Stems and spectral sequences

HANS-JOACHIM BAUES
DAVID BLANC

We introduce the category $\mathcal{P}_{stem}[n]$ of n-stems, with a functor $\mathcal{P}[n]$ from spaces to $\mathcal{P}_{stem}[n]$. This can be thought of as the n-th order homotopy groups of a space. We show how to associate to each simplicial n-stem Q_\bullet an $(n+1)$-truncated spectral sequence. Moreover, if $Q_\bullet = P[n]X_\bullet$ is the Postnikov n-stem of a simplicial space X_\bullet, the truncated spectral sequence for Q_\bullet is the truncation of the usual homotopy spectral sequence of X_\bullet. Similar results are also proven for cosimplicial n-stems. They are helpful for computations, since n-stems in low degrees have good algebraic models.

55T05; 18G55, 18G10, 55S45

1 Introduction

Many of the spectral sequences of algebraic topology arise as the homotopy spectral sequence of a (co)simplicial space – including the spectral sequence of a double complex, the (stable or unstable) Adams spectral sequence, the Eilenberg-Moore spectral sequence, and so on (see §5.14). Given a simplicial space X_\bullet, the E^2-term of its homotopy spectral sequence has the form $E^2_{s,t} = \pi_s\pi_t X_\bullet$, so it may be computed by applying the homotopy group functor dimensionwise to X_\bullet.

In this paper we show that the higher terms of this spectral sequence are obtained analogously by applying 'higher homotopy group' functors to X_\bullet. These functors are given explicitly in the form of certain Postnikov stems, defined in Section 2; the Postnikov 0-stem of a space is equivalent to its homotopy groups.

We then show how the E^r-term of the homotopy spectral sequence of a simplicial space X_\bullet can be described in terms of the $(r-2)$-Postnikov stem of X_\bullet, for each $r \geq 2$ (see Theorem 4.13) – and similarly for the homotopy spectral sequence of a cosimplicial space X^\bullet (see Theorem 5.12).

As an application for the present paper, in [5] we generalize the first author’s result with Mamuka Jibladze (in [6]), which shows that the E^3-term of the stable Adams spectral sequence

Published: XX Xxember 20XX DOI: 10.2140/agt.20XX.XX.1001
sequence can be identified as a certain secondary derived functor \(\text{Ext} \). We do this by showing how to define in general the higher order derived functors of a continuous functor \(F : C \to T_* \), by applying \(F \) to a simplicial resolution \(W_* \) in \(C \), and taking Postnikov \(n \)-stems of \(FW_* \).

1.1 Notation and conventions.
The category of pointed connected topological spaces will be denoted by \(T_* \); that of pointed sets by \(\text{Set}_* \); that of groups by \(Gp \). For any category \(C \), \(sC \) denotes the category of simplicial objects over \(C \), and \(cC \) that of cosimplicial objects over \(C \). However, we abbreviate \(s\text{Set} \) to \(\text{Set} \), \(s\text{Set}_* \) to \(\text{Set}_* \), and \(sGp \) to \(Gp \). For any small indexing category \(I \), the category of functors \(I \to C \) is denoted by \(C_I \).

1.2 Acknowledgements
We wish to thank the referee for his or her careful reading of the paper and helpful comments on it.

2 Postnikov stems

The Postnikov system of a topological space (or simplicial set) \(X \) is the tower of fibrations:

\[
\ldots \to P^{n+1}X \xrightarrow{p^{n+1}} P^nX \xrightarrow{p^n} P^{n-1}X \ldots P^1X \xrightarrow{p^1} P^0X,
\]

equipped with maps \(q^n : X \to P^nX \) (with \(p^n \circ q^n = q^{n-1} \)), which induce isomorphisms on homotopy groups in degrees \(\leq n \). Here \(P^nX \) is \(n \)-coconnected (that is, \(\pi_iP^nX = 0 \) for \(i > n \)) and \(\pi_i p^n \) is an isomorphism for \(i < n \). The fiber of the map \(p^n : P^nX \to P^{n-1}X \) is the Eilenberg-Mac Lane space \(K(\pi_nX, n) \), so the fibers are determined up to homotopy by \(\pi_*X \). Thus a generalization of the homotopy groups of \(X \) is provided by the following notion:

2.2 Definition
For any \(n \geq 0 \), a Postnikov \(n \)-stem in \(T_* \) is a tower:

\[
Q := \left(\ldots \to Q_{k+1} \xrightarrow{q_{k+1}} Q_k \xrightarrow{q_k} Q_{k-1} \ldots Q_0 \right)
\]

in \(T_*^{(N, \leq)} \), in which \(Q_k \) is \((k-1) \)-connected and \((n+k) \)-coconnected (so that \(\pi_i(Q_k) = 0 \) for \(i < k \) or \(i > n+k \)) and \(\pi_i(q_k) \) is an isomorphism for \(k \leq i < n+k \). Here \((N, \leq) \) is the usual linearly ordered category of the natural numbers. The space \(Q_k \) is called the \(k \)-th \(n \)-window of \(Q \).
Such an \(n \)-stem is thus a collection of overlapping \((k - 1)\)-connected \(n + k \)-types, which may be depicted for \(n = 2 \) as follows:

\[
\begin{array}{c}
\ldots * * * \\
* * * \\
* * * \\
* * * \\
* * * \ldots
\end{array}
\]

where each row exhibits the \(n + 1 \) non-trivial homotopy groups (denoted by \(* \)) of one \(n \)-window, and all those in the \(i \)-th column (corresponding to \(\pi_i \)) are isomorphic.

We denote by \(\mathcal{B}\text{stem}[n] \) the full subcategory of Postnikov \(n \)-stems in the functor category \(T_s^{(N, \leq)} \) (with model category structure on the latter as in [21, 11.6]). Thus the morphisms in \(\mathcal{B}\text{stem}[n] \) are given by strictly commuting maps of towers, and \(f : Q \to Q' \) is a weak equivalence (respectively, a fibration) if each \(f_k : Q_k \to Q'_k \) is such. This lets us define the homotopy category of Postnikov \(n \)-stems, \(\text{ho}\mathcal{B}\text{stem}[n] \), as a full sub-category of \(\text{ho} T_s^{(N, \leq)} \).

The category \(\mathcal{B}\text{stem}[n] \) is pointed, has products, and is equipped with canonical functors

\[
\begin{array}{c}
\mathcal{T} \\
P[0] \\
P[a] \\
P[n-1] \\
P[n-2] \\
P[0] \\
\end{array}
\]

which preserve products and weak equivalences.

\begin{align*}
(2.4) & \quad \mathcal{T} \quad P[0] \\
& \quad P[a] \quad P[n-1] \\
& \quad \mathcal{B}\text{stem}[n] \quad \mathcal{B}\text{stem}[n-1] \\
& \quad \mathcal{B}\text{stem}[n-1] \quad \mathcal{B}\text{stem}[n-2] \\
& \quad \mathcal{B}\text{stem}[0]
\end{align*}

\textbf{2.5 Remark} The sequence of functors \((2.4)\) is described by a commuting diagram,
in which we may take all maps to be fibrations:

\[
\begin{array}{cccccc}
\cdots & Q_{k+1}^{n+k+1} & Q_k^{n+k} & Q_{k-1}^{n+k-1} & \cdots & Q_0^n \\
\downarrow p_{n+1}^k & \downarrow \iota_{n+1}^k & \downarrow r_{n+1}^k & \downarrow \iota_{n+1}^{k-1} & \downarrow r_{n+1}^{k-1} & \downarrow p_0^n \\
\cdots & Q_{k+1}^{n+k} & Q_k^{n+k-1} & Q_{k-1}^{n+k-2} & \cdots & Q_0^{n-1} \\
\downarrow p_{n+2}^k & \downarrow \iota_{n+2}^k & \downarrow r_{n+2}^k & \downarrow \iota_{n+2}^{k-1} & \downarrow r_{n+2}^{k-1} & \downarrow p_0^{n-1} \\
\cdots & Q_{k+1}^{n+k} & Q_k^{n+k-1} & Q_{k-1}^{n+k-2} & \cdots & Q_0^{n-2} \\
\downarrow p_{n+3}^k & \downarrow \iota_{n+3}^k & \downarrow r_{n+3}^k & \downarrow \iota_{n+3}^{k-1} & \downarrow r_{n+3}^{k-1} & \downarrow p_0^{n-3} \\
\cdots & Q_{k+1}^{n+k} & Q_k^{n+k-1} & Q_{k-1}^{n+k-2} & \cdots & Q_0^{n-k} \\
\end{array}
\]

(2.6)

Here \(\pi_i Q_k^n = 0 \) for \(i < k \) or \(i > n \), and all maps induce isomorphisms in \(\pi_i \) whenever possible. Thus:

(a) The \(k \)-th column (from the right) is the Postnikov tower for \(Q_k := \lim_n Q_k^n \).

(b) The diagonals are the dual Postnikov system of connected covers for \(Q_0^n \).

(c) The \(n \)-th row (from the bottom) is a Postnikov \(n \)-stem.

(d) In particular, each space in the 0-stem (the bottom row) is an Eilenberg-Mac Lane space, and the maps \(q_k^0 \) are nullhomotopic. Thus the homotopy type of the bottom line in \(\text{ho Stem}[0] \) is determined by the collection of homotopy groups \(\{ \pi_k Q_k^0 \}_{k=0}^\infty \).

2.7 Definition The motivating example of a Postnikov \(n \)-stem is a realizable one, associated to a space \(X \in T_* \), and denoted by \(\mathcal{P}[n]X \), with \((P[n]X)_k := P^{n+k}X(k) \). As usual, \(Y(k) \) denotes the \((k-1) \)-connected cover of a space \(Y \in T_* \). Each fibration \(q_k : (P[n]X)_k \to (P[n]X)_{k-1} \) fits into a commuting triangle of fibrations:

\[
\begin{array}{ccc}
P^{n+k}X(k+1) & \xrightarrow{q} & P^{n+k}X(k) \\
\downarrow p & & \downarrow r \\
P^{n+k}X(k+1) & & \\
\end{array}
\]

(2.8)

in which the maps \(p \) and \(r \) are the fibration of (2.1) and the covering map, respectively. See [4, §10.5] for a natural context in which non-realizable Postnikov \(n \)-stems arise.
2.9 Examples of stems. The functor \(\mathcal{P}[0] : \mathcal{T}_s \to \text{ho}\mathbb{P}^0 \) induced by \(\mathcal{P}[0] \) is equivalent to the homotopy group functor: in fact, the homotopy groups of a space define a functor \(\pi_* : \mathcal{T}_s \to \mathcal{K} \) into the product category \(\mathcal{K} := \prod_{i=0}^{\infty} \mathcal{K}_i \), where \(\mathcal{K}_0 = \text{Set}_* \), \(\mathcal{K}_1 = \text{gp} \), and \(\mathcal{K}_i = \text{Ab}\text{gp} \) for \(i \geq 2 \). Moreover, there is an equivalence of categories \(\vartheta : \mathcal{K} \equiv \text{ho}\mathbb{P}^0 \), such that the functor \(\mathcal{P}[0] \) is equivalent to the composite functor \(\vartheta \circ \pi_* : \mathcal{T}_s \to \mathcal{K} \).

Similarly, the functor \(\mathcal{T}_s \to \text{ho}\mathbb{P}^1 \) induced by \(\mathcal{P}[1] \) is equivalent to the secondary homotopy group functor of [7, §4], in the sense that each secondary homotopy group \(\pi_{n,*}X \) completely determines the \(n \)-th 1-window of \(X \). Using the results on secondary homotopy groups in [7], one obtains a homotopy category of algebraic 1-stems which is equivalent to \(\text{ho}\mathbb{P}^1 \).

A category of algebraic models for 2-stems is only partially known. The homotopy classification of \((k-1) \)-connected \((k+2) \)-types is described for all \(k \) in [3]; this theory can be used to classify homotopy types of Postnikov 2-stems.

3 The spectral sequence of a simplicial space

We begin with the construction of the homotopy spectral sequence for a simplicial space (cf. [22], [15, Theorem B.5], and [16, X,§6]), using the version given by Dwyer, Kan, and Stover in [20, §8] (see also [13, §2.5], [12], and [19, §3.6]). For this purpose, we require some explicit constructions for the \(E^2 \)-model category of simplicial spaces.

3.1 Definition Given a simplicial object \(X_\bullet \in s\mathcal{C} \), over a complete pointed category \(\mathcal{C} \), for each \(n \geq 1 \) define its \(n \)-cycles object to be

\[
Z_nX_\bullet := \{ x \in X_n \mid d_i x = * \text{ for } i = 0, \ldots, n \}.
\]

Similarly, the \(n \)-chains object for \(X_\bullet \) is

\[
C_nX_\bullet := \{ x \in X_n \mid d_i x = * \text{ for } i = 1, \ldots, n \}
\]

Set \(Z_0X_\bullet := X_0 \). We denote the map \(d_0|_{C_nX_\bullet} : C_nX_\bullet \to Z_{n-1}X_\bullet \) by \(d_0^{X_\bullet} \).

3.2 Notation For any non-negatively graded object \(T_* \), we write \(\Omega T_* \) for the graded object with \((\Omega T_*)_j := T_{j+1} \) for all \(j \geq 0 \). The notation is motivated by the natural isomorphism of graded groups \(\pi_* \Omega X \equiv \Omega(\pi_*X) \) for \(X \in \mathcal{T}_s \).
3.3 Definition Now assume that C is a pointed model category of spaces, such as T_* or G, and X_\bullet is a Reedy fibrant simplicial object over C -- that is, for each $n \geq 1$, the universal face map $\delta_n : X_n \to M_n X_\bullet$ into the n-th matching object of X_\bullet is a fibration (see [21, 15.3]). The map $d_0 = d_0^{X_\bullet}$ then fits into a fibration sequence in C:

$$
\cdots \Omega^n X_n \to Z_{n+1} X_\bullet \xrightarrow{j_{n+1}^*} C_{n+1} X_\bullet \xrightarrow{d_0^{X_\bullet}} Z_n X_\bullet
$$

(see [20, Prop. 5.7]).

For each $n \geq 0$, the n-th natural homotopy group of the simplicial space X_\bullet, denoted by $\pi_n^X = \pi_n X_\bullet$, the cokernel of the map $(d_0^{X_\bullet})_#$ (induced on homotopy groups by $d_0^{X_\bullet}$). Note that the cokernel of a maps of groups or pointed sets is generally just a pointed set.

We thus have an exact sequence of graded groups:

$$
\pi_* C_{n+1} X_\bullet \xrightarrow{(d_0^{X_\bullet})_{#}} \pi_* Z_n X_\bullet \xrightarrow{\delta_n} \pi_{n+1} X_\bullet \to 0.
$$

(3.5)

Together the groups $(\pi_{n,k}^X)_{n,k=0}^\infty$ constitute the bigraded homotopy groups of [20, §5.1].

3.6 Construction of the spiral sequence. Applying the functor π_* to the fibration sequence (3.4) yields a long exact sequence, with connecting homomorphism $\partial_h : \Omega \pi_* Z_n X_\bullet \to \pi_* Z_{n+1} X_\bullet$. Note that the inclusion $i_* : C_n X_\bullet \hookrightarrow X_n$ induces an isomorphism $i_* : \pi_* C_n X_\bullet \cong C_n(\pi_* X_\bullet)$ for each $n \geq 0$ (see [10, Prop. 2.7]). From (3.5) we see that:

$$
\Omega \pi_{n,k}^X = \Omega \text{Coker } (d_0^{X_\bullet})_{#} \cong \text{Im } \partial_h \cong \text{Ker } (j_{n+1}^*),
$$

so we obtain a commutative diagram with exact rows and columns:
in which $B_{n+1}X_* := \text{Im} (d_{0}^{X_{n+2}}) \subseteq \pi_* Z_n X_*$ and $B_{n+1}\pi_* X_{n+2} := \text{Im} d_{0}^{\pi_* X_{n+2}}$ are the respective boundary objects. Note that the map $(j_{n}^{X_*})_\# : \pi_* Z_n X_* \rightarrow \pi_* C_n X_*$ induced by the inclusion $j_n^{X_*}$ of (3.4) above in fact factors through $Z_n \pi_* X_*$, as indicated in the middle row of (3.7).

This defines the map of graded groups $h_n : \pi_{2n} X_* \rightarrow \pi_{2n} (\pi_* X_*)$. Note that for $n = 0$ the map ℓ_* is an isomorphism, so h_0 is, too. The map $s_n : \Omega \pi_{n+1} X_* \rightarrow \pi_{2n} X_*$ is the composite of the inclusion $\ell_{n-1} : \text{Ker} (j_{n}^{X_*})_\# \hookrightarrow \pi_* Z_n X_*$ with the quotient map $\overline{j}_n : \pi_* Z_n X_* \rightarrow \pi_{2n} X_*$ of (3.5), using the natural identification of $\Omega \pi_{n} X_*$ with Ker $(j_{n}^{X_*})_\#$.

The map $\partial_{n+2} : \pi_{n+2} \pi_* X_* \rightarrow \Omega \pi_{n+2} X_*$ is induced by the composite

$$(3.8) \quad Z_{n+2} \pi_* X_* \subseteq C_{n+2} \pi_* X_* \cong \pi_* C_{n+2} X_* \xrightarrow{(d_{0}^{X_{n+2}})_\#} \pi_* Z_{n+1} X_*, \quad \text{which actually lands in Ker } (j_{n+1}^{X_*})_\# \text{ by the exactness of the long exact sequence for the fibration } (3.4).$$

These maps s_n, h_n, and ∂_n fit into a spiral long exact sequence:

$$(3.9) \quad \ldots \rightarrow \Omega \pi_{n+1} X_* \xrightarrow{s_n} \pi_{2n} X_* \xrightarrow{h_n} \pi_{n+1} \pi_* X_* \xrightarrow{\partial_n} \Omega \pi_{n-1} \pi_* X_* \xrightarrow{s_{n-1}} \pi_{2n-1} X_* \rightarrow \ldots \rightarrow \pi_{3} X_* \xrightarrow{\partial_1} \pi_{0} \pi_* X_* \xrightarrow{s_0} \pi_{2} X_* \xrightarrow{h_0} \pi_{1} \pi_* X_* \xrightarrow{\partial_0} \Omega \pi_* X_*$$

(cf. [20, 8.1]).

3.10 The spectral sequence of a simplicial space.

For any simplicial space $X_* \in sT_*$ (or bisimplicial set), Bousfield and Friedlander showed that there is a first-quadrant spectral sequence of the form

$$(3.11) \quad E^2_{s,t} = \pi_{s-t} X_* \Rightarrow \pi_\ast \|X_*\|,$$

where $\|X_*\| \in T_*$ is the realization (or the diagonal, in the case of $X_* \in sS_*$). The spectral sequence is always defined, but X_* must satisfy certain “Kan conditions” to guarantee convergence – see [15, Theorem B.5].

In [20, §8.4], Dwyer, Kan and Stover showed that (3.11) coincides up to sign, from the E^2-term on, with the spectral sequence associated to the exact couple of (3.4), which we call the spiral spectral sequence for X_*. If we assume that each X_n is connected, by taking loops (or applying Kan’s functor G, if $X_* \in sS_*$), we may replace X_* by a bisimplicial group $G X_* \in sG$, and then (3.11) becomes the spectral sequence of [22].
4 Simplicial stems and truncated spectral sequences

As noted in §2.9, the E^2-term of any of the above equivalent spectral sequences for a simplicial space X_\ast is determined explicitly by the simplicial 0-stem of X_\ast.

Our goal is to extend this description to the higher terms of the spectral sequence. For this purpose, fix $n \geq 0$, and consider a simplicial Postnikov n-stem Q_\ast (which need not be realizable as $P[n]X_\ast$ for some simplicial space X_\ast). This is equivalent to having a collection of simplicial spaces $Q_\ast^{n+k}\langle k \rangle$ for each $k \geq 0$, equipped with maps as in (2.3), with $\pi_i Q_\ast^{n+k}\langle k \rangle = 0$ for $i < k$ or $i > n + k$.

We assume that Q_\ast is Reedy fibrant in the sense that for each $k \geq 0$, the simplicial space $Q_\ast^{n+k}\langle k \rangle$ is Reedy fibrant. In this case, the "n-stem version" of the spiral long exact sequence is defined as follows: for each $t,i,k \geq 0$, set $\pi_{i,t}^{(k,n)} Q_\ast := \pi_{i+t+k} Q_\ast^{n+k}\langle k \rangle$ and

$$\pi_i^{(k,n)} Q_\ast := \pi_{i+k} Q_\ast^{n+k}\langle k \rangle = \begin{cases} \pi_{i+k} Q_\ast & \text{if } 0 \leq i \leq n \\ 0 & \text{otherwise.} \end{cases}$$

(4.1)

Note that the $(i+k)$-th homotopy group $\pi_{i+k} Q_\ast$ of a Postnikov n-stem Q_\ast is well-defined, and coincides with $\pi_{i+k} X_\ast$ for $0 \leq i \leq n$ when $Q_\ast = P[n]X_\ast$.

4.2 Definition The collection of long exact sequences (3.9) for $Q_\ast^{n+k}\langle k \rangle$ (indexed by $k \geq 0$):

$$\ldots \Omega \pi_{i-1,t}^{(k,n)} Q_\ast \xrightarrow{\partial_{i-1,t}^{(k,n)}} \pi_{i,t}^{(k,n)} Q_\ast \xrightarrow{h_{i,t}^{(k,n)}} \pi_{i+n,t}^{(k,n)} Q_\ast \xrightarrow{\partial_{i+n,t}^{(k,n)}} \Omega \pi_{i+1,t}^{(k,n)} Q_\ast \ldots ,$$

(4.3)

together with the maps between adjacent k-windows induced by the map q in (2.6), will be called the spiral n-system of Q_\ast. When $Q_\ast = P[n]X_\ast$, we will refer to this simply as the spiral n-system of X_\ast.

4.4 Remark Using the exactness of (4.3), definition (4.1) implies that:

$$\pi_{i,t}^{(k,n)} Q_\ast = \pi_{i+t} Q_\ast^{n+k}\langle k \rangle = 0 \quad \text{for } i > n ,$$

(4.5)

by induction on $t \geq 0$. Note, however, that while the groups $\pi_{i,t}^{(k,n)} Q_\ast$ are explicitly described by (4.1), the dependence of $\pi_{i,t}^{(k,n)} Q_\ast$ on k and n requires more care.

4.6 The E^2-term of the spectral sequence. The spiral 0-system of a simplicial Postnikov 0-stem Q_\ast, reduces to a series of isomorphisms $h_t: \pi_{i,t}^{(k,0)} Q_\ast \cong \pi_{i,n}^{(k,0)} Q_\ast$ (for each $k \geq 0$). When $Q_\ast = P[0]X_\ast$ is the Postnikov 0-stem of a simplicial
space \(X_\ast\); this allows us to identify the \(E^3_{i,k}\)-term of the spiral spectral sequence for \(X_\ast\), which is:

\[
\pi_{i+k}X_\ast = \pi_{i+k}P^{0+k}X_\ast(k) = \pi_{i+k}(P[0]X_\ast)_k = \pi_{i+k}^{(0,0)}P[0]X_\ast = \pi_{i+k}^{(0,0)}Q_\ast,
\]

with \(\pi_{i+k}^{(0,0)}Q_\ast = \pi_{i+k}^{(0,0)}P[0]X_\ast\).

The first interesting case is the spiral 1-system, for which we have:

4.7 Proposition The \(E^3\)-term of the spiral spectral sequence for a simplicial space \(X_\ast\) is determined by the spiral 1-system of \(X_\ast\). In fact, \(d^2_{i,k}\) may be identified with \(\partial_{i,k}: \pi_{i+k}X_\ast \to \Omega \pi_{i+2,k}X_\ast\), while \(E^3_{i,k}\) is the image of the composite map

\[
(4.8)
\]

\[
\pi_{i+1}^{(k,1)}X_\ast \xrightarrow{h_{i+1}^{(k,1)}} \pi_{i+k}X_\ast \cong \pi_1^{(k-1,1)}X_\ast \xrightarrow{h_i^{(k-1,1)}} \pi_i^{(k-1,1)}X_\ast \xrightarrow{\partial_i^{(k-1,1)}} \pi_i^{(k-1,1)}X_\ast.
\]

Observe that (4.8) involves maps from different windows of the spiral 1-system, implicitly identified using the isomorphisms induced by the map \(q\) in (2.6).

Proof Because \(n = 1\) throughout, we abbreviate \(\pi_{i+1}^{(k,1)}Q_\ast\) to \(\pi_{i+1}^{(k)}Q_\ast\), and \(\pi_i^{(k,1)}Q_\ast\) to \(\pi_i^{(k)}Q_\ast\), observing that \(\pi_i^{(k)}Q_\ast\) is simply \(\pi_{i+k}X_\ast\) for \(i = 0, 1\), and zero otherwise, since \(Q_\ast = \mathcal{P}[1]X_\ast\). Thus the spiral 1-system (4.3) is non-trivial for each \(t \geq 1\) in (internal) degrees \(i = 0, 1\) only, and we can write it in two rows:

\[
0 \quad \to \quad \pi_{i+1}^{(k)}Q_\ast \xrightarrow{\sim} \pi_i^{(k)}Q_\ast \quad \to \quad 0 \quad \to \quad \Omega \pi_{i+2}^{(k)}Q_\ast \xrightarrow{\partial_{i+2}^{(k)}} \Omega \pi_1^{(k)}Q_\ast
\]

Since \(Q_\ast := \mathcal{P}[1]X_\ast\) is the simplicial Postnikov 1-stem of \(X_\ast\), we actually have a collection of two-row long exact sequences, one for each \(k\)-window of \(\mathcal{P}[1]X_\ast\).

For each such \(k\)-window \(\mathcal{P}_k[1]X_\ast\), we can use the top row to identify

\[
\Omega \pi_{i+2}^{(k)}Q_\ast = \Omega \pi_{i+2}^{(k)}\mathcal{P}_k[1]X_\ast = \pi_{i+1}^{(k)}\mathcal{P}_k[1]X_\ast = \pi_{i+1}^{(k)}Q_\ast
\]

with \(\pi_{i+1}^{(k)}Q_\ast = \pi_{i+1}^{(1)}\mathcal{P}_k[1]X_\ast = \pi_{i+1}^{(k+1)}X_\ast\). So the bottom row reduces to:

\[
\pi_{i-1}X_\ast \xrightarrow{\delta_i^{(k,1)}} \pi_{i+1}^{(k)}Q_\ast \xrightarrow{h_i^{(k,1)}} \pi_{i+k}X_\ast \xrightarrow{\partial_i^{(k,1)}} \pi_{i-2}X_\ast
\]

\[
\text{Im}(\delta_i^{(k,1)}) \quad \text{Im}(h_i^{(k,1)}) \quad \text{Im}(\partial_i^{(k,1)}) \quad \text{Ker}(\partial_i^{(k,1)})
\]
Note that the following part of the E^1-term of the exact couple for the fibration sequence $C_{n+1}P^1Ω^kX_• \rightarrow Z_nP^1Ω^kX_•$, (as in (3.4)):

$$\pi_1Z_{t-1}P^1Ω^kX_• \xrightarrow{(j_{-1})_u} \pi_1C_{t-1}P^1Ω^kX_• \xrightarrow{(d_{-1}^{(1)})_u} \pi_1Z_{t-2}P^1Ω^kX_• \xrightarrow{(j_{-2})_u} \pi_1C_{t-2}X_• \rightarrow \ldots$$

is naturally isomorphic to the exact couple for $C_{n+1}Ω^kX_• \rightarrow Z_nΩ^kX_•$, since C_{n+1} and Z_n are limits, so they commute with P^1, and then $\pi_1P^1Z_{t-1}Ω^kX_• \cong \pi_1Z_{t-1}Ω^kX_•$, and so on. This does not imply, of course, that $\pi_{t,1}X_• \cong \pi_{t,k+1}X_•$.

We therefore see from (3.7) and (3.8) that the differential $d_{i,k}^2: E^2_{i,k} \rightarrow E^2_{i-2,k+1}$ may be identified with:

$$(4.9) \quad \pi_i\pi_kX_• \cong \pi_i\pi_0^{(k-1)}X_• \xrightarrow{d_{i,0}^{(1)}} \Omega^{(k)}\pi_{t-2,0}X_• = \pi_i\pi_{t-2,1}X_• \cong \pi_{t-2}\pi_{i,k+1}X_•$$

Now by definition, $E^3_{i,k}$ fits into a commutative diagram:

$$E^2_{i+2,k-1} \xrightarrow{d^2_{i+2,k-1}} E^2_{i,k} \xrightarrow{q} \text{Coker (} d^2_{i+2,k-1} \text{)}$$

$$(4.10) \quad \text{Im (} d^2_{i+2,k-1} \text{)} \xrightarrow{\ell} \text{Ker (} d^2_{i,k} \text{)} \xrightarrow{s} E^3_{i,k}$$

with exact rows, ℓ, j and κ monic, and thus $E^3_{i,k} \cong \text{Im (} q \circ j \text{)}$.
From the exactness of (4.3) we see that:
\[
\text{Coker } (d_{t+2,k-1}^2) = \text{Coker } (\partial_{t+2}^{(k-1,1)}) = \text{Im } (s_{t+1}^{(k-1,1)})
\]
and
\[
\text{Ker } (d_{t,k}^2) = \text{Ker } (\partial_{t}^{(k,1)}) = \text{Im } (h_{t}^{(k,1)})
\]
so \(E_3^{t,k} = \text{Im } (q \circ j) \) is indeed the image of the map in (4.8).

4.11 Definition An \(r \)-truncated spectral sequence is one defined up to and including the \(E_r \)-term, together with the differential \(d_n : E_r t, i \rightarrow E_{r-1, t+r} \), but without requiring that \(d_r \circ d_r = 0 \) (so the \(E_{r+1} \)-term is defined in terms of the \(r \)-truncated spectral sequence only if \(d_r d_r = 0 \)).

The main example is the \(n \)-truncation of an (ordinary) spectral sequence (such as that of a simplicial space). In this case we do have \(d' \circ d' = 0 \), of course.

4.12 Corollary Any Reedy fibrant simplicial Postnikov 1-stem has a well-defined 2-truncated spiral spectral sequence. Moreover, if \(Q_* = P[1]X_* \) for some simplicial space \(X_* \), this 2-truncated spectral sequence coincides with the 2-truncation of the Bousfield-Friedlander spectral sequence for \(X_* \).

In general, we have a less explicit description of the higher terms in the spiral spectral sequence:

4.13 Theorem For each \(r \geq 0 \), the \(E^{r+2}_{t,i} \)-term of the spiral spectral sequence for a simplicial space \(X_* \) is determined by the spiral \(r \)-system of \(X_* \). Moreover, for any \(\alpha \in E_{t,i}^{r+1} \), we have \(d_{t,i}^{r+1}(\alpha) = \beta \in E_{t-r-1,i+r}^{r+1} \) if and only if \(\alpha \) and \(\beta \) have representatives \(\bar{a} \in \pi_\pi X_* \) and \(\bar{b} \in \pi_{t-r-1,i+r} X_* \) respectively, such that:
\[
(4.14) \quad (s_{t-2,1}^{(i,r)}) \circ (s_{t-3,2}^{(i,r)}) \circ \cdots \circ (s_{t-r-1}^{(i,r)}) \circ (h_{t-r-1,r}^{(i,r)})^{-1}(\bar{b}) = \partial_{t,0}^{(i,r)}(\bar{a})
\]

Proof We naturally identify \(\pi_{t,k}^X \) with \(\pi_{t,k+s}^X \) for \(k \geq s \), and similarly for the maps in (4.3), so the spiral \((r-1) \)-system embeds in the spiral \(r \)-system (with an index shift).
Again we write out the E^1-term of the spiral exact couple:

\[\pi_1 C_{i-1}^{*}P^r\Omega^{k}X, \quad \pi_2 Z_{i-2}^{*}P^r\Omega^{k}X, \quad \pi_3 C_{i-3}^{*}P^r\Omega^{k}X, \quad \ldots \]

The differential $d_{i,i+1}^{*} : E_{i,i+1}^{r+1} \rightarrow E_{i-1,i+r}^{r+1}$ may then be described as a “relation” (cf. [18, § 3.1]) in the usual way:

Given a class $\alpha \in E_{i,i+1}^{r+1}$, choose a representative for it $a \in E_{i,i+1}^{l} = \pi_0 C_{i}^{*}P^r\Omega^{k}X$. Since it is a cycle for $d_{i,i}^{l} = (j_{i-1})_{\#} \circ (d_{0}^{i})_{\#}$, it lies in $Z_{i}\pi_{i}X$, and thus represents an
element $\bar{a} \in \pi_{1,1}X_\bullet = E_{2,2}$. From the exactness of the middle row of (3.7) we see that $(d_1^{0,1}(a) \in \text{Ker}(i_{j-1}) = \Omega \pi_1^{i_{j-1}}X_\bullet$, and in fact $(d_1^{0,1}(a)$ represents $\partial^{i_{j-1}}_{r,0}(\bar{a})$.

Since $\partial^{i_{j-1}}_{r,0}$ is surjective, we can choose $e_{r-2} \in \pi_1Z_{r-2}P^{1,1}X_\bullet$ mapping to $(d_1^{0,1}(a)$. Because $d_{r,1}^{0,1}(\bar{a}) = h_{r,1}^{i_{j-1}} \circ \partial^{i_{j-1}}_{r,0}(\bar{a})$, as in the proof of Proposition 4.7 (though $h_{r,1}^{i_{j-1}}$ need no longer be an isomorphism), we see that it is represented by $(j_{r-2})_\bullet(e_{r-2})$. If $r = 1$, we are done. Otherwise, we know that $d_{r,1}^{0,1}(\bar{a}) = 0$, so we can choose e_{r-2} so that $(j_{r-2})_\bullet(e_{r-2}) = 0$, using exactness of the third column of (3.7). Again this implies that $e_{r-2} \in \text{Ker}(i_{j-1}) = \Omega \pi_1^{i_{j-1}}X_\bullet$, and $d_{r,1}^{0,1}((a))$ is represented by $h_{r,1}^{i_{j-1}}(e_{r-2})$. Moreover, we see from (3.7) that $s_{r-3,1}(e_{r-3}) = \partial^{i_{j-1}}_{r,0}(\bar{a})$, using the identification $\Omega \pi_1^{i_{j-1}}X_\bullet = \pi_1^{i_{j-1}}X_\bullet$.

Choosing a lift to $e_{r-3} \in \pi_2Z_{r-3}P^{1,1}X_\bullet$, we may assume that $(j_{r-3})_\bullet(e_{r-3}) = 0$, so $e_{r-3} \in \Omega \pi_1^{i_{j-1}}X_\bullet$ and $s_{r-3,1}(e_{r-3}) = e_{r-2}$. Continuing in this way, we finally reach $e_{r-1} = \Omega \pi_1^{i_{j-1}}X_\bullet$, with $s_{r-2,1}(e_{r-2}) = e_{r-1}$, and so on, and see that $d_{r,1}^{0,1}((a))$ is represented by $h_{r,1}^{i_{j-1}}(e_{r-1})$. Since (as in the proof of Proposition 4.7) $h_{r,1}^{i_{j-1}}$ is an isomorphism, we deduce that $d_{r,1}^{0,1}(\alpha)$ is as in (4.14).

4.15 Remark From the exactness of (4.3) we have $\text{Im}(\partial^{i_{j-1}}_{r,0}) = \text{Ker}(\partial^{i_{j-1}}_{r,1})$, so the image of $d_{r,1}^{0,1}$ as described in (4.14) is $\text{Ker}(\sigma^{r+1}_{j,1})$, where $\sigma^{r+1}_{j,1} = (s_{r-1,0}^{i_{j-1}}) \circ (s_{r-2,1}^{i_{j-1}}) \circ \cdots \circ (s_{r,1}^{i_{j-1}})$. Therefore, $E_{r+1,1}^{0,1}$ embeds naturally in $\text{Im}(\sigma^{r+1}_{j,1})$.

4.16 Corollary Every Reedy fibrant simplicial Postnikov r-stem has a well-defined $(r + 1)$-truncated spiral spectral sequence. If $Q_\bullet = P[r]X_\bullet$ for some simplicial space X_\bullet, this truncated spectral sequence coincides with the $(r + 1)$-truncation of the Bousfield-Friedlander spectral sequence for X_\bullet.

Thus the bigraded homomorphism $d_{r+1}^{0,1} \circ d_{r,1}^{0,1} : E_{r,i}^r \rightarrow E_{r+2r-2,i+2r}^r (r \geq 2r + 2, i \geq 0)$ serves as the first obstruction to the realizability of the simplicial Postnikov r-stem Q_\bullet by a simplicial space X_\bullet.

5 A cosimplicial version

There are actually four variants of the above spectral sequence which we might consider, for a simplicial or cosimplicial object over simplicial or cosimplicial sets. The case of
bicosimplicial sets is in principle strictly dual to that of bisimplicial sets, but because
the category of cosimplicial sets has no (known) useful model category structure, we
must restrict to bicosimplicial abelian groups – or equivalently, ordinary double
complexes. Thus the main new case of interest is that of cosimplicial simplicial sets,
or cosimplicial spaces.

5.1 The spectral sequence of a cosimplicial space. If \(X^* \in cS_\ast \) is a fibrant
cosimplicial pointed space with total space \(\text{Tot} X^* \), there are various constructions for
the homotopy spectral sequence of \(X^* \):

(a) Using the tower of fibrations for \((\text{Tot}_n X^*)_{n=0}^\infty \) (cf. [16, X,§6]).

(b) Using “relations” on the normalized cochains \(N^n \pi_i X^* := \pi_i X^n \cap \text{Ker} (s^0) \cap \ldots \cap \text{Ker} (s^{n-1}) \) (cf. [18, §7]).

(c) Using a cofibration sequence dualizing (3.4) (cf. [23, §3]).

Bousfield and Kan showed that the result is essentially unique (see [18]). Since the
main ingredient needed for to define the spiral exact couple is the diagram (3.7), we
use the first approach:

5.2 Definition For any Reedy fibrant cosimplicial pointed space \(X^* \in cS_\ast \), consider
the fibration sequence

\[
F_n X^* \xrightarrow{j_n} \text{Tot}_n X^* \xrightarrow{p_n} \text{Tot}_{n-1} X^*,
\]

where \(\text{Tot}_n X^* := \map_{cS_\ast} (\text{sk}_n X^*) \) and the fibration \(p_n \) is induced by the inclusion
of cosimplicial spaces \(\text{sk}_{n-1} \hookrightarrow \text{sk}_n \).

The cokernel of \((j_n)_\ast : \pi_* F_n X^* \hookrightarrow \pi_* \text{Tot}_n X^* \) is called the \(n \)-th natural (graded)
cohomotopy group of \(X^* \), and denoted by \(\pi_{n,\ast} X^* \).

5.4 Remark We may identify \(F_n X^* \) with the looped normalized cochain object
\(\Omega^n N^n X^* \), where

\[
N^n X^* := X^n \cap \text{Ker} (s^0) \cap \ldots \cap \text{Ker} (s^{n-1}),
\]

and \(\pi_* N^n X^* \) with \(N^n \pi_* X^* \) (see [16, X, Proposition 6.3]).

Moreover, the composite

\[
\pi_{n+1} \Omega^n N^n X^* \xrightarrow{(j_n)_\ast} \pi_{n+1} F_n X^* \xrightarrow{\partial_n} \pi_{n+1} \text{Tot}_n X^* \xrightarrow{\partial_n} \pi_{n+1} F_{n-1} X^* \cong \pi_{n+1} \Omega^{n+1} N^{n+1} X^*
\]
Stems and spectral sequences

(\text{where } \partial_n \text{ is the connecting homomorphism for the } (5.3), \text{ may then be identified with the differential})

\begin{equation}
\delta^n := \sum_{i=0}^{n} (-1)^i d^i : N^n_{\pi_* X^*} \to N^{n+1}_{\pi_* X^*}, \tag{5.6}
\end{equation}

for the normalized cochain complex \(N^*_{\pi_* X^*} \), so that

\begin{equation}
\text{Ker} (\delta^n) / \text{Coker} (\delta^{n+1}) \cong \pi^n_{\pi_* X^*} \tag{5.7}
\end{equation}

(cf. [16, X, §7.2]).

\textbf{5.8 Proposition} For any pointed cosimplicial space \(X^* \) there is a natural spiral long exact sequence:

\begin{equation}
\cdots \to \Omega \pi^{n-1}_{\pi_* X^*} \overset{\ell_{n-1}}{\to} \pi^n_{\pi_* X^*} \overset{h^n}{\to} \pi^n_{\pi_* X^*} \overset{\partial^n}{\to} \Omega \pi^{n-2}_{\pi_* X^*} \overset{\ell_{n-2}}{\to} \cdots \to \pi^0_{\pi_* X^*} \overset{\psi}{\to} \pi^0_{\pi_* X^*} \tag{5.9}
\end{equation}

\textbf{Proof} By choosing a fibrant replacement in the model category of cosimplicial simplicial sets defined in [16, X, §5], if necessary, we may assume that \(X^* \) is Reedy fibrant. We then obtain a commutative diagram as in (3.7) with exact rows and columns:

\begin{equation}
\begin{array}{ccccccccc}
& & & & & & \text{Ker} (j_{n+1})_h & \cdots & \text{B}^{n+1}_{\pi_* X^*} \overset{(j_n)_h}{\to} \text{B}^{n+1}_{\pi_* X^*} \to 0 \\
0 & \to & \text{Ker} (\ell_{n-1}) & \to & \text{B}^{n+1}_{\pi_* X^*} & \overset{(j_n)_h}{\to} & \text{B}^{n+1}_{\pi_* X^*} & \to & 0 \\
& & & & & & \text{Coker} h^n & \to & 0 \\
0 & \to & \Omega \pi^{n-1}_{\pi_* X^*} & \overset{\ell_{n-1}}{\to} & \pi^n_{\pi_* X^*} & \overset{h^n}{\to} & \pi^n_{\pi_* X^*} & \overset{\partial^n}{\to} & \text{Coker} h^n \\
0 & \to & \text{Ker} h^n & \to & \pi^n_{\pi_* X^*} & \overset{h^n}{\to} & \pi^n_{\pi_* X^*} & \to & \text{Coker} h^n \\
& & & & & & 0 & \to & 0
\end{array} \tag{5.10}
\end{equation}

in which \(\text{B}^{n+1}_{\pi_* X^*} := \text{Im} (j_{n+1})_h \subseteq \pi_* \text{Tot}_n X^* \) and \(\text{B}^{n+1}_{\pi_* X^*} := \text{Im} (\delta^{n+1}) = \text{Im} (\partial_{n+1} \circ (j_{n+1})_h) \) are the respective coboundary objects.

The construction of the maps \(h^n \), \(s^n \), and \(\partial^n \), and the proof of the exactness of (5.9), are then precisely as in § 3.6. \qed

\textit{Algebraic & Geometric Topology XX (20XX)}
5.11 Definition The spiral n-system of a pointed cosimplicial space $X^\bullet \in cS_n$ is defined to be the collection of long exact sequences (5.9) for the Postnikov n-stem functor $\mathcal{P}[n]$ applied to X^\bullet, one for each k-window of $\mathcal{P}[n]X^\bullet$.

As in Definition 4.2, this may actually be defined for a cosimplicial Postnikov n-stem \mathcal{P}^\bullet, not necessarily realizable as $\mathcal{P}^\bullet = \mathcal{P}[n]X^\bullet$.

By construction, the homotopy spectral sequence of a (fibrant) cosimplicial space X^\bullet, obtained as in (5.1), is associated to the spiral exact couple (5.9). The proofs of Proposition 4.7 and Theorem 4.13 use only the description of the spiral exact couple for X^\bullet derived from (5.10), so by using (5.10) instead we can prove their analogues in the cosimplicial case, and show:

5.12 Theorem The E_{r+2}-term of the homotopy spectral sequence for a cosimplicial space X^\bullet is determined by the spiral r-system of X^\bullet.

An analogue of Corollary 4.16 also holds, as well as:

5.13 Proposition The differential $d_2^{i,j}: E_2^{i,j} \to E_2^{i+2,j+1}$ may be identified with $\partial^i_{(i,1)}: \pi^i\pi_jX^\bullet \to \Omega\pi^{i+2,0}_{\pi_0}X^\bullet$.

5.14 Examples As noted in the introduction, many commonly used spectral sequences arise as the spiral spectral sequence of an appropriate (co)simplicial space, so Theorems 4.13 and 5.12 allow us to extract their E_r^\bullet- or E_r-terms from the appropriate spiral systems. For instance:

(a) Segal’s homology spectral sequence (cf. [24]), the van Kampen spectral sequence (cf. [25]), and the Hurewicz spectral sequence (cf. [9]) are constructed using bisimplicial sets.

(b) The unstable Adams spectral sequences of [14, 17] and [8, §4], Rector’s version of the Eilenberg-Moore spectral sequence (cf. [23]), and Anderson’s generalization of the latter (cf. [2]) are all associated to cosimplicial spaces.

(c) The usual construction of the stable Adams spectral sequence for $\pi^i_0X \otimes \mathbb{Z}/p$ (cf. [1, §3]) uses a tower of (co)fibrations, rather than a cosimplicial space, but when X is finite dimensional, it agrees in a range with the unstable version for Σ^NX, so Theorem 5.12 applies stably, too.
References

Algebraic & Geometric Topology XX (20XX)

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

Department of Mathematics, University of Haifa, 31905 Haifa, Israel

baues@mpim-bonn.mpg.de, blanc@math.haifa.ac.il