual” paper, and in
particular for the large number of definitions. We have tried to indicate
at each stage why these were forced upon us.

2. The category of towers

In order to represent v-periodic homotopy we first consider the naive
choice – namely, the category of towers of spaces, which are clearly
related to the idea of periodicity.

It should perhaps be remarked that Brayton Gray ([Gr2]) has con-
sidered an analogous concept, which he calls the category of cospectra.
This terminology emphasizes a certain duality, which will be evident
in this section, between unstable periodic homotopy, represented by
towers, and ordinary stable homotopy, represented by spectra.

First, some definitions:

2.1. towers of spaces. The objects we shall be studying are towers
in T⋆ – i.e., sequences of spaces and maps:

X = { . . .X[n + 1]
pn+1
−→ X[n]

pn
−→ X[n − 1]

pn−1
−→ . . .

p1
−→ X[0] },

where the space X[n] is called the n-th level of X (n ≥ 0), and
the map pn is called the n-th level map of X. We use Gothic letters
(X, Y, . . .) to denote towers.

If F : T⋆ → T⋆ is any functor of spaces, we denote by FX the
result of applying F levelwise to the tower X. For example, ΣrX

denotes {. . .ΣrX[n]
Σrpn
−→ ΣrX[n − 1] → . . . → ΣrX [0]}; and similarly

for bifunctors such as X ∨ Y.
In any case where we define a tower only from the n-th level and

up, it may be extended to a full tower by considering the “corrected”
truncated tower :

σnX
Def
= {. . .X[n + 1]

pn+1
−→ X[n]

=
−→ X[n] . . .

=
−→ X [n]},
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which may be obtained from any tower X by replacing X[n − 1] →
. . . → X[0] at the bottom of the tower by n additional copies of X[n].
Finally, for any space X ∈ T⋆ let C(X) denote the constant tower:
{. . .X

=
→ X . . .}.

2.2. maps between towers. As in the case of spectra, the mor-
phisms in our category are more complicated than the objects: let X =

{. . .X[n]
pn
−→ X [n − 1] . . .} and Y = {. . .Y [n]

qn
−→ Y [n − 1] → . . .}

be two towers as above. Then:

a. A strict map f : X
st
→ Y between them is a sequence f = {f [k] :

X[k] → Y [k]}∞k=0 of maps such that qk ◦ f [k] = f [k − 1] ◦ pk for
k > 0. The set of all such strict maps between X and Y will be
denoted Homst

Tow(X, Y).
Note that such a sequence defined only for k ≥ n is equivalent to a

strict map f : σnX → Y.

b. The set of (weak) maps between X and Y is defined to be

(2.3) HomTow(X, Y)
Def
= colimn Homst

Tow(σnX, Y).

Thus a (weak) map f : X → Y is a “tail” of sequences {f [k] : X[k] →
Y [k]}∞k=n as above – i.e., the equivalence class of all such sequences
which eventually agree. Each element in this equivalence class is called
a strict representative of f. We denote by n(f) the least n for which
a strict representative σnX → Y of f exists.

The category of towers of (connected pointed) CW -complexes and
(weak) maps between them will be denoted Tow.

(c) In particular, a (weak) homotopy between two (weak) maps, F :
f ∼ g, is a (weak) map F : X × I → Y such that F|X×{0} = f and
F|X×{1} = g, as usual. Note that equality here is that of weak maps
– i.e., of equivalence classes – so a strict representative of F need not
be a strict homotopy between any two strict representatives f and g,
but merely between suitable tails thereof.

(d) As usual, the set of (weak) homotopy classes of maps between X
and Y will be denoted by [X, Y]Tow, or simply [X, Y].

We write πk(Y; X) for [ΣkX, Y] (k ≥ 0), and call π∗(Y; X) the
homotopy groups of Y with coefficients in X. A tower map f : Y → Z
will be called an X-weak equivalence if it induces an isomorphism in
π∗(−; X).

(e) A diagram of towers F : I → Tow will be called strict if there
is an N such that for each morphism i of I, n(F(i)) ≤ N . This
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means that the diagram σNF can be written as a tower of diagrams
of spaces (rather than merely a diagram of towers). Of course, every
finite diagram of towers is strict.

Also, a tower map f : X → Y will be called a cofibration if for
some strict representative {f [k] : X[k] → Y [k]}∞k=n each f [k] is a
cofibration.

Tow is in fact a simplicial category ([BK1, X, 3.1] – i.e., it has
simplicial Hom-sets:

Definition 2.4. For any two towers X, Y the strict function com-
plex mapst

Tow(X, Y) is defined (as for topological spaces or simplicial
sets – see [M1, §6.4]) to be the simplicial set whose n-simplices are

mapst
Tow(X, Y)n

Def
= Homst

Tow(X × ∆[n], Y). ∆[n] denotes as usual
the standard topological n-simplex.

In light of (2.3), if X is a tower of epimorphisms (e.g., if each pn is
a fibration) we may define the (weak) function complex

(2.5) mapTow(X, Y)
Def
= colimn mapst

Tow(σnX, Y),

(so that mapTow(X, Y)n = HomTow(X × ∆[n], Y)). Note that

. . .mapst
Tow(σn−1X, Y) →֒ mapst

Tow(σnX, Y) →֒ . . .

is a sequence of cofibrations, so the limit here is in fact a homotopy
colimit. It is not hard to see that as usual:

(2.6) [ΣtX, Y] ∼= πt(map∗(X, Y)) for all t ≥ 0.

Remark 2.7. Given towers of spaces X, Y as above, the function
complex mapTow(X, Y) may be described explicitly by means of limits
if we assume Y is a tower of fibrations, as follows:

Let Hom
[n]
Tow(X, Y) denote the set of strict maps between towers

“through the n-th level” – that is, sequences f = {f [k] : X[k] →
Y [k]}n

k=0 of maps such that qk ◦ f [k] = f [k − 1] ◦ pk for 0 <
k ≤ n. Likewise we may define the “truncated function complexes”

map
[n]
∗ (X, Y) by replacing Homst

Tow(−,−) by Hom
[n]
Tow(−,−) in defi-

nition 2.4 above. There is an obvious projection map π : map
[n]
∗ (X, Y) →

map∗(X[n], Y [n]). Since Y is a tower of fibrations, we have a pull-
back diagram

and mapst
Tow(X, Y) = limn map

[n]
∗ (X, Y).
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map
[n]
∗ (X, Y) - map∗(X[n], Y [n])

? ?
(qn)#

map
[n−1]
∗ (X, Y) -(pn)# ◦ π

map∗(X[n], Y [n − 1])

3. virtual towers

As noted in §1.1, for the purposes of the next section we need to work
in a cocomplete category – or at least, one which we can construct
pushouts, infinite coproducts (wedges), and realizations of simplicial
objects. The category Tow has finite colimits, but it is not hard
to see that a wedge Y =

∨∞
i=1 Xi of infinitely many towers (as de-

fined in §2.1) is not the categorical coproduct, in as much as the maps
f : Y → Z are not in one-to-one correspondence with arbitrary collec-
tions of maps {fi : X → Z}∞i=1. We now describe the “cocompletion
of Tow under (homotopy) colimits”, which we call the category of
virtual towers; these are essentially filtered towers with a prescribed
collection of filtrations, and the definition is motivated by our need to
force

∨∞
i=1 Xi to become the categorical coproduct (see §3.6 below).

It should be pointed out that we are really interested in the homo-
topy theory of (virtual) towers, and thus would like a closed model
category structure (in the sense of Quillen – cf. [Q1]) for the cate-
gory of (virtual) towers (compare [EH, §3.3]). We hope to address
this question in a future paper.

Definition 3.1. A virtual tower 〈X̂, F,F〉 is a sequence of spaces

X̂ = {X[n]}∞n=0, together with a filtration by towers F = {FkX̂}∞k=0

– that is, a sequence of tower maps ik : FkX̂ →֒ Fk+1X̂ (k ≥ 0), each
a cofibration, with n(ik) = k, such that X [n] = FnX[n] for all n.

(We allow the trivial tower FkX̂ = C(pt)). Thus a virtual tower has

partial level maps FnX[n + 1]
Fnpn
−→ FnX[n] = X[n].

In addition, we are given a set F of allowable refinements of the

above maximal filtration F – i.e., filtrations by towers F ′ = {F ′
0X̂

i′0
→֒

F ′
1X̂ →֒ . . .} together with cofibrations jk : F ′

kX̂ →֒ FkX̂ such that

X[n] =
⋃

n(jk)≤n

F ′
kX[n] for all n.

This set F is assumed to be directed – i.e., any two filtrations F ′, F ′′ ∈
F have a common refinement F ′′′ ∈ F .
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In most cases we shall allow any possible refinement of the given
maximal F to belong to F ; and we shall often abbreviate 〈X̂, F,F〉

by X̂, distinguishing F if necessary as FX̂.

Alternatively, the virtual tower 〈X̂, F,F〉 may be thought of as the

equivalence class F of sequences of filtrations by towers F ′ = {F ′
0X̂ →֒

F ′
1X̂ →֒ . . .}, where F ′ ∼ F ′′ if there is a third sequence F ′′′ having

both as refinements. We must place some restriction on the filtrations
(e.g., to ensure that they form a set), and then the maximal filtration

is FkX̂ =
⋃

F ′∈F F ′
kX̂.

Definition 3.2. A virtual map f̂ : 〈X̂, F,F〉 → 〈Ŷ, G,G〉 between

virtual towers is a sequence of (weak) tower maps fk : F ′
kX̂ → G′

kŶ
for some F ′ ∈ F and G′ ∈ G, such that

F ′
kX̂

-fk
G′

kŶ

?

i′k
?

i′k

F ′
k+1X̂

-fk+1
G′

k+1Ŷ

commutes. We say that f̂ is defined with respect to the filtrations
F ′ and G′. Of course, we can always take G′ = G, the maximal
filtration on Ŷ. Unless there is risk of confusion, we shall usually use
F to denote the maximal filtration for all virtual towers at hand (and
write Fkf for fk).

The category of virtual towers and maps will be denoted vTow.
There is an embedding of categories I : Tow →֒ vTow with I(X) =

〈X̂, F,F〉, where FkX̂ = X for all k, and F consists of filtrations
of the form C(pt) = . . . = C(pt) ⊂ X = X . . .; we shall often denote

I(X) simply by X. For X ∈ Tow and Ŷ ∈ vTow we then have

(3.3) HomvTow(I(X), Ŷ) ∼= colimk HomTow(X, FkŶ).

Definition 3.4. Like Tow (§2.4), the category vTow is also a

simplicial category: for any two virtual towers X̂, Ŷ, the function
complex mapvTow(X̂, Ŷ), is again the simplicial set with

mapvTow(X̂, Ŷ)n
Def
= HomvTow(X̂ ×∆[n], Ŷ).

Again (3.3) implies that if X is an ordinary tower then

(3.5) mapvTow(I(X), Ŷ) = colimk mapTow(X, FkŶ).
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Example 3.6. If {X̂α}α∈A is some collection of virtual towers, define

a virtual tower Ŷ =
∨

α∈A X̂α as follows:

Y [n] =
∨

α∈A Xα[n] and FkŶ =
∨

α∈A(Fk)αX̂α, and the allowable

refinements of F are those of the form F ′
kŶ =

∨

α∈B(F ′
k)αX̂α where

B ⊆ A and (F ′)α ∈ FXα
. This is in fact the coproduct in the category

of (pointed) virtual towers – i.e.,

HomvTow(Ŷ, Ẑ) ∼=
∏

α∈A

HomvTow(X̂α, Ẑ).

Example 3.7. Similarly, given two virtual maps f̂ : X̂ → Ŷ and
ĝ : X̂ → Ẑ, where ĝ is a cofibration, say, we can define the pushout Ŵ
as follows:

Choose a F ′ ∈ FX̂ with respect to which f̂ and ĝ are both defined,
so that

(3.8)

F ′
kX̂

�
� -Fkĝ

FkZ

?
Fk f̂

FkŶ

is a compatible collection of weak tower maps (for all k).

For each k, let n(k) = max{n(Fk f̂), n(Fkĝ)}, so (3.8) is a strict

diagram in levels ≥ n(k). Define FkŴ[n] to be the pushout of the

n-th level of (3.8). This forms a tower FkŴ (in levels ≥ n(k) –

see §2.1), and there is a cofibration ik : FkŴ →֒ Fk+1Ŵ for each

k. Now set W [n] = FnŴ[n], and the allowable refinements of the

given filtration {FkŴ} are those obtained from compatible allowable
refinements of FX̂, FŶ, and FẐ.

Definition 3.9. If T : T⋆ → T⋆ is a cofibration-preserving functor
on spaces, applying it levelwise to each filtration of a virtual tower X̂

yields a new virtual tower T X̂ – for example, X̂× I or ΣX̂. Thus
one has a concept of virtual homotopies, and as usual we denote by
[X̂, Ŷ] the set of virtual homotopy classes of virtual maps between the

virtual towers X̂ and Ŷ (or use the variant notation of §2.2(d) above).
In light of (2.5) above, if X is an ordinary tower we have

(3.10) πt(Ŷ; X) ∼= colimk πt(FkŶ; X)

Definition 3.11. A simplicial tower (resp. virtual tower) is a simpli-
cial object in the category Tow (resp. vTow) – cf. [M1, §2.1]. In
particular:
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(a) A simplicial tower X• is called proper (compare [M2, Definition
11.2]) if each degeneracy map sj [n] : Xr[n] → Xr+1[n] is the inclusion
of a sub-complex for each n ≥ n(sj) = 0.

(b) Given a proper simplicial tower X•, its q-skeleton SkqX• is the
simplicial tower defined:
(SkqX•)r = X̂r for r ≤ q, and (SkqX•)r =

⋃r

j=0 im(sj |(SkqX•)r
) ⊆ Xr[n]

for r ≥ q and n ≥ N , where N is the maximal n(λ) for λ : Xr →
Xr±1 a face or degneracy map of towers in simplicial dimension ≤ n.
The simplicial identities guarantee that the restriction of the face and
degeneracy maps of X• to SkqX• define a simplicial tower.

(c) A simplicial virtual tower 〈X̂•, F•,F•〉 is called proper if all face

and degeneracy maps φ : X̂r → X̂r±1 are defined (§3.2) with respect
to the given maximal filtrations Fr and Fr±1. This means that for all

k ≥ 0, FkX̂• is an (ordinary) simplicial tower. We require also that it
be proper in the sense of (a) above.

Definition 3.12. Let 〈X̂•, F•,F•〉 be a proper simplicial virtual tower;

then its realization is the virtual tower ‖X̂•‖ defined as follows:

For each k, FkX̂• is a proper simplicial tower, so its q-skeleton
SkqFkX̂• is in fact a strict simplicial tower (see §2.2(e)) – i.e.,

SkqFkX̂•[n] is actually a simplicial space for n ≥ N(k, q), and these
fit together into a tower of simplicial spaces. (Here N(k, q) is the

least level at which all face and degeneracy maps of SkqFkX̂• have
strict representatives).

Now recall (from [Se, §1] or [M2, §11.1]) that to a simplicial space
X• we can associate a single space ‖X•‖, called its realization,

or homotopy colimit. Thus realizing SkqFkX̂• levelwise for each k, q

yields together a bifiltered virtual tower, which we denote by ‖X̂•‖,

with the diagonal filtration Fk‖X̂•‖ = ‖SkjF
′
jX̂•‖, where j is maximal

such that N(j, j) ≤ k.

Definition 3.13. A diagram of virtual towers F̂ : I → vTow will be
called strict if for each k, the diagram of ordinary towers FkF̂ : I →
Tow is strict (§2.2(e)). Again, every finite diagram is strict.

In this case, we define the homotopy colimit of the diagram, written

hocolim F̂ ∈ vTow, to be the virtual tower filtered by Fkhocolim F̂
Def
=

hocolim FkF̂ ∈ Tow.

One could in fact define homotopy colimits for arbitrary diagrams of
virtual towers; we have done so only in the two cases we shall require,
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namely, the (infinte) coproduct (§3.6) and the realization of a simplicial
virtual tower (§3.12).

4. v-periodicity

Now assume given a fixed model M with a self map v : M d+r →
M r, as in §1.2. We here make explicit the relation between towers
and v-periodic homotopy groups, which motivated the previous two
sections:

Definition 4.1. From v we can construct various towers of the form

M = {. . . → M kn vrn

−→ M kn−1
vrn−1

−→ . . . → M ko},

where {kn}
∞
n=0 is some increasing sequence of non-negative integers,

and of course rn = (kn − kn−1)/d. Such a tower M will be called a
v-model tower . If M′ is another v-model tower, a map h : M′ → M
is called a v-map if at each level h[n] = ven for some en ≥ 0. We
denote by M = Mv the set of all v-model towers; this is partially
ordered by �, where M′ � M if there is a v-map h : M′ → M
(necessarily unique). In order to make use of the function complexes
of (2.5), we can assume when necessary that all v-model towers are
towers of fibrations (at the price of replacing M kn = Σkn−r0M by a
homotopy equivalent space, and v by a homotopic map; this may be
done without affecting any of our arguments below).

Define the v-periodic homotopy groups of a virtual (or ordinary)

tower X̂ to be
v−1πtX̂ = lim

〈M,�〉
πt(X̂; M),

where the limit is taken over all v-maps. Note that the graded group
v−1π⋆X̂ is periodic in the sense that there is a natural isomorphism
v−1πtX̂ ∼= v−1πt+dX̂ (induced by the obvious v-map v : ΣdM → M
for any v-model tower M). Thus in fact

(4.2) v−1πtX̂ = lim
〈M,�〉

colimk πt(FkX̂; M).

Finally, for any space X ∈ T⋆ and any v-model tower M there is
an isomorphism:

(4.3) πt(C(X); M) ∼= v−1πt(X; M),

so that in this case v−1π⋆C(X) ∼= v−1π∗(X; M) are actually periodic
in the above sense, though for an arbitrary (ordinary or virtual) tower
X, the M-homotopy groups π⋆(X; M) need not be – i.e., in general
there will be no q > 0 such that v−1πt+qX ∼= v−1πtX for all t.
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Definition 4.4. An (ordinary) tower X = {. . . → X[n]
pn
−→ X[n − 1] . . .}

will be called v-regular if each pn induces an isomorphism in v−1π∗(−; M).

A virtual tower 〈X̂, F,F〉 will be called v-regular if each FkX̂ is such.

For an ordinary tower X let Qt(X)
Def
= limn v−1πt(X[n]; M), where

we think of v−1π∗(−; M) as a Z/d-graded abelian group. An element
β ∈ Qt(X) is represented by a collection of maps fn : M t+jnd → X[n]
(n ≥ 0) with pn ◦ fn = fn−1 ◦ vjn−jn−1 for some increasing non-

negative sequence {jn}
∞
n=0. For a virtual tower X̂ = 〈X̂, F,F〉 we

define Qt(X̂)
Def
= colimk Qt(FkX̂).

Lemma 4.5. For any self-map v and tower X̂ there are natural homo-
morphisms Φt : v−1πtX̂ → Qt(X̂) (for each t ≥ 0), such that Φt is

an isomorphism if X̂ is v-regular.

Proof. Φt is induced by homomorphisms Φ(t,FkX̂,M) : πt(FkX̂; M) →

Qt(FkX̂) for any v-model tower M = {. . . → M knd vrn

−→ M kn−1d . . .},

natural in M and FkX̂. To define these, note that any α ∈ πt(FkX̂; M)
is represented by a sequence of maps fn : M t+kn → FkX[n], with pn◦
fn = fn−1◦vrn – i.e., (Fkpn)#[fn] ≡ [fn−1] in v−1πt(FkX [n − 1]; M),

so {[fn]}∞n=0} is a well-defined element Φ(t,FkX̂,M) (α) in Qt(FkX̂).

Note that in Qt(FkX̂) the degree t is only considered modulo d.

Now let X̂ be v-regular:
First, assume Φt([γ]) = 0 for some γ ∈ v−1πtX̂. Then Φ(t,FkX̂,M)([g]) =

0 for some v-model tower M and g : M → FkX̂ representing γ. This
means that for each n there is an en such that (ven)#gn ≃ 0. Define
another v-model tower M′ by M′[n] = ΣendM [n], with the obvious

v-map h : M′ → M; then h#[g] = 0, so γ = 0 ∈ v−1πtFkX̂ and
thus Φt is a monomorphism in the limit.

Next, given an element β ∈ Qt(X̂), represent it by a sequence
of maps fn : M t+jnd → FkX [n] with pn ◦ fn = fn−1 ◦ vjn−jn−1.

Defining a tower M by M [n] = M jnd we have f : ΣkM′ → X̂ with
Φ(t,FkX̂,M)([f]) = β, so again Φt is an epimorphism in the limit. �

Remark 4.6. Of course, if an ordinary tower X is v-regular, then

v−1πtX ∼= Qt(X) ∼= v−1πt(X[n]; M) for each n ≥ 0;

similarly, for v-regular virtual towers v−1πtX̂ ∼= colimk v−1πt(FkX[n]; M).
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5. The v-periodic resolution

Now that we have the proper set-up, given a self map v as above, we
can use the Stover construction to define, for any virtual tower of spaces
X̂, a simplical tower Ĵ• which serves as the “v-periodic resolution” of
X̂ (in a sense to be made precise below). We shall actually only need

the case where X̂ = C(X) is the constant tower of some space X,
though the construction works in general.

5.1. the mapping cotriple. As in [St, §2], we define a functor Jv :

vTow → vTow by setting Jv(X̂) =
∨

M∈M ẐM, where ẐM is defined
to be the functorial pushout (§3.7) of the diagram

(5.2)

∨

F∈HomvTow(CM,X̂) MF

�
� -

∨

F iF
∨

F∈HomvTow(CM,X̂) CMF

?

ϕ∗

p
p
p
p
p
p
p
p
p

?∨

f∈HomvTow(M,X̂) Mf
p p p p p p p p p p p p p p p p p p p p p p p p p p p- ẐM

Here i : M →֒ CM is the natural inclusion (at each level) of the
space M [n] into its cone CM [n], and ϕ∗ takes the copy of M

indexed by a map F : CM → X̂ in the upper right-hand coproduct
isomorphically to the copy indexed by i#F in the lower right-hand
coproduct.
Jv is clearly a cotriple on the category of virtual towers, with the

obvious counit ε : Jv(X̂) → X̂ – namely, “evaluation”, with ε|Mf
= f

and ε|CMF
= F – and comultiplication µ : Jv(X̂) → Jv(Jv(X̂))

– where µ|Mf
is an isomorphism onto the copy of M in Jv(Jv(X̂))

indexed by the inclusion Mf →֒ Jv(X̂), for any f : M → X̂; and
similarly for CMF.

The filtration on Jv(X̂) is by “level of origin of indices” – i.e.,

Mf̂ ⊆ FkJv(X̂) ⇔ f̂ : M → X̂ has a strict representative f : σkM →

FkX̂, and similarly for CMF̂. This clearly implies that ε : Jv(X̂) → X̂

is defined (§3.2) with respect to FJv(X̂), FX̂.

Now given X̂ ∈ vTow, one may define a functorial simplicial vir-
tual tower Ĵ• by setting Ĵn = J n+1

v X̂, with face and degeneracy
maps induced by the counit and comultiplication respectively (cf. [Go,

Appendix, §3]). The counit also induces an augmentation ε : Ĵ• → X̂.

Fact 5.3. The virtual simplicial tower Ĵ• defined above is proper (see
definition 3.11).
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Proof. Note that any degeneracy map sj : Ĵr → Ĵr+1, and all face

maps di : Ĵr → Ĵr−1 except for d0, are isomorphisms on the coproduct

summands in the description of Ĵr = Jv(Ĵr−1) above, and thus are

defined with respect to the filtration on the Ĵr’s (cf. §3.6 & 3.7 above).

Since d0 : Ĵr → Ĵr+1 is just ε : Jv(Ĵr−1) → Ĵr−1, it too is defined

with respect to given filtration on Jv(Ĵr−1). �

Remark 5.4. For any fixed c ≥ 0, we may assume if necessary that
all the level spaces FkĴr[n] are c-connected, by replacing M by σnM
throughout Definition 5.1. This is because the connectivities of the
spaces M [n] are increasing, since we assume d > 0 (§1.2).

Lemma 5.5. For any t ≥ 0 and v-tower M, the augmented simplicial
group

πt(Ĵ•; M)
ε#

−→ πt(X; M)

is acyclic – that is, πs(πt(Ĵ•; M)) = 0 for s ≥ 1, and π0(πt(Ĵ•; M)) ∼=
πt(X; M).

Proof (cf. [St, Proposition 2.6]): write P• for the simplicial group

πt(Ĵ•; M); then using normalized chains (N∗P•, ∂) (cf. [M1, §17]), one

may represent any γ ∈ NkP• by a (weak) map g : ΣtM → Ĵk, with
dj[g] ≃ 0 for 0 ≤ j ≤ k.

But any map f : ΣtM → Ŷ has a corresponding wedge summand

ΣtMf

if
→֒ Jv(Ŷ), with ε ◦ if ≃ f. (This is how the comultiplication

µ : Jv → Jv ◦ Jv was defined). Applying this to Ŷ = Ĵk, we obtain

an element [ig] ∈ Pk+1 represented by ig : ΣtMg → Jv(Ĵk), with
d0[ig] = ε#[ig] = [g] and dj[ig] = [idj−1[g]] for 1 ≤ j ≤ k + 1.

Since dj−1[g] ≃ 0 for 1 ≤ j ≤ k + 1, by construction each

wedge summand ΣtMdj−1◦g →֒ Ĵk extends to a cone CΣtMFj
→֒ Ĵk

(presumably in more than one way), so that idj−1◦g : ΣtMdj−1◦g → Ĵk

is nullhomotopic.
We have thus found [ig] ∈ Nk+1P• with ∂[ig] = [d0 ◦ ig] = γ – i.e.,

πkP• = 0 for k ≥ 1.
For k = 0 we have shown that if γ ∈ P0 = πt(JvX; M) has

ε#γ = 0, then γ ∈ Im{∂ : P1 → P0}. Thus π0P• = P0/Ker(ε#) ∼=
Im(ε#) = πt(X; M), since ε# is clearly an epimorphism. �

Corollary 5.6. For any t ≥ 0 the augmented simplicial group v−1πtĴ•
ε⋆−→

v−1πtX is acyclic, too.

Proof. It is a colimit of acyclic simplicial abelian groups. �



SUSPENSION SPECTRAL SEQUENCE FOR vn-PERIODIC HOMOTOPY 15

6. realizations and mapping spaces

The category of virtual towers was needed to define the v-periodic
simplicial resolution, since the construction requires that the v-periodic
homotopy groups be representable (as homotopy classes of morphisms).
However, since it is still more convenient to work with topological
spaces, we need a mechanism for passing back from (simplicial) towers
to spaces, while still preserving information about morphisms. This is
provided by the mapping space functor of §2.4 & 3.4.

In order to relate this to the realization of simplicial objects, re-
call from [BF, Theorem B.5], [Q2] that for each simplicial space (or
bisimplicial set) X• there is a spectral sequence converging to the
homotopy groups of the realization (resp., diagonal), with

E2
s,t = πs(πtX•) ⇒ πs+t‖X•‖.

(As above, applying πt dimensionwise to the Xn’s yields a simplicial
group P [t]• = πtX•, and E2

s,t = πs(P [t]•).)

Lemma 6.1. If X• is a proper simplicial space with each Xn r −
1-connected, then for any r-dimensional CW -complex M the natural
map γ : ‖map∗(M , X•)‖ → map∗(M , ‖X•‖) is a (weak) homotopy
equivalence.

Proof. First, for M = Sk (k ≤ r), we know by [M2, Theorem 12.3]
that ‖ΩX•‖ → Ω‖X•‖ is a weak equivalence; so ‖ΩkX•‖ → Ωk‖X•‖
is, too. Now consider the cofibration sequence Sk → K → M (where
by induction on the CW filtration of M we may assume the Lemma
holds for K, and of course Sk). This induces a fibration sequence
map∗(M , Xn) −→ map∗(K, Xn) −→ ΩkXn for each n ≥ 0; by
[A], we obtain a fibration sequence of the realizations

‖map∗(M , X•)‖ −→ ‖map∗(K, X•)‖ −→ ‖ΩkX•‖,

which maps to the fibration sequence

map∗(M , ‖X•‖) −→ map∗(K, ‖X•‖) −→ Ωk‖X•‖.

By induction and the Five Lemma we conclude that the Lemma holds
for M , too. �

As a consequence we note the following:

Corollary 6.2. For any r-dimensional CW -complex M and (r − 1)-
connected simplicial space X• as above, there is a first quadrant spec-
tral sequence

E2
s,t = πs(πt(X•; M)) ⇒ πs+t(‖X•‖; M) .
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Proof. Apply the spectral sequence of [BF] to the simplicial space
map∗(M , X•). �

Definition 6.3. Given a model space M , define an M -CW complex
to be a conic space obtained by a process of “attaching M -cells”, in a
manner precisely analogous to the usual definition (cf. [W, II, §1]), with
spheres replaced by suspensions of M . The theory of CW -complexes
carries over essentially without change, as long as we use π⋆(−; M)
to replace π⋆(−) throughout, in particular in the definition of weak
equivalences in [W, IV, (7.12)].

Thus, for example, if f : X → Y is a map between M -CW -
complexes which is an M -weak equivalence (i.e., induces an isomor-
phism in π⋆(−; M), then f is a homotopy equivalence. (This is the
analogue of the Whitehead Theorem – cf. [W, V, Theorem 3.8]).

Fact 6.4. For every model M there is a functorial M -CW -approximation
(or M -colocalization – see [Bo1, 7.5]) functor CWM : T⋆ → T⋆ such
that CWMX is an M -CW -complex, together with a natural trans-
formation θ : CWM → Id such that (θX )# : π⋆(CWMX; M) ∼=
π⋆(X; M).

Compare [Bo1, CPP, DF2].
There is also a v-periodic version of the Quillen spectral sequence,

for a sufficiently connected simplicial space:

Proposition 6.5. For a self map v : M d+r → M d as in §1.2, and an
(r + d − 1)-connected simplicial space X•, there is a first and fourth
quadrant periodic spectral sequence

E2
s,t = πs(v

−1πt(X•; M)) ⇒ v−1πs+t(‖X•‖; M) .

Proof. Set Z•
Def
= map∗(M , X•), so that ‖Z•‖ ≃ map∗(M , ‖X•‖)

(Lemma 6.1), and in fact ‖ΩdZ•‖ ≃ ‖map∗(M
d+r, X•)‖ ≃ map∗(M

d+r, ‖X•)‖,
too, though in general we only know Ωk−d−r‖Z•‖ ≃ map∗(M

k, ‖X•)‖
for k > d + r. Now consider the Quillen specral sequence for the sim-
plicial space (or bisimplicial group) Z•, with

E1
s,t = πtZs = πt+r(Xs; M) ⇒ πs + t‖Z•‖ = πs+t+r(‖X•‖; M).

If we reindex so that

Ê1
s,t = πt+k(Xs; M) ⇒ πs+tΩ

k−r‖Z•‖ (t ≥ r − k),

we can think of this as a (first and fourth quadrant) spectral sequence
for π⋆Ω

k−r‖Z•‖ = π⋆map∗(M
k, ‖X•)‖. We need to either disregard

those terms in Ê∞
s,t with s + t < k − r, or set Êℓ

s,t = 0 whenever
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s+ t < k−r and “fringe” the remainder (cf. [BK2, §4.2]) so that those

Êℓ
s,t’s which supported differentials into the missing terms are suitably

reduced.

By naturality, the map of mapping spaces induced by v also com-
mutes with realization: ‖v#‖ : ‖Z•‖ → ‖ΩdZ•‖ is homotopic to
v# : map∗(M

r, ‖X•‖ → map∗(M
r+d, ‖X•‖), so more generally

Ωk−r‖v#‖ : Ωk−r‖Z•‖ → Ωk−r+d‖Z•‖

is

v# : map∗(M
k, ‖X•)‖ → map∗(M

k+d, ‖X•)‖.

Thus we get a map of simplicial spaces v# : Z• → ΩdZ• in-
ducing v# : πt+r(Xs; M) → πt+r+d(Xs; M) on E1

s,t, and also

v# : πt+s+r(‖X•‖; M) → πt+s+r+d(‖X•‖; M) on E∞.
Since homology commutes with sequential direct limits of chain com-

plexes (cf. [Mi]), the spectral sequence for a simplicial space also com-
mutes with sequential homotopy direct limits.

Thus if we define the telescope Tel(Y ) of a space Y (with respect
to a self map v : M d+r → M as above) to be the homotopy colimit
of

map∗(M
r, Y )

v#

−→ map∗(M
r+d, Y )

v#

−→ . . .map∗(M
r+kd, Y ) → . . . ,

then πtTel(Y ) ∼= v−1πt(Y ; M) by [Gr1, Proposition 15.9], and we
get a spectral sequence with E1

s,t =

lim
k
{πt+r(Xs; M)

v#

→ πt+r+d(Xs; M)
v#

→ πt+r+2d(Xs; M)
v#

→ . . .} = v−1πt(Xs; M),

and thus the E2-term is as stated, converging to v−1πt+s(‖X•‖; M).
�

7. localizations

For the rest of the discussion we shall need to make use of some
technical results of Bousfield. This is the first place where our approach
will no longer work for general towers, or even for those constructed
from an arbitrary self map v : M d+r → M as above; we are now
forced to restrict attention to vn-periodic self maps (to be defined
immediately). However, these appear to be the only examples of real
interest (and in fact these are known to be the only examples stably –
cf. [DHS]). First, we shall need some
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7.1. notation and terminology. Fix a prime p, and for each n ≥ 0
choose a finite rn-dimensional CW complex Vn−1 with a self-map
vn : ΣdnVn−1 → Vn−1. For simplicity we assume that vn (and so in
particular Vn−1) is a suspension. We require that Vn−1 be of type
n – that is, the m-th Morava K-theory K(m)∗Vn = 0 for m < n
and K(n)∗Vn 6= 0 – and vn is a vn-self map – that is, vn induces
an isomorphism in K(n)∗, and 0 in K(m)∗ for m 6= n. (See [R2,
§1.5]).

In particular, we shall assume that V−1 = S2, with v0 : V−1 → V−1

the degree p map, for some prime p. Then V0 = S3 ∪p e4 is the 4-
dimensional mod p Moore space, and we take v1 : Σ2(p−1)+1V0 → ΣV0

to be the Adams map for p > 2 (or its 4-fold iterate for p = 2 – see
[CN]). In general we let Vn be (a suitable suspension of) the cofiber
of the map vn : ΣdVn−1 → Vn−1 (cf. [HS, Theorem 5.12] or [D]).

We are interested in the vn-periodic homotopy groups v−1
n π∗(X; Vn−1),

defined as in §1.2; note that v−1
0 π∗(−; V−1) is just π⋆(−) ⊗ Z[1/p].

Definition 7.2. A map f : A → B is called a vn-periodic weak equiva-
lence, or v−1

n π⋆-w.e., if it induces an isomorphism f∗ : v−1
n π∗(A; Vn−1) ∼=

v−1
n π∗(B; Vn−1).

One of the basic tools for dealing with vn-periodic phenomena is
the concept of localization with respect to a pointed space W (or more
generally, a map f : A → B), first considered by Dror-Farjoun ([DF1])
and Bousfield ([Bo1]):

Definition 7.3. Recall from [Bo3, p. 3] that, given a fixed space W ,
a space X is called W -local (or W -periodic) if W → ⋆ induces a

homotopy equivalence X
∼

−→ map(W , X). A map f : A → B

is called a W -weak equivalence, or W -w.e., if map(B, X)
f#

−→
map(A, X) is a homotopy equivalence for every W -local space X.

Finally, a map ϕ : X → X̂ is a W -localization (or W -periodization)

if X̂ is W -local and ϕ is a W -weak equivalence.

Such localizations exist for any W (and in fact the definition gen-
eralizes, replacing W → ⋆ by an arbitrary map f : A → B). A
functorial version of W -localization is denoted by PWX (the notation
LW (X) is also used). See [DF1] and [Bo3, §2].

Remark 7.4. We are interested in the case W = Vn as in §7.1. In
particular, a Vn-weak equivalence will be called a Pvn

-equivalence. It
turns out (cf. [Bo3, Theorem 9.15]) that this concept does not depend
on the precise choices of the spaces Vm (or the vm-self maps), but
only on the connectivity of Vn.
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In [Bo3, §10.1] Bousfield defines (non-constructively) an increasing
sequence of integers c(n) ≥ n + 2 (with equality conjectured), such
that each c(n) ≤ 1+ the connectivity of Vn. (Thus c(0) = 2 and
c(1) = 3 for odd p). Note that of course

(7.5) rn − 1 ≥ c(n) for n ≥ 1.

Bousfield then proves the following generalization of [T1, Theorem
1.2]:

Theorem 7.6. [Bo3, Theorem 11.14]: For each n ≥ 0 the maps vn :
ΣdnVn−1 → Vn−1 are v−1

n π⋆-w.e.’s, after at most 2 suspensions.

as well as:

Theorem 7.7. [Bo3, Theorem 13.3]: If X, Y are c(n)-connected spaces,
then a map f : X → Y is a Pvn

-equivalence if and only if it is a
v−1

k π⋆-w.e.’s for each 0 ≤ k ≤ n.

Corollary 7.8. The maps Σvn : Σdn+1Vn−1 → ΣVn−1 are in fact
Pvn

-equivalences.

Proof. Any space X of type n – so in particular Vn−1 – has
v−1

m π∗(X; Vm−1) = 0 for 0 ≤ m < n. �

Corollary 7.9. Let {Xα}α∈A and {Y α}α∈A be two diagrams of
c(n)-connected spaces, and {fα : Xα → Y α}α∈A a map of diagrams
with each fα a v−1

m π⋆-w.e. for 0 ≤ m ≤ n. Then hocolimα (fα) :
hocolimα (Xα) → hocolimα (Y α) is a v−1

m π⋆-w.e. for 0 ≤ m ≤ n,
too.

Proof. It is evident from the definition (see [Bo3, §2.5]) that (pointed)
homotopy colimits preserve W -w.e.’s for any W ; we may use Theorem
7.7 to restate this in terms of v−1

m π⋆-w.e.’s. �

Finally we record the following two facts:

Lemma 7.10. [Bo3, Theorem 11.5]): For any pointed connected space
X, the localization map ϕX : X → PVn

X is a v−1
m π⋆-w.e. for all

1 ≤ m ≤ n. �

This is in fact true with PVn
X replaced by PΣsVn

X for any s ≥ 0.

By considering the long exact sequence for the cofibration sequence

ΣdnVn−1
vn−→ Vn−1 → Vn



20 D. BLANC AND R.D. THOMPSON

we immediately deduce from the the above and the definition of the
localization PVn

X the isomorphisms

(7.11) v−1
n πt(X; Vn−1) ∼= v−1

n πt(PVX
; Vn−1) ∼= πt(PVn

X; Vn−1)

for all X and t ≥ 1.

8. Pvn
-equivalences and towers

In this and the following sections we shall assume we are given a vn-
self map v : Σdn+rnVn−1 → Vn−1 of the form described in §7.1, which
we shall denote simply by v : Σd+rM → M , with M a corresponding
v-model tower.

As noted in the introduction, it is the proof of Proposition 8.5 which
actually forces us to restrict attention to spaces of type n – i.e.,
those for which v−1

m π∗(X; Vm−1) = 0 for 0 ≤ m < n. (It is not
clear whether the Proposition is in fact false for diagrams of arbitrary
Pvn

-regular towers, though the proof provided evidently will not carry
through in greater generality.)

Definition 8.1. A map of virtual towers f̂ : X̂ → Ŷ will be called a

Pvn
-equivalence if it induces an isomorphism f̂# : v−1

m πtX̂
∼=

−→ v−1
m πtŶ

for each 0 ≤ m ≤ n.

(Compare Theorem 7.7).

Definition 8.2. An (ordinary) tower X = {. . . → X[n]
pn
−→ X[n − 1] . . .}

will be called Pvn
-regular if each level space X[N ] is c(n)-connected

(§7.4) and each level map pn is a Pvn
-equivalence. A virtual tower

〈X̂, F,F〉 will be called Pvn
-regular if each FkX̂ is such (compare

Definition 4.4).

Fact 8.3. As in §4.6, if an ordinary tower X is Pvn
-regular, then

v−1πtX̂ ∼= Qt(X) ∼= v−1
m πt(X[N ]; Vm−1),

where Qt(−) and v−1πt(−) are taken with respect to any of the
vm : Vdn

m−1 → Vm−1 of §7.1 for 0 ≤ m ≤ n and N ≥ 0; and similarly for

Pvn
-regular virtual towers X̂ we have v−1πtX̂ ∼= colimk v−1

m πt(FkX[N ]; Vm−1)
for each 0 ≤ m ≤ n and N, k ≥ 0.

Proposition 8.4. Let v be a vn-self map as in §7.1, and X̂ a virtual
tower. Let Ĵ• = Ĵv

• → X̂ be the v-periodic resolution of §5.1; then

‖Ĵ•‖ is v−1π⋆-w.e. to X̂.
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Proof. By §5.4 we may assume all level spaces FkĴr[n] of Ĵ• are
(rn + dn − 1)-connected. By construction, each v-tower M is Pvn

-

regular (by Corollary 7.8), so each FkĴr is, too, by Corollary 7.9. If

we set Zk
• = σN(k,k)SkkFkX̂•, then each tower Zk

r is Pvn
-regular, so

by Corollary 7.9 again ‖Zk
•‖ = Fk‖Ĵ•‖ is also Pvn

-regular, which by

definition means ‖Ĵ•‖ is, too.
Therefore, if we let Zk

• = Zk
•[N ], for any k and N ≥ N(k, k), by

Fact 8.3 above

v−1πtĴr
∼= colimk v−1

n πt(Z
k
r ; Vn−1)

and similarly v−1πt‖Ĵ•‖ ∼= colimk v−1
n πt(‖Z

k
•‖; Vn−1). Applying the

v-periodic Qullen spectral sequence of Proposition 6.5 to each simplicial
space Zk

•, we get

E2
s,t = πs(v

−1πt(Z
k
•; M)) ∼= πs(v

−1πt(FkĴ•; M))

converging to v−1πs+t(‖Z
k
•‖; M) ∼= v−1πs+t(‖FkĴ•‖; M). Since ho-

mology, and thus spectral sequences, commute with sequential direct
limits (cf. [Mi]), taking the direct limit as k → ∞ yields a spectral
sequence with

Ê2
s,t

∼= πs(v
−1πtĴ•) =

{

v−1πtX̂ if s = 0
0 if s > 0

by Corollary 5.6, converging to colimk v−1
n πs+t(‖Z

k
•‖; Vn−1) ∼= v−1πs+t(‖Ĵ•‖; M),

and the proposition follows. �

Proposition 8.5. Let {̂f : X̂α → Ĉ(Y α)}α∈A be a map of strict dia-
grams of virtual towers (§3.13) with each fα a Pvn

-equivalence, and as-

sume each virtual tower X̂α is Pvn
-regular with v−1

m π∗(FkXα[N ]; Vm−1) =

0 for each 0 ≤ m < n and all N , k, and that each tower Ĉ(Y α)
is constant with Y α c(n)-connected. Then

hocolimα f̂α : hocolimα X̂α → hocolimα Ĉ(Y α)

is a Pvn
-equivalence, too.

Proof. For every index α there is a filtration F ′ on X̂α with respect
to which f̂α is defined, and
(8.6)

v−1πtX̂α
∼= colimk lim

n
v−1π∗(F

′
kXα[n]; M)

(̂fα)#
−→ v−1πtĈ(Y )α

∼= v−1π∗(Y α; M)
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is an isomorphism. Without loss of generality assume n(F ′
k f̂α) = n(F ′

kik) =

k (for F ′
kX̂α

F ′
k
ik

−→ F ′
k+1X̂α

F ′
k+1

f̂α
−→ Y α), so we have a diagram as in Figure

1 to describe f:

F ′
kXα[k]

?
F ′

kpk

F ′
kXα[k − 1]F ′

k−1Xα[k − 1] -ik−1[k − 1]
····
?

F ′
0Xα[0] ·····-

-ik[k]
F ′

k+1Xα[k]

·····
?

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXz

F ′
0f̂α[0]

HHHHHHHHHHHHHHHHHHHHHHHHHHj

F ′
k−1f̂α[k − 1]

@
@

@
@

@
@

@
@

@
@

@
@

@
@@R

F ′
k f̂α[k]

Y α

Figure 1. explicit description of f̂α

Note that each F ′
kpk is a Pvn

-equivalence by assumption, so after
applying PV this is still true by Lemma 7.10. Thus PV F ′

kpk is
a ΣM -weak equivalence by (7.11). (Recall that M = Vm−1 and
V = Vm.) Now apply the functor CWΣM of §6.4 to Figure 1: then
CWΣM(PV F ′

kpk) is a homotopy equivalence (§6.3), so it has a ho-
motopy inverse rk : CWΣM(PV F ′

kXα[k − 1]) → CWΣM(PV F ′
kXα[k]).

We thus get a diagram

(8.7)

. . . → CWΣMPV F ′
kXα[k] -rk+1 ◦ ik[k]

CWΣMPV F ′
k+1Xα[k + 1] → . . .

PPPPPPPPqF ′
k f̂α[k] ◦ θ

��������) F ′
k+1f̂α[k + 1] ◦ θ

Y α
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Changing the horizontal maps into cofibrations we get

(8.8)

. . . - Zk
α

-
jk
α

Zk+1
α

- . . .
Q

Q
QQsfk

α

�
�

��+ fk+1
α

Y α

with each Zk
α ≃ CWΣMPV F ′

kXα[k] a V -local ΣM-CW -complex
which is ΣM-weak equivalent to PV F ′

kXα[k], and thus v−1π⋆-w.e.
to F ′

kXα[k] by Lemma 7.10. If Zα = colimk Zk
α is the (homo-

topy) colimit of the horizontal maps in (8.8), then πt(Zα; M) ∼=
colimk πt(Z

k
α; M) (cf. [Gr1, Proposition 15.9]), and fα : Zα →

Y α induces an isomorphism in πt(−; M) for t ≥ 1 (and so in
v−1π∗(−; M)) by (7.11). Therefore, if we set

Z
Def
= hocolimα Zα, Y

Def
= hocolimα Y α, and f

Def
= hocolimα fα,

by Corollary 7.9 we see f : Z → Y is a v−1π⋆-w.e..
Now since the given diagram (X̂α)α∈A is strict (§2.2(e)), hocolimα X̂α

is defined and filtered by hocolimα F ′
kX̂α, where hocolimα F ′

kX̂α)[n] =

hocolimα F ′
kX̂α[n] for n ≥ N (see §3.13). But

hocolimα Zα = hocolimα colimk Zk
α ≃ colimk hocolimα Zk

α

since homotopy colimits (of spaces) commute with each other (cf. [Vo,
Theorem 2.4]), and since Zk

α is v−1π⋆-w.e. to F ′
kXα[k] for all α, k

and hocolimα F ′
kX̂α is still Pvn

-regular we have

v−1πthocolimα X̂α = colimk v−1πtF
′
khocolimα X̂α =

colimk v−1πthocolimα F ′
kX̂α

∼= colimk v−1πt(hocolimα Zk
α; M) ∼=

v−1πt(colimk hocolimα Zk
α; M) = v−1πt(hocolimα colimk Zk

α; M) =

v−1πt(hocolimα Zα; M) ∼= v−1πt(Z; M) ∼=

v−1πt(Y ; M) ∼= v−1πt(hocolimα Y α; M) =

v−1πtĈ(hocolimα Y α)
Def
= v−1πthocolimα Ĉ(Y α)

which completes the proof of the Proposition since all spaces (and tow-
ers) in question have v−1

m π∗(−; Vm−1) = 0 for 0 ≤ m < n. �
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9. Π-algebras

In this section we provide the “algebraic” underpinning needed to
describe the E2-term of the spectral sequence which we shall set up in
the next section.

Recall (e.g., from [Bl, §3.1] or [St, §4]) that a Π-algebra is an algebraic
object modeled on the homotopy groups of a space, together with the
action of the primary homotopy operations ([W, XI, §1]) on them. We
have analogous concepts for other representable functors:

Definition 9.1. First, one may replace the spheres representing or-
dinary homotopy groups by some other model space M , to get M -
homotopy operations corresponding to each homotopy class α ∈ πr(M

n1 ∨ . . . ∨ Mnk ; M)
(subject to the universal relations among such operations, correspond-
ing to compositions of maps among wedges of Mn‘s).

We then define an M -Π-algebra to be a graded set {Xi}
∞
i=0, together

with an action of the M -homotopy operations on them. As usual, the
free M -Π-algebras are those isomorphic to π⋆(

∨

α∈A M rα; M) for
some (possibly infinite) wedge of model spaces (cf. [Bl, §3.1.2]).

Now if v : M d → M is a self map of our model space, the situation
for v−1π∗(−; M)-homotopy operations is somewhat different:

Definition 9.2. A primary v-periodic homotopy operation of type (n1, . . . , nk; r)
is defined as usual to be a natural transformation

ϑ : v−1πn1
(−; M) × . . . × v−1πnk

(−; M) → v−1πr(−; M).

It is natural to extend this definition to v-tower homotopy opera-
tions , where we consider v−1πni

(−) : vTow → Abgp rather than
v−1πni

(−; M) : T⋆ → Abgp. In light of (4.3), any v-tower homotopy
operation is in particular a v-periodic one (though not necessarily con-
versely!).

We then have the following analogue of [W, XI, Theorem 1.3]:

Lemma 9.3. The v-tower homotopy operations of type (n1, . . . , nk; r)
are in one-to-one correspondence with elements of

P(n1,...,nk;r) = lim
←−

M∈M

v−1πr(Σ
n1M ∨ . . . ∨ ΣnkM).

Proof. Given a v-tower homotopy operation

ϑ : v−1πn1
(−) × . . . × v−1πnk

(−) → v−1πr((−); M),

for any M ∈ M let W = Σn1M ∨ . . . ∨ ΣnkM, with inclusions
ji : ΣniM →֒ W. Then ϑ([j1], . . . , [jk]) ∈ v−1πrW may be represented
by a tower map fϑ : M′ → W for some M′ ∈ M, with the obvious
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compatibility conditions with respect to v-tower maps M′ → M′′, and
so on.

Now any (γ1, . . . , γk) ∈ v−1πn1
X̂×. . .×v−1πnk

X̂ may be represented

by gi : ΣniM → X̂ (i = 1, . . . , k), and so by g : W → X̂, with gi =
f◦ ji. Then ϑ(γ1, . . . , γk) = ϑ([g◦ j1], . . . , [g◦ jk]) = g#ϑ([j1], . . . , [jk]) =

g#[fϑ] = f#ϑ (γ1, . . . , γk). The converse direction is obvious. �

Corollary 9.4. If v : M d → M is as in §7.1, then the v-tower
homotopy operations of type (n1, . . . , nk; r) are in one-to-one corre-
spondence with elements of

v−1
n πr(M

n1 ∨ . . . ∨ Mnk ; M)

Proof. In this case each v-model tower is Pvn
-regular by Theorem 7.6,

as is each finite coproduct W = Σn1M ∨ . . . ∨ ΣnkM (Corollary 7.9),
and thus

v−1πrW ∼= Qr(W)
Def
= lim

←
n

v−1πt(W [n]; M) ∼= v−1πr(M
n1 ∨ . . . ∨ Mnk ; M)

by Lemma 4.5. Also, each v-tower map h : M′ → M then induces
an isomorphism between Qr(M

′) and Qr(M), so the inverse system
in the definition of P(n1,...,nk;r) is constant. �

Thus in this case the v-periodic homotopy operations are the same
as the v-tower ones.

Definition 9.5. As in §9.1, we define a v-Π-algebra to be a Z/d-graded
set {Xi}

d−1
i=0 , together with an action of the v-tower homotopy oper-

ations on them (subject to the universal relations holding among the
P(n1,...,nk;r)’s under composition). This is a category of (Z/d-graded)
universal algebras (cf. [BS, §2]), or a variety of algebras in the termi-
nology of [Mc, V, §6].

Examples of v-Π-algebras include v−1π∗(X; M), for any space X,
or more generally v−1π⋆X for any tower X.

Remark 9.6. If n = 1 and p is odd, with v = v1 the Adams
map between mod p Moore spaces, then by Corollary 9.4 the free v-Π-
algebras (cf. [Bl, §3.1.2]) are those isomorphic to v−1π∗(W ; M) for
any (possibly infinite) wedge W of mod p Moore spaces.

v−1π∗(M
k; M) has been fully calculated by the second author in

[T1, Theorem 1.1], so the Hilton-Milnor theorem (cf. [W, XI, Theorem
6.7]), together with the fact that M j ∧ M k ≃ M j+k−1 ∨ M j+k (cf.
[N, Corollary 6.6]), give an explicit description of the free v-Π-algebras
in this case.
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Remark 9.7. A stricter analogy with §9.1 would require a choice of a
specific v-model tower M; we then consider M-homotopy operations

ϑ : πn1
(−; M) × . . . × πnk

(−; M) → πr(−; M)

for towers, which are obviously in one-to-one correspondence with ele-
ments of

πr(Σ
n1M ∨ . . . ∨ ΣnkM; M).

One then has a concept of M-Π-algebras, as before, modeled on π⋆(X̂; M)

for any virtual tower X̂. Since π⋆(Ĉ(X); M) ∼= v−1π∗(X; M) for any
space X , the M-homotopy operations are in particular v-periodic ones,
so we can think of a M-Π-algebra as a “simplified” v-Π-algebra.

9.8. derived functors. Note that the simplicial virtual tower Ĵ• of
§5.1 has each FkĴr homotopy equivalent to Wk, where Wk is an
(infinite) coproduct of ΣtM’s. Moreover, the tower map ik : FkĴr →֒

Fk+1Ĵr is homotopy equivalent to a projection on a sub-coproduct,
followed by the inclusion of a summand, so by (2.3) and Lemma 4.5

v−1π⋆Ĵn = colimk v−1π∗(gWk; M) ∼= colimk v−1π∗(Wk; M) is a free
v-Π-algebra. In fact, by Corollary 5.6 the augmented simplicial v-
Π-algebra v−1πĴ•

→v−1π⋆X̂ is a free simplicial resolution of v−1π⋆X̂

(which is just v−1π∗(X; M) if X̂ = Ĉ(X)).

Now given any (not necessarily additive!) functor T : v-Π-Alg →
C into a suitable ([BS, §2.1]) category C, the n-th derived functor
(in the sense of Quillen) of T , applied to v−1π∗(X; M) ∈ v-Π-Alg,
is isomorphic to the n-th homotopy group of the simplicial C-object
T (v−1π⋆Ĵ•). It is denoted LnT (v−1π∗(X; M)) (see, e.g., [BS, §2.2]).

In particular, let F : T⋆ → T⋆ be any functor which preserves
v−1π⋆-w.e.’s. Then we can define a functor F̄ : v-Π-Alg → grAbgp as
follows: if Θ is a free v-Π-algebra, then Θ ∼= v−1π∗(X; M) for some

X
w.e.
≃

∨

i Σ
riM , and we may let F̄ (Θ) = v−1π∗(F (X); M). Note

that if also Θ ∼= v−1π∗(X
′; M), then X and X ′ are actually weakly

equivalent, so X and X ′ are certainly v−1π⋆-w.e., and thus F̄ is well
defined on free M-Π-algebras (compare [Bl, §7.1.2]). Now we extend
F̄ to an arbitrary M-Π-algebra Ψ by setting F̄Ψ = (L0F̄ )Ψ (cf. [BS,
§2.2.4]).

Example 9.9. Consider the functor v−1π∗(Σ(−); M) from spaces
to graded abelian groups; this takes v−1π⋆-w.e.’s to isomorphisms by
Corollary 7.9, so we have the induced functor

Σ̂ : v-Π-Alg → grAbgp.
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10. The suspension spectral sequence

We are now in a position to construct the vn-periodic spectral se-
quence for the suspension of a space X ∈ T⋆:

Theorem 10.1. Let v = vn : ΣdVn−1 → Vn−1 be a self map as in §7.1
(n ≥ 1); then for any c(n)-connected space X with v−1

m π∗(X; Vm−1) =
0 for all 0 ≤ m < n there is a first quadrant spectral sequence with

E2
s,t = (LsΣ̂)(v−1π∗(X ; M))t ⇒ v−1πs+t(ΣX ; M),

where Σ̂ : v-Π-Alg → grAbgp is the functor of §9.9 above.

Proof. Let Ĵ• be the v-periodic simplicial resolution of Ĉ(X) of §5.1,
where by §5.4 we may assume all level spaces are c(n)-connected,

too. By Proposition 8.4 we know ‖Ĵ•‖ is v−1π⋆-w.e. to Ĉ(X),

so Σ‖Ĵ•‖ is Pvn
-equivalent, and thus in particular v−1π⋆-w.e. to

ΣĈ(X) = Ĉ(ΣX) by Theorem 7.7 and Proposition 8.5 since we as-
sumed v−1

m π∗(X; Vm−1) = 0 for all 0 ≤ m < n.

But as for any proper simplicial virtual tower (or space), ‖ΣĴ•‖ ∼=

Σ‖Ĵ•‖, and by Proposition 8.5 Σ‖Ĵ•‖ is v−1π⋆-w.e. to ΣĈ(X) =

Ĉ(ΣX). Thus the v-periodic Quillen spectral sequence for ΣĴ•

(Proposition 6.5) converges to

v−1π⋆‖ΣĴ•‖ ∼= v−1π⋆Σ‖Ĵ•‖ ∼= v−1π⋆Ĉ(ΣX) ∼= v−1π∗(ΣX; M).

To identify the E2-term, note that v−1π⋆Ĵ• = v−1π⋆Ĵ• is a free
v-Π-algebra resolution of v−1π⋆Ĉ(X) = v−1π∗(X; M), and thus

E2
s,⋆ = πs(v

−1π⋆ΣĴ•) = πs(v
−1π⋆ΣĴ•) = (LsΣ̂)(v−1π∗(X; M)),

as defined in §9.9 above. �
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