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Stems and spectral sequences

HANS-JOACHIM BAUES

DAVID BLANC

We introduce the categoryPstem[n] of n-stems, with a functorP [n] from
spaces toPstem[n] . This can be thought of as then-th order homotopy groups
of a space. We show how to associate to each simplicialn-stem Q• an (n+ 1)-
truncated spectral sequence. Moreover, ifQ• = P [n]X• is the Postnikovn-stem
of a simplicial spaceX• , the truncated spectral sequence forQ• is the truncation
of the usual homotopy spectral sequence ofX• . Similar results are also proven
for cosimplicialn-stems. They are helpful for computations, sincen-stems in low
degrees have good algebraic models.

55T05; 18G55, 18G10, 55S45

1 Introduction

Many of the spectral sequences of algebraic topology arise as the homotopy spectral
sequence of a (co)simplicial space – including the spectralsequence of a double com-
plex, the (stable or unstable) Adams spectral sequence, theEilenberg-Moore spectral
sequence, and so on (see §5.14). Given a simplicial spaceX• , the E2-term of its
homotopy spectral sequence has the formE2

s,t = πsπtX• , so it may be computed by
applying the homotopy group functor dimensionwise toX• .

In this paper we show that the higher terms of this spectral sequence are obtained
analogously by applying ’higher homotopy group’ functors to X• . These functors
are given explicitly in the form of certainPostnikov stems, defined in Section2; the
Postnikov 0-stem of a space is equivalent to its homotopy groups.

We then show how theEr -term of the homotopy spectral sequence of a simplicial
space X• can be described in terms of the (r − 2)-Postnikov stem ofX• , for each
r ≥ 2 (see Theorem4.13) – and similarly for the homotopy spectral sequence of a
cosimplicial spaceX• (see Theorem5.12).

As an application for the present paper, in [5] we generalize the first author’s result with
Mamuka Jibladze (in [6]), which shows that theE3-term of the stable Adams spectral
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1002 H-J Baues and D Blanc

sequence can be identified as a certain secondary derived functor Ext. We do this by
showing how to define in general thehigher order derived functorsof a continuous
functor F : C → T∗ , by applyingF to a simplicial resolutionW• in C , and taking
Postnikovn-stems of FW• .

1.1 Notation and conventions. The category of pointed connected topological
spaces will be denoted byT∗ ; that of pointed sets bySet∗ ; that of groups byGp.
For any categoryC , sC denotes the category of simplicial objects overC , and cC
that of cosimplicial objects overC . However, we abbreviatesSet to S , sSet∗
to S∗ , and sGp to G . For any small indexing categoryI , the category of functors
I → C is denoted byCI .

1.2 Acknowledgements We wishe to thank the referee for his or her careful reading
of the paper and helpful comments on it.

2 Postnikov stems

The Postnikov system of a topological space (or simplicial set) X is the tower of
fibrations:

(2.1) . . . → Pn+1X
pn+1

−−→ PnX
pn

−→ Pn−1X . . . P1X
p1

−→ P0X ,

equipped with maps qn : X → PnX (with pn ◦ qn = qn−1), which induce
isomorphisms on homotopy groups in degrees≤ n. Here PnX is n-coconnected
(that is, πiPnX = 0 for i > n) and πipn is an isomorphism fori < n. The fiber
of the map pn : PnX → Pn−1X is the Eilenberg-Mac Lane spaceK(πnX, n), so the
fibers are determined up to homotopy byπ∗X. Thus a generalization of the homotopy
groups ofX is provided by the following notion:

2.2 Definition For any n ≥ 0, aPostnikov n-stemin T∗ is a tower:

(2.3) Q :=
(

. . . → Qk+1
qk+1
−−→ Qk

qk
−→ Qk−1 . . . Q0

)

in T (N,≤)
∗ , in which Qk is (k − 1)-connected and (n + k)-coconnected (so that

πi(Qk) = 0 for i < k or i > n+k) and πi(qk) is an isomorphism fork ≤ i < n+k.
Here (N,≤) is the usual linearly ordered category of the natural numbers. The space
Qk is called thek-th n-windowof Q.
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Stems and spectral sequences 1003

Such ann-stem is thus a collection of overlapping (k − 1)-connectedn + k-types,
which may be depicted forn = 2 as follows:

. . . ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ . . .

where each row exhibits then + 1 non-trivial homotopy groups (denoted by∗) of
onen-window, and all those in thei -th column (corresponding toπi ) are isomorphic.

We denote by Pstem[n] the full subcategory of Postnikovn-stems in the functor
category T (N,≤)

∗ (with model category structure on the latter as in [21, 11.6]). Thus
the morphisms inPstem[n] are given by strictly commuting maps of towers, and
f : Q → Q′ is a weak equivalence (respectively, a fibration) if eachfk : Qk → Q′

k

is such. This lets us define the homotopy category of Postnikov n-stems, hoPstem[n],
as a full sub-category of hoT (N,≤)

∗ .

The category Pstem[n] is pointed, has products, and is equipped with canonical
functors

(2.4)

T∗

P [n]&&LLLLLLLLLLL

P [n−1]

))

P [0]

++
. . . Pstem[n]

P [n−1]
// Pstem[n− 1]

P [n−2]
// . . .

P [0]
// Pstem[0]

which preserve products and weak equivalences.

2.5 Remark The sequence of functors (2.4) is described by a commuting diagram,

Algebraic & GeometricTopology XX (20XX)



1004 H-J Baues and D Blanc

in which we may take all maps to be fibrations:

(2.6)

. . . // Qn+k+1
k+1

88rrrrrrrrrrr

pn
k+1

��

qn
k+1 // Qn+k

k

88rrrrrrrrrrr

pn
k

��

qn
k // Qn+k−1

k−1

::uuuuuuuuu

pn
k−1

��

//

::uuuuuuuuu

. . . // Qn
0

pn
0

��
. . . // Qn+k

k+1

pn−1
k+1

��

qn−1
k+1 //

rn−1
k+1

::uuuuuuuuu

Qn+k−1
k

pn−1
k

��

qn−1
k //

rn−1
k

::uuuuuuuuu

Qn+k−2
k−1

pn−1
k−1

��

//

<<zzzzzzzzzz
. . . // Qn−1

0

pn
0

��
. . . // Qn+k−1

k+1

qn−2
k+1 //

rn−2
k+1

::uuuuuuuuu

Qn+k−2
k

qn−2
k //

rn−2
k

::uuuuuuuuu

Qn+k−3
k−1

//

<<zzzzzzzzzz
. . . // Qn−2

0

. . . // Qk+1
k+1

q0
k+1 // Qk

k

q0
k // Qk−1

k−1
// . . . // Q0

0

Here πiQn
k = 0 for i < k or i > n, and all maps induce isomorphisms inπi

whenever possible. Thus:

(a) Thek-th column (from the right) is the Postnikov tower forQk := limn Qn
k .

(b) The diagonals are the dual Postnikov system of connectedcovers for Qj
0.

(c) Then-th row (from the bottom) is a Postnikovn-stem.

(d) In particular, each space in the 0-stem (the bottom row) is an Eilenberg-Mac Lane
space, and the mapsq0

k are nullhomotopic. Thus the homotopy type of the
bottom line in hoPstem[0] is determined by the collection of homotopy groups
{πkQk

k}
∞
k=0 .

2.7 Definition The motivating example of a Postnikovn-stem is arealizableone,
associated to a spaceX ∈ T∗ , and denoted byP[n]X, with (P[n]X)k := Pn+kX〈k〉.
As usual, Y〈k〉 denotes the (k − 1)-connected cover of a spaceY ∈ T∗ . Each
fibration qk : (P[n]X)k → (P[n]X)k−1 fits into a commuting triangle of fibrations:

(2.8)

Pn+k+1X〈k + 1〉
p

((QQQQQQQQQQQQ

q // Pn+kX〈k〉

Pn+kX〈k + 1〉

r
77ppppppppppp

in which the mapsp andr are the fibration of (2.1) and the covering map, respectively.
See [4, §10.5] for a natural context in which non-realizable Postnikov n-stems arise.
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2.9 Examples of stems.The functor P[0]∗ : T∗ → hoPstem[0] induced by P[0]
is equivalent to the homotopy group functor: in fact, the homotopy groups of a space
define a functor π∗ : T∗ → K into the product categoryK :=

∏∞
i=0 Ki , where

K0 = Set∗ , K1 = Gp, and Ki = AbGp, for i ≥ 2. Moreover, there is an
equivalence of categoriesϑ : K ≡ hoPstem[0], such that the functorP[0]∗ is
equivalent to the composite functorϑ ◦ π∗ : T∗ → K .

Similarly, the functor T∗ → hoPstem[1] induced by P[1] is equivalent to
the secondary homotopy group functor of [7, §4], in the sense that each secondary
homotopy group πn,∗X completely determines then-th 1-window of X. Using
the results on secondary homotopy groups in [7], one obtains a homotopy category of
algebraic 1-stems which is equivalent to hoPstem[1].

A category of algebraic models for 2-stems is only partiallyknown. The homotopy
classification of (k−1)-conected (k+2)-types is described for allk in [3]; this theory
can be used to classify homotopy types of Postnikov 2-stems.

3 The spectral sequence of a simplicial space

We begin with the construction of the homotopy spectral sequence for a simplicial
space (cf. [22], [15, Theorem B.5], and [16, X,§6]), using the version given by Dwyer,
Kan, and Stover in [20, §8] (see also [13, §2,5], [12], and [19, §3.6]). For this purpose,
we require some explicit constructions for theE2-model category of simplicial spaces.

3.1 Definition Given a simplicial objectX• ∈ sC , over a complete pointed category
C , for each n ≥ 1 define itsn-cyclesobject to be

ZnX• := {x ∈ Xn | dix = ∗ for i = 0, . . . , n} .

Similarly, the then-chainsobject for X• is

CnX• := {x ∈ Xn | dix = ∗ for i = 1, . . . , n}

Set Z0X• := X0. We denote the mapd0|CnX• : CnX• → Zn−1X• by dXn
0 .

3.2 Notation For any non-negatively graded objectT∗ , we write ΩT∗ for the
graded object with (ΩT∗)j := Tj+1 for all j ≥ 0. The notation is motivated by the
natural isomorphism of graded groupsπ∗ΩX ∼= Ω(π∗X) for X ∈ T∗ .

Algebraic & GeometricTopology XX (20XX)
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3.3 Definition Now assume thatC is a pointed model category of spaces, such asT∗
or G , and X• is a Reedy fibrant simplicial object overC – that is, for eachn ≥ 1,
the universal face mapδn : Xn → MnX• into the n-th matching object ofX• is a
fibration (see [21, 15.3]). The mapd0 = dXn

0 then fits into a fibration sequence inC :

(3.4) · · ·ΩZnX• → Zn+1X•
jX•
n+1
−−→ Cn+1X•

d
Xn+1
0−−−→ ZnX•

(see [20, Prop. 5.7]).

For eachn ≥ 0, then-th natural homotopy groupof the simplicial spaceX• , denoted
by π♮

nX• = π♮
n,∗X• , the cokernel of the map (dXn+1

0 )# (induced on homotopy groups

by dXn+1
0 ). Note that the cokernel of a maps of groups or pointed sets isgenerally just

a pointed set.

We thus have an exact sequence of graded groups:

(3.5) π∗Cn+1X•
(d

Xn+1
0 )#

−−−−−→ π∗ZnX•
ϑ̂n−→ π♮

n,∗X• → 0 .

Together the groups (π♮
n,kX•)∞n,k=0 constitute thebigraded homotopy groupsof [20,

§5.1].

3.6 Construction of the spiral sequence. Applying the functor π∗ to the
fibration sequence (3.4) yields a long exact sequence, with connecting homomorphism
∂# : Ωπ∗ZnX• = π∗ΩZnX• → π∗Zn+1X• . Note that the inclusionι : CnX• →֒ Xn

induces an isomorphismι⋆ : π∗CnX•
∼= Cn(π∗X•) for each n ≥ 0 (see [10, Prop.

2.7]). From (3.5) we see that:

Ωπ♮
nX• = Ω Coker (dXn+1

0 )#
∼= Im ∂#

∼= Ker (jX•
n+1)# ⊆ π∗Zn+1X• ,

so we obtain a commutative diagram with exact rows and columns:

(3.7)

0

��

0

��

0

��
0 // Ker (jn)∗

� � //
� _

��

Bn+1X•� _

��

(jn)∗ // // Bn+1π∗X• //
� _

��

0

��
0 // Ωπ♮

n−1X•
� � ℓn−1 //

����

sn

%%JJJJJJJJJ
π∗ZnX•

ϑ̂n

��

(jX•
n )# // Znπ∗X• // //

ϑn

��

Cokerhn
//

=

��

0

0 // Ker hn
� � //

��

π♮
nX•

��

hn // πnπ∗X• // //

��

Cokerhn
//

��

0

0 0 0 0
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in which Bn+1X• := Im (dXn+2
0 )# ⊆ π∗ZnX• and Bn+1π∗Xn+2 := Im dπ∗Xn+2

0 are the
respective boundary objects. Note that the map (jX•

n )# : π∗ZnX• → π∗CnX• induced
by the inclusion jX•

n of (3.4) above in fact factors throughZnπ∗X• , as indicated in
the middle row of (3.7).

This defines the map of graded groupshn : π♮
nX• → πn(π∗X•). Note that for n = 0

the map ˆι⋆ is an isomorphism, soh0 is, too. The mapsn : Ωπ♮
n−1X• → π♮

nX• is
the composite of the inclusionℓn−1 : Ker (jX•

n )# →֒ π∗ZnX• with the quotient map
ϑ̂n : π∗ZnX• → π♮

nX• of (3.5), using the natural identification ofΩπ♮
nX• with

Ker (jX•
n+1)#.

The map ∂n+2 : πn+2π∗X• → Ωπ♮
nX• is induced by the composite

(3.8) Zn+2π∗X• ⊆ Cn+2π∗X•
∼= π∗Cn+2X•

(d
Xn+2
0 )#

−−−−−→ π∗Zn+1X• ,

which actually lands in Ker (jX•
n+1)# by the exactness of the long exact sequence for

the fibration (3.4).

These mapssn, hn, and ∂n fit into aspiral long exact sequence:

. . . → Ωπ♮
n−1X•

sn−→ π♮
nX•

hn−→ πnπ∗X•
∂n−→ Ωπ♮

n−2X•
sn−1
−−→ π♮

n−1X• → . . . → π♮
0X•

∼=
−→ π0π∗X•

(3.9)

(cf. [20, 8.1]).

3.10 The spectral sequence of a simplicial space.For any simplicial spaceX• ∈ sT∗
(or bisimplicial set), Bousfield and Friedlander showed that there is a first-quadrant
spectral sequence of the form

(3.11) E2
s,t = πsπtX• ⇒ πs+t‖X•‖ ,

where ‖X•‖ ∈ T∗ is the realization (or the diagonal, in the case ofX• ∈ sS∗ ). The
spectral sequence is always defined, butX• must satisfy certain “Kan conditions” to
guaranteeeconvergence– see [15, Theorem B.5].

In [20, §8.4], Dwyer, Kan and Stover showed that (3.11) coincides up to sign, from
the E2-term on, with the spectral sequence associated to the exactcouple of (3.4),
which we call thespiral spectral sequencefor X• .

If we assume that eachXn is connected, by taking loops (or applying Kan’s functor
G, if X• ∈ sS∗ ), we may replaceX• by a bisimplicial groupGX• ∈ sG , and then
(3.11) becomes the spectral sequence of [22].

Algebraic & GeometricTopology XX (20XX)
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4 Simplicial stems and truncated spectral sequences

As noted in §2.9, the E2-term of any of the above equivalent spectral sequences for a
simplicial spaceX• is determined explicitly by the simplicial 0-stem ofX• .

Our goal is to extend this description to the higher terms of the spectral sequence. For
this purpose, fix n ≥ 0, and consider a simplicial Postnikovn-stem Q• (which
need not be realizable asP[n]X• for some simplicial spaceX• ). This is equivalent
to having a collection of simplicial spacesQn+k

• 〈k〉 for each k ≥ 0, equipped with
maps as in (2.3), with πiQ

n+k
• 〈k〉 = 0 for i < k or i > n + k.

We assume thatQ• is Reedy fibrantin the sense that for eachk ≥ 0, the
simplicial space Qn+k

• 〈k〉 is Reedy fibrant. In this case, the “n-stem version”
of the spiral long exact sequence is defined as follows: for each t, i, k ≥ 0, set
π♮ (k,n)

t,i Q• := π♮
t,i+kQ

n+k
• 〈k〉 and

(4.1) π(k,n)
i Q• := πi+kQ

n+k
• 〈k〉 =

{

πi+kQ• if 0 ≤ i ≤ n

0 otherwise.

Note that the (i + k)-th homotopy groupπi+kQ• of a Postnikovn-stem Q• is
well-defined, and coincides withπi+kX• for 0 ≤ i ≤ n when Q• = P[n]X• .

4.2 Definition The collection of long exact sequences (3.9) for Qn+k
• 〈k〉 (indexed

by k ≥ 0):

(4.3) . . . Ωπ♮ (k,n)
t−1,∗Q•

s(k,n)
t // π♮ (k,n)

t,∗ Q•
h(k,n)

t // πtπ
(k,n)
∗ Q•

∂
(k,n)
t // Ωπ♮ (k,n)

t−2,∗Q• . . . ,

together with the maps between adjacentk-windows induced by the mapq in (2.6),
will be called thespiral n-systemof Q• . When Q• = P[n]X• , we will refer to this
simply as the spiraln-system of X• .

4.4 Remark Using the exactness of (4.3), definition (4.1) implies that:

(4.5) π♮ (k,n)
t,i Q• = π♮

t,iQ
n+k
• 〈k〉 = 0 for i > n ,

by induction on t ≥ 0. Note, however, that while the groupsπ(k,n)
i Q• are explicitly

described by (4.1), the dependence ofπ♮ (k,n)
t,i Q• on k andn requires more care.

4.6 The E2-term of the spectral sequence. The spiral 0-system of a simplicial
Postnikov 0-stemQ• reduces to a series of isomorphismsht : π♮ (k,0)

t,∗ Q•
∼= πtπ

(k,0)
∗ Q•

(for each k ≥ 0). When Q• = P[0]X• is the Postnikov 0-stem of a simplicial

Algebraic & GeometricTopology XX (20XX)
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space X• , this allows us to identify theE2
t,k-term of the spiral spectral sequence for

X• , which is:

πtπkX• = πtπkP
0+kX•〈k〉 = πtπk(P[0]X•)k = πtπ

(k,0)
∗ P[0]X• = πtπ

(k,0)
∗ Q•,

with π♮ (k,0)
t,∗ Q• = π♮ (k,0)

t,∗ P[0]X• .

The first interesting case is the spiral 1-system, for which we have:

4.7 Proposition The E3-term of the spiral spectral sequence for a simplicial space
X• is determined by the spiral1-system of X• . In fact, d2

t,k may be identified with

∂(k,1)
t : πtπkX• → Ωπ♮ (k,1)

t−2,0X• , while E3
t,k is the image of the composite map

(4.8)

π♮ (k,1)
t,0 X•

h(k,1)
t // πtπkX•

∼= πtπ
(k−1,1)
1 X• π♮ (k−1,1)

t,1 X•∼=

h(k−1,1)
too

s(k−1,1)
t+1 // π♮ (k−1,1)

t+1,0 X• .

Observe that (4.8) involves maps from different windows of the spiral 1-system,
implicitly identified using the isomorphisms induced by themapq in (2.6).

Proof Because n = 1 throughout, we abbreviateπ♮ (k,1)
t,i Q• to π♮ (k)

t,i Q• , and

π(k,1)
i Q• to π(k)

i Q• , observing thatπ(k)
i Q• is simply πi+kX• for i = 0, 1, and

zero otherwise, sinceQ• = P[1]X• . Thus the spiral 1-system (4.3) is non-trivial
for each t ≥ 1 in (internal) degreesi = 0, 1 only, and we can write it in two rows:

0 −→ π♮ (k)
t,1 Q•

∼=
−−→πtπ

(k)
1 Q• −→ 0 −→ π♮ (k)

t−1,1Q•
∼=
−−→ πt−1π

(k)
1 Q•

Ωπ♮ (k)
t−1,0Q•

st−→ π♮ (k)
t,0 Q•

ht−→πtπ
(k)
0 Q•

∂t−→ Ωπ♮ (k)
t−2,0Q•

st−1
−−→ π♮ (k)

t−1,0Q•
ht−1
−−→ πt−1π

(k)
0 Q•

Since Q• := P[1]X• is the simplicial Postnikov 1-stem ofX• , we actually have a
collection of two-row long exact sequences, one for eachk-window of P[1]X• .

For each suchk-window Pk[1]X• , we can use the top row to identify

Ωπ♮ (k)
t,0 Q• = Ωπ♮

t,0Pk[1]X• = π♮
t,1Pk[1]X• = π♮ (k)

t,1 Q•

with πtπ
(k)
1 Q• = πtπ

(1)
t Pk[1]X• = πtπk+1X• , so the bottom row reduces to:

πt−1πk+1X•
-s(k,1)

t

@
@@R

@
@@R

π♮ (k)
t,0 Q•

-h(k,1)
t

@
@@R

@
@@R

πtπkX•
-∂(k,1)

t

@
@@R

@
@@R

πt−2πk+1X•

Im (s(k,1)
t )

�
��

�
Im (h(k,1)

t )
=

Ker (∂(k,1)
t )

�
��

�
Im (∂(k,1)

t )
�

��

�
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Note that the following part of theE1-term of the exact couple for the fibration sequence
Cn+1P1ΩiX• → ZnP1ΩiX• , (as in (3.4)):

π1Zt−1P1ΩkX•
(jt−1)# //

∂∗

��

π1Ct−1P1ΩkX•
(dt−1

0 )# // π1Zt−2P1ΩkX•
(jt−2)# //

))SSSSSSSSSSSSSS

∂∗

**

����

π1Ct−2X• → . . .

Ωπ♮ (k)
t−2,0X• = π♮ (k)

t−2,1X•
� _

��

h(k+1,1)
t−2,1

∼= ))SSSSSSSSSSSSSS
Zt−2π1P1ΩkX•

?�

inc

OO

ϑt−2
����

πt−2πk+1X•

π0ZtP1ΩkX•
(jt)# //

((QQQQQQQQQQQQQ

ϑ̂t����

π0CtP1ΩkX•
(dt

0)# // π0Zt−1P1ΩkX•
(jt−1)#//

))SSSSSSSSSSSSSSS

ϑ̂t−1����

π0Ct−1P1ΩkX• → . . .

π♮ (k)
t,0 X•

h(k,1)
t

((QQQQQQQQQQQQQ
ZtπkX•

?�

inc

OO

ϑt
����

π♮ (k)
t−1,0X•

h(k,1)
t−1

))SSSSSSSSSSSSSSS
Zt−1πkX•

?�

inc

OO

ϑt−1
����

πtπkX•

∂
(k,1)
t,0

FF



















































































πt−1πkX•

is naturally isomorphic to the exact couple forCn+1Ω
kX• → ZnΩ

kX• , since Cn+1 and
Zn are limits, so they commute withP1, and then π1P1Zt−1Ω

kX•
∼= π1Zt−1Ω

kX• ,
and so on. This does not imply, of course, thatπ♮ (k)

t,1 X•
∼= π♮

t,k+1X• .

We therefore see from (3.7) and (3.8) that the differential d2
t,k : E2

t,k → E2
t−2,k+1

may be identified with:
(4.9)

πtπkX•
∼= πtπ

(k,1)
0 X•

∂
(k,1)
t,0

−−−→ Ωπ♮ (k)
t−2,0X• = π♮ (k)

t−2,1X•
ht∼= πt−2π

(k,1)
1 X•

∼= πt−2πk+1X•

Now by definition, E3
t,k fits into a commutative diagram:

(4.10)

E2
t+2,k−1

d2
t+2,k−1 //

r
����

E2
t,k

q // // Coker (d2
t+2,k−1)

Im (d2
t+2,k−1) � � ℓ // Ker (d2

t,k)
?�

j

OO

s // // E3
t,k

?�

κ

OO

with exact rows,ℓ j andκ monic, and thusE3
t,k

∼= Im (q ◦ j).
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From the exactness of (4.3) we see that:

Coker (d2
t+2,k−1) = Coker (∂(k−1,1)

t+2 ) = Im (s(k−1,1)
t+1 )

and

Ker (d2
t,k) = Ker (∂(k,1)

t ) = Im (h(k,1)
t ) ,

so E3
t,k = Im (q ◦ j) is indeed the image of the map in (4.8).

4.11 Definition An r -truncated spectral sequenceis one defined up to and including
theEr -term, together with the differentialdn : Er

t,i → Er
t−r−1,t+r , but without requiring

that dr ◦ dr = 0 (so theEr+1-term is defined in terms of ther -truncated spectral
sequence only ifdrdr = 0).

The main example is then-truncation of an (ordinary) spectral sequence (such as that
of a simplicial space). In this case we do havedr ◦ dr = 0, of course.

4.12 Corollary Any Reedy fibrant simplicial Postnikov1-stem has a well-defined
2-truncated spiral spectral sequence. Moreover, ifQ• = P[1]X• for some simplicial
space X• , this 2-truncated spectral sequence coincides with the2-truncation of the
Bousfield-Friedlander spectral sequence forX• .

In general, we have a less explicit description of the higherterms in the spiral spectral
sequence:

4.13 Theorem For each r ≥ 0, the Er+2-term of the spiral spectral sequence for
a simplicial spaceX• is determined by the spiralr -system of X• . Moreover, for
any α ∈ Er+1

t,i , we have dr+1
t,i (α) = β ∈ Er+1

t−r−1,i+r if and only if α and β have
representatives̄a ∈ πtπiX• and b̄ ∈ πt−r−1πi+rX• , respectively, such that:

(4.14) (s(i,r)
t−2,1) ◦ (s(i,r)

t−3,2) ◦ · · · ◦ (s(i,r)
t−r ,r−1) ◦ (h(i,r)

t−r−1,r )
−1(b̄) = ∂(i,r)

t,0 (ā)

Proof We naturally identifyπ♮ (i,r)
t,k X• with π♮ (i,r−s)

t,k+s X• for k ≥ s, and similarly for
the maps in (4.3), so the spiral (r − 1)-system embeds in the spiralr -system (with
an index shift).
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Again we write out theE1-term of the spiral exact couple:

πrCt−rPrΩiX•
(dt−r

0 )# // πrZt−r−1PrΩiX•
(jt−r−1)# //

(jX•
t−r−1)#

**VVVVVVVVVVVVV

ϑ̂t−r−1����

πrCt−r−1PrΩiX•

Ωπ♮ (i,r)
t−r−1,r−1X• = π♮ (i,r)

t−r−1,rX•
� _

ℓt−r−1,r

��

h(i,r)
t−r−1,r

∼= **VVVVVVVVVVVV
Zt−r−1πi+rX•

?�

inc
OO

ϑt−r−1����
πt−r−1πi+rX•

πr−1Ct−r+1PrΩiX•
(dt−r+1

0 )# // πr−1Zt−rPrΩiX•
(jt−r )# // πr−1Ct−rPrΩiX•

...
...

...

π2Ct−2PrΩiX•
(dt−2

0 )# // π2Zt−3PrΩiX•
(jt−3)# //
(jX•

t−3)#

**VVVVVVVVVVVVV

ϑ̂t−3����

π2Ct−3PrΩiX•

Ωπ♮ (i,r)
t−3,1X• = π♮ (i,r)

t−3,2X•

s(i,r)
t−3,1

,,

� _

ℓt−3,2

��

h(i,r)
t−3,2

**VVVVVVVVVVVVVVV Zt−3πi+2X•
?�

inc
OO

ϑt−3����
πt−3πi+2X•

π1Ct−1PrΩiX•
(dt−1

0 )# // π1Zt−2PrΩiX•
(jt−2)# //
(jX•

t−2)#

**VVVVVVVVVVVVV

ϑ̂t−2����

π1Ct−2PrΩiX•

Ωπ♮ (i,r)
t−2,0X• = π♮ (i,r)

t−2,1X•
� _

ℓt−2,1

��

h(i,r)
t−2,1

**VVVVVVVVVVVVVVV Zt−2πi+1X•
?�

inc
OO

ϑt−2����
πt−2πi+1X•

π0ZtPrΩiX•
(jt)# //
(jX•

t )#

**UUUUUUUUUUUUUU

ϑ̂t����

π0CtPrΩiX•
(dt

0)# // π0Zt−1PrΩiX•
(jt−1)#// π0Ct−1PrΩiX• → . . .

π♮ (i)
t,0 X•

h(i,r)
t

**UUUUUUUUUUUUUUU ZtπiX•
?�

inc
OO

ϑt ����
πtπiX•

∂
(i,r)
t,0

AA�������������������������������

The differential dr+1
t,i : Er+1

t,i → Er+1
t−r−1,i+r may then be described as a “relation” (cf.

[18, §3.1]) in the usual way:

Given a class α ∈ Er+1
t,i , choose a representative for ita ∈ E1

t,i = π0CtPrΩiX• .
Since it is a cycle ford1

t,i = (jt−1)# ◦ (dt
0)#, it lies in ZtπiX• and thus represents an
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element ā ∈ πtπiX• = E2
t,i . From the exactness of the middle row of (3.7) we see

that (dt
0)#(a) ∈ Ker ((jt−1)#) = Ωπ♮ (i,r)

t−2,0X• , and in fact (dt
0)#(a) represents∂(i,r)

t,0 (ā).

Since ϑ̂t−2 is surjective, we can chooseet−2 ∈ π1Zt−2PrΩiX• mapping to (dt
0)#(a).

Becaused2
t,i(ā) = h(i,r)

t−2,1 ◦ ∂(i,r)
t,0 (ā), as in the proof of Proposition4.7 (though h(i,r)

t−2,1
need no longer be an isomorphism!), we see that it is represented by (jt−2)∗(et−2). If
r = 1, we are done. Otherwise, we know thatd2

t,i (ā) = 0, so we can chooseet−2

so that (jt−2)∗(et−2) = 0, using exactness of the third column of of (3.7). Again
this implies that et−2 ∈ Ker ((jt−2)#) = Ωπ♮ (i,r)

t−3,1X• , and d3
t,i (〈a〉) is represented by

h(i,r)
t−3,2(et−2). Moreover, we see from (3.7) that s(i,r)

t−3,1(et−2) = ∂(i,r)
t,0 (ā), using the

identification Ωπ♮ (i,r)
t−2,0X• = π♮ (i,r)

t−2,1X• .

Choosing a lift to et−3 ∈ π2Zt−3PrΩiX• , we may assume that (jt−3)∗(et−3) = 0,
so et−3 ∈ Ωπ♮ (i,r)

t−4,2X• and s(i,r)
t−4,2(et−3) = et−2 . Continuing in this way, we finally

reach et−r−1 ∈ Ωπ♮ (i,r)
t−r−1,r−1X• with s(i,r)

t−r−2,r (et−r−1) = et−r , and so on, and see that

dr+1
t,i (〈a〉) is represented byh(i,r)

t−r−1,r(et−r−1). Since (as in the proof of Proposition

4.7) h(i,r)
t−r−1,r is an isomorphism, we deduce thatdr+1

t,i (α) is as in (4.14).

4.15 Remark From the exactness of (4.3) we have Im (∂(i,r)
t,0 ) = Ker (s(i,r)

t−1,0),

so the image of dr+1
t,i as described in (4.14) is Ker (σr+1

t,i ), where σr+1
t,i :=

(s(i,r)
t−1,0) ◦ (s(i,r)

t−2,1) ◦ (s(i,r)
t−3,2) ◦ · · · ◦ (s(i,r)

t−r ,r−1). Therefore,Er+1
t+r−1,i+r embeds naturally

in Im (σr+1
t,i ).

4.16 Corollary Every Reedy fibrant simplicial Postnikovr -stem has a well-defined
(r + 1)-truncated spiral spectral sequence. IfQ• = P[r]X• for some simplicial
space X• , this truncated spectral sequence coincides with the(r + 1)-truncation of
the Bousfield-Friedlander spectral sequence forX• .

Thus the bigraded homomorophism

dr+1 ◦ dr+1 : Er
t,i → Er+1

t−2r−2,i+2r (t ≥ 2r + 2, i ≥ 0)

serves as the first obstruction to the realizablity of the simplicial Postnikovr -stem Q•

by a simplicial spaceX• .

5 A cosimplicial version

There are actually four variants of the above spectral sequence which we might consider,
for a simplicial or cosimplicial object over simplicial or cosimplicial sets. The case of
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bicosimplicial sets is in principle strictly dual to that ofbisimplicial sets, but because
the category of cosimplicialsetshas no (known) useful model category structure, we
must restrict to bicosimplicial abelian groups – or equivalently, ordinary double
complexes. Thus the main new case of interest is that of cosimplicial simplicial sets,
or cosimplicial spaces.

5.1 The spectral sequence of a cosimplicial space.If X• ∈ cS∗ is a fibrant
cosimplicial pointed space with total space TotX• , there are various constructions for
the homotopy spectral sequence ofX• :

(a) Using the tower of fibrations for (Totn X•)∞n=0 (cf. [16, X,§6]).

(b) Using “relations” on the normalized cochainsNnπtX• := πtXn∩Ker (s0)∩ . . .∩

Ker (sn−1) (cf. [18, §7]).

(c) Using a cofibration sequence dualizing (3.4) (cf. [23, §3]).

Bousfield and Kan showed that the result is essentially unique (see [18]). Since the
main ingredient needed for to define the spiral exact couple is the diagram (3.7), we
use the first approach:

5.2 Definition For any Reedy fibrant cosimplicial pointed spaceX• ∈ cS∗ , consider
the fibration sequence

(5.3) FnX• jn
−→ Totn X• pn

−→ Totn−1 X• ,

where Totn X• := mapcS∗

(skn , X•) and the fibrationpn is induced by the inclusion
of cosimplicial spaces skn−1 →֒ skn .

The cokernel of (jn)# : π∗FnX• →֒ π∗ Totn X• is called then-th natural (graded)
cohomotopy groupof X• , and denoted byπn

♮ ∗X• .

5.4 Remark We may identify FnX• with the looped normalized cochain object
ΩnNnX• , where

(5.5) NnX• := Xn ∩ Ker (s0) ∩ . . . ∩ Ker (sn−1) ,

and π∗NnX• with Nnπ∗X• (see [16, X, Proposition 6.3]).

Moreover, the composite

π∗+1Ω
nNnX• ∼= π∗+1FnX• (jn)#

−−→ π∗+1 Totn X• ∂n−→ π∗Fn+1X• ∼= π∗Ω
n+1Nn+1X•
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(where ∂n is the connecting homomotphism for the (5.3)), may then be identified
with the differential

(5.6) δn :=
n

∑

i=0

(−1)idi : Nnπ∗X
• → Nn+1π∗X

• ,

for the normalized cochain complexN∗π∗X• , so that

(5.7) Ker (δn)/ Coker (δn+1) ∼= πnπ∗X
•

(cf. [16, X, §7.2]).

5.8 Proposition For any pointed cosimplicial spaceX• there is a naturalspiral long
exact sequence:

. . . → Ωπn−1
♮∗ X• sn

−→ πn
♮ ∗X

• hn

−→ πnπ∗X
• ∂n

−→ Ωπn−2
♮∗ X•

sn−1

−−→ πn−1
♮ ∗ X• → . . . → π0

♮ ∗X
• ∼=
−→ π0π∗X•

(5.9)

Proof By choosing a fibrant replacement in the model category of cosimplicial sim-
plicial sets defined in [16, X, §5], if necessary, we may assume thatX• is Reedy
fibrant. We then obtain a commutative diagram as in (3.7) with exact rows and
columns:
(5.10)

0

��

0

��

0

��
0 // Ker (jn)∗

� � //
� _

��

Bn+1X•
� _

��

(jn)∗ // // Bn+1π∗X• //
� _

��

0

��
0 // Ωπn−1

♮∗ X• � � ℓn−1 //

����

sn

&&LLLLLLLLLL
π∗ Totn X•

ϑ̂n

��

(jX
•

n )# // Znπ∗X• // //

ϑn

��

Cokerhn //

=

��

0

0 // Ker hn � � //

��

πn
♮ ∗X

•

��

hn // πnπ∗X• // //

��

Cokerhn //

��

0

0 0 0 0

in which Bn+1X• := Im (jn+1)# ⊆ π∗ Totn X• and Bn+1π∗X• := Im (δn+1) =

Im (∂n+1 ◦ (jn+1)#) are the respective coboundary objects.

The construction of the mapshn, sn , and ∂n , and the proof of the exactness of (5.9),
are then precisely as in §3.6.
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5.11 Definition Thespiral n-systemof a pointed cosimplicial spaceX• ∈ cS∗ is
defined to be the collection of long exact sequences (5.9) for the Postnikovn-stem
functor P[n] applied to X• , one for eachk-window of P[n]X• .

As in Definition4.2, this may actually be defined for a cosimplicial Postnikovn-stem
P• , not necessarily realizable asP• = P[n]X• .

By construction, the homotopy spectral sequence of a (fibrant) cosimplicial spaceX• ,
obtained as in (5.1), is associated to the spiral exact couple (5.9). The proofs of
Proposition4.7 and Theorem4.13use only the description of the spiral exact couple
for X• derived from (5.10), so by using (5.10) instead we can prove their analogues
in the cosimplicial case, and show:

5.12 Theorem The Er+2-term of the homotopy spectral sequence for a cosimplicial
space X• is determined by the spiralr -system of X• .

An analogue of Corollary4.16also holds, as well as:

5.13 Proposition The differential dt,i
2 : Et,i

2 → Et+2,i+1
2 may be identified with

∂t
(i,1) : πtπiX• → Ωπt+2,0

♮ (i) X• .

5.14 Examples As noted in the introduction, many commonly used spectral sequences
arise as the spiral spectral sequence of an appropriate (co)simplicial space, so Theorems
4.13 and 5.12 allow us to extract theirEr - or Er -terms from the appropriate spiral
systems. For instance:

(a) Segal’s homology spectral sequence (cf. [24]), the van Kampen spectral sequence
(cf. [25]), and the Hurewicz spectral sequence (cf. [9]) are constructed using
bisimplicial sets.

(b) The unstable Adams spectral sequences of [14, 17] and [8, §4], Rector’s version
of the Eilenberg-Moore spectral sequence (cf. [23]), and Anderson’s generaliza-
tion of the latter (cf. [2]) are all associated to cosimplicial spaces.

(c) The usual construction of the stable Adams spectral sequence for πs
∗X ⊗ Z/p

(cf. [1, §3]) uses a tower of (co)fibrations, rather than a cosimplicial space, but
whenX is finite dimensional, it agrees in a range with the unstable version for
ΣNX, so Theorem5.12applies stably, too.
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