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Stems and spectral sequences

HANS-JOACHIM BAUES
DavID BLANC

We introduce the categonygstenjn] of n-stems, with a functorP[n] from
spaces toJstenin]. This can be thought of as theth order homotopy groups
of a space. We show how to associate to each simplicgtem Q. an (1+1)-
truncated spectral sequence. MoreoveiQif = P[n]X. is the Postnikown-stem
of a simplicial spaceX., the truncated spectral sequence for is the truncation
of the usual homotopy spectral sequenceXf Similar results are also proven
for cosimplicialn-stems. They are helpful for computations, simestems in low
degrees have good algebraic models.

55T05; 18G55, 18G10, 55545

1 Introduction

Many of the spectral sequences of algebraic topology asgsbeahomotopy spectral
sequence of a (co)simplicial space — including the spesti@lience of a double com-
plex, the (stable or unstable) Adams spectral sequencé&ildnaberg-Moore spectral
sequence, and so on (seB.§4). Given a simplicial spaceX., the E2-term of its
homotopy spectral sequence has the fol?rf)[ = memX., SO it may be computed by
applying the homotopy group functor dimensionwiseXo.

In this paper we show that the higher terms of this spectrgliesece are obtained
analogously by applying ’higher homotopy group’ functoos X.. These functors
are given explicitly in the form of certaiRostnikov stemdlefined in Sectior?; the
Postnikov 0-stem of a space is equivalent to its homotopymso

We then show how thé&'-term of the homotopy spectral sequence of a simplicial
space X. can be described in terms of the { 2)-Postnikov stem ofX., for each

r >2 (see Theore.13 — and similarly for the homotopy spectral sequence of a
cosimplicial spaceX” (see Theorerd.12.

As an application for the present paper,3hwe generalize the first author’s result with
Mamuka Jibladze (in€]]), which shows that th&3-term of the stable Adams spectral
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1002 H-J Baues and D Blanc

sequence can be identified as a certain secondary derivefuext. \We do this by
showing how to define in general tiégher order derived functorsf a continuous
functor F : C — 7., by applyingF to a simplicial resolutionW. in C, and taking
Postnikovn-stems of FW. .

1.1 Notation and conventions. The category of pointed connected topological
spaces will be denoted by, ; that of pointed sets bySet,; that of groups by Sp.
For any category’, sC denotes the category of simplicial objects oderand cC
that of cosimplicial objects ove€. However, we abbreviatesSet to S, sSet,

to S., and sGp to G. For any small indexing categoty, the category of functors

| — C isdenoted byC'.

1.2 Acknowledgements We wishe to thank the referee for his or her careful reading
of the paper and helpful comments on it.

2 Postnikov stems

The Postnikov system of a topological space (or simplic&#) X is the tower of
fibrations:

n—+1 n 1
(2.1) oo P B opix B op-iyx | pix B opox

equipped with mapsq": X — P"X (with p"oq" = g" %), which induce
isomorphisms on homotopy groups in degre€sn. Here P"X is n-coconnected
(thatis, miP"X =0 for i >n) and 7ip" is anisomorphism fori < n. The fiber
of the map p": P"X — P"1X is the Eilenberg-Mac Lane spadé(m,X, n), so the
fibers are determined up to homotopy lyX. Thus a generalization of the homotopy
groups ofX is provided by the following notion:

2.2 Definition For any n > 0, aPostnikov n-sterm 7, is a tower:
q
(2.3) Q= (= Qur ¥ ® Qe Q)

in T;(N’S), in which Q¢ is (k— 1)-connected and n(+ k)-coconnected (so that
m(Qk) =0 for i <k ori>n+k) and m(gx) isanisomorphism fok < i < n+Kk.
Here (N, <) isthe usual linearly ordered category of the natural nusibEhe space
Qx is called thek-th n-windowof Q.
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Stems and spectral sequences 1003

Such ann-stem is thus a collection of overlapping € 1)-connectedn + k-types,
which may be depicted fon = 2 as follows:

where each row exhibits the + 1 non-trivial homotopy groups (denoted by of
onen-window, and all those in thieth column (corresponding ta;) are isomorphic.

We denote by Fstenjn] the full subcategory of Postnikor-stems in the functor
category 70 (with model category structure on the latter asda,[11.6]). Thus
the morphisms inJstenjn] are given by strictly commuting maps of towers, and
f: @ — Q isaweak equivalence (respectively, a fibration) if edgh Qx — Q;

is such. This lets us define the homotopy category of Postmkstems, hdstenin],

as a full sub-category of ™=,

The category Fstenin] is pointed, has products, and is equipped with canonical
functors

T P[]

(2.4) m

. Pstenin] 5@ Pstenfin — 1]

Pstenio]

Pln—2] PlO]

which preserve products and weak equivalences.

2.5 Remark The sequence of functor.8) is described by a commuting diagram,
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1004 H-J Baues and D Blanc

in which we may take all maps to be fibrations:

v

(o) q
n+k+1 k41 k k n+k 1 n
Qk+1 Qn+ Q - Q

q q
(2.6) Quik - k2+1 Q-1 n,kz O
“| SR e b
ok 1 kit nrkes K o ~niko3 n—2
Qk+1 — Q — QT —Q
k+1 Ghya Ek o kg—l Eo
Qk+1 Qx Q-1 Qo

Here mQR =0 for i <k or i >n, and all maps induce isomorphisms i
whenever possible. Thus:

(a) Thek-th column (from the right) is the Postnikov tower f@, := lim, Q.
(b) The diagonals are the dual Postnikov system of connexteets for Q‘b.
(c) Then-th row (from the bottom) is a Postnikawstem.

(d) Inparticular, each spaceinthe 0-stem (the bottom reaf iEilenberg-Mac Lane
space, and the mapsg? are nullhomotopic. Thus the homotopy type of the
bottom line in hdistenfO] is determined by the collection of homotopy groups

{WKQE}Eio-

2.7 Definition The motivating example of a Postnikawvstem is arealizable one,
associated to a spac¥ € 7., and denoted byP[n]X, with (P[n]X)x := P"*X(K).
As usual, Y(k) denotes the K — 1)-connected cover of a spac¥ € 7,.. Each
fibration gx: (P[n]X)x — (P[n]X)x_1 fits into a commuting triangle of fibrations:

P (K + 1) . P (k)

(2.8) \ /

PRX (k4 1)

in which the map$ andr are the fibration ofZ.1) and the covering map, respectively.
See f}, §10.5] for a natural context in which non-realizable Pix®twv n-stems arise.
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Stems and spectral sequences 1005

2.9 Examples of stems.The functor P[0].: 7. — hoJstenjO] induced by P[0]

is equivalent to the homotopy group functor: in fact, the btwpy groups of a space
define a functor 7, : 7, — K into the product categoryk = Hfﬁo Ki, where
Ko = Set,, K1 = Gp, and K; = AbSp, for i > 2. Moreover, there is an
equivalence of categories): K = hoJstenj0], such that the functorP[0]. is
equivalent to the composite functato 7, : 7, — K.

Similarly, the functor 7, — hoJstenjl] induced by P[1] is equivalent to
the secondary homotopy group functor @f B4], in the sense that each secondary
homotopy group m,,.X completely determines the-th 1-window of X. Using
the results on secondary homotopy groups7/ingne obtains a homotopy category of
algebraic 1-stems which is equivalent to Jtenjl].

A category of algebraic models for 2-stems is only parti&iipwn. The homotopy
classification of K— 1)-conected K+ 2)-types is described for atlin [3]; this theory
can be used to classify homotopy types of Postnikov 2-stems.

3 The spectral sequence of a simplicial space

We begin with the construction of the homotopy spectral saga for a simplicial
space (cf.22], [15, Theorem B.5], andl[6, X,86]), using the version given by Dwyer,
Kan, and Stover inJ0, 88] (see alsol3, §2,5], [L2], and [L9, §3.6]). For this purpose,
we require some explicit constructions for tB&-model category of simplicial spaces.

3.1 Definition Given a simplicial objectX. € sC, over a complete pointed category
C,foreachn> 1 define itsn-cyclesobject to be
ZpX. == {xe X,|dx=xfori=0,...,n}.
Similarly, the then-chainsobject for X. is
CoX. = {xeXy|dx==xfori=1,...,n}
Set ZoX. 1= Xo. We denote the magg|c,x. : CaX. — Zn_1X. by di".
3.2 Notation For any non-negatively graded objedt,, we write QT, for the

graded object with T,); := Tj;1 forall j > 0. The notation is motivated by the
natural isomorphism of graded groups QX = Q(m,X) for X € 7,.

Algebraic & GeometricZopology XX (20XX)



1006 H-J Baues and D Blanc

3.3 Definition Now assume that is a pointed model category of spaces, suct/as

or G,and X. is a Reedy fibrant simplicial object ovér — that is, for eachn > 1,

the universal face mag@,: X, — MyX. into the n-th matching object ofX. is a

fibration (see21, 15.3]). The mapdg = dé” then fits into a fibration sequence@n
Nt A

(3.4) e QZXK — Zppa X —= CrpaXe —— ZpX

(see RO, Prop. 5.7)).

For eachn > 0, then-th natural homotopy groupf the simplicial spaceX., denoted

by wﬁx. = WF],*X-, the cokernel of the mapdg”“)# (induced on homotopy groups

by dg("“). Note that the cokernel of a maps of groups or pointed segsrisrally just

a pointed set.

We thus have an exact sequence of graded groups:

X ~
(d0n+l)# ’l9n h

(3.5) mCniiXe ——25 mZpXe 2% mh X, — 0.

Together the group3wﬂ7kx.)$k:0 constitute thebigraded homotopy groups [20,
§5.1].

3.6 Construction of the spiral sequence. Applying the functor 7, to the
fibration sequence3(4) yields along exact sequence, with connecting homomanmphis
Ou: QmZpXe = mQZ X — m.Zn1X.. Note that the inclusion:: CoX. — Xp
induces an isomorphism,: 7,C,X. = C,(mX.) foreachn> 0 (seelO, Prop.
2.7]). From @.5 we see that:

QriX. = Q Coker €™ )4 =2 Im 9y = Ker (%, )¢ C mZni1X.
so we obtain a commutative diagram with exact rows and codumn

0 0 0

0—— Ker ). = Bny1X. ~25 Byyam, X, 0

~ )

lna (M

k7)) 0—Qnf X s ZX 2 Zr, X, — Cokerhy — 0

S N
\ On In =

0——Ker hy &——— zix. M T Xe — Cokerh, — 0
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Stems and spectral sequences 1007

in which By 1X. == Im (dy™?)s C m.ZoX. and BpyimXn 2 := Im dj”™? are the
respective boundary objects. Note that the mgh)4: m.ZnX. — m.CpX. induced
by the inclusionjX of (3.4) above in fact factors throug,7. X., as indicated in
the middle row of 8.7).

This defines the map of graded groups: wﬂx — mn(mX.). Note thatforn=10
the map ¢, is an isomorphism, sdy is, too. The maps;: Qwﬂflx. — wﬂx is
the composite of the inclusiort,_1: Ker (%) — m.Z.X. with the quotient map
On: mZoXe — maX.  of (3.5, using the natural identification ofmiX.  with
Ker (1)

The map On2: mpiamXe — Qw,”]x. is induced by the composite

X

d n+2
(3.8) Zniom X C CpomX. = 1,ChyoXe o, ToZni1Xe
which actually lands in Ketj,ﬁl)# by the exactness of the long exact sequence for
the fibration 8.4).

These mapss,, hn, and 9, fitinto aspiral long exact sequence:

N o YA A N QLN S N o SIS

Sh—1 =
— wﬂflx. — .. — ng. — T Xe

(3.9)

(cf. [20, 8.1]).

3.10 The spectral sequence of a simplicial spacd-or any simplicial spac&X. € s7,
(or bisimplicial set), Bousfield and Friedlander showed thare is a first-quadrant
spectral sequence of the form

(3.11) E2, = mmXe = meptl|X.]]

where || X.]| € 7. is the realization (or the diagonal, in the caseXfe sS,). The
spectral sequence is always defined, But must satisfy certain “Kan conditions” to
guaranteeeonvergence— see L5, Theorem B.5].

In [20, §8.4], Dwyer, Kan and Stover showed th&.1(1) coincides up to sign, from
the E2-term on, with the spectral sequence associated to the emapte of (.4),
which we call thespiral spectral sequender X..

If we assume that eaclX, is connected, by taking loops (or applying Kan'’s functor
G,if X. €5sS,), we may replaceX. by a bisimplicial groupGX. € sG, and then
(3.11) becomes the spectral sequence2d].

Algebraic & GeometricZopology XX (20XX)



1008 H-J Baues and D Blanc

4 Simplicial stems and truncated spectral sequences

As noted in 8.9, the E2-term of any of the above equivalent spectral sequences for a
simplicial spaceX. is determined explicitly by the simplicial 0-stem oX. .

Our goal is to extend this description to the higher term$iefdpectral sequence. For
this purpose, fixn > 0, and consider a simplicial Postnikevstem Q. (which
need not be realizable aB[n]X. for some simplicial spaceX.). This is equivalent
to having a collection of simplicial space@™*(k) for each k > 0, equipped with
maps as in 2.3), with 7 QMK(k) =0 for i <k or i>n+k.

We assume that Q. is Reedy fibrantin the sense that for eactkk > 0, the

simplicial space Q[‘+"<k> is Reedy fibrant. In this case, tha-stem version”

of the spiral Iong exact sequence is defined as follows: feheai,k > 0, set
mi Q. =y , QTH(K) and

mipkQ. 1f 0 <i<n

(4.1) mlNQ, = 1 QMK = .
0 otherwise.

Note that the i(+ k)-th homotopy group i kQ. of a Postnikovn-stem Q. is
well-defined, and coincides withrj (X, for 0<i <n when Q. = P[n]X..

4.2 Definition The collection of long exact sequences 9 for QNMk(k) (indexed
by k> 0):
(43) . orklo, iwn(kmg e s7r7r(kn>Q  an g,

together with the maps between adjackmindows induced by the mag in (2.6),
will be called thespiral n-systenof Q.. When Q. = P[n]X., we will refer to this
simply as the spirah-system of X, .

4.4 Remark Using the exactness o#Q), definition @.1) implies that:

(4.5) Vg, = 2l QMKK) = 0 for i>n,

by induction ont > 0. Note, however, that while the groupék’”) Q. are explicitly

described by 4.1), the dependence ofrﬁi(k’”) Q. onkandn requires more care.

4.6 The E2-term of the spectral sequence. The spiral 0-system of a simplicial
Postnikov 0-stemQ. reduces to a series of isomorphisins wfﬁk’o) Q. =~ 7rt7r5<k’o) Q.
(for each k > 0). When Q. = P[O]X. is the Postnikov 0-stem of a simplicial
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space X., this allows us to identify theE%k-term of the spiral spectral sequence for
X., which is:
mmXe = mmPPTRX(K) = mm(PO]X )k = mr®*OP[OIX. = mr®OQ.,

with 7i®99, = &Op[o]x,
The first interesting case is the spiral 1-system, for whiehhave:

4.7 Proposition The E3-term of the spiral spectral sequence for a simplicial space
X. is determined by the spirdl-system of X. . In fact, dﬁk may be identified with

oY mmX. — Qrf &YX, while B3 is the image of the composite map
(4.8)

(k,1)

k
h(k Dy e = mrl Ly D n(k Ll)y T1 S uﬁkljol,l)x '

Observe that 4.8) involves maps from different windows of the spiral 1-syste
implicitly identified using the isomorphisms induced by thapq in (2.6).

Proof Becausen = 1 throughout, we abbrewater“(kl)Q to w“(k)Q., and
m(k’l)Q. to m(k)Q., observing that7r.(k)Q. is simply mi;kX. for i =0,1, and
zero otherwise, sinceQ. = P[1]X.. Thus the spiral 1-system4.@) is non-trivial
foreacht > 1 in(internal) degrees = 0,1 only, and we can write it in two rows:

0 — m W, Zir W(k)Q —0 — nt”("l)lg = 7rt_17r(k)Q
ari® 0. % W0, Mralg, & nt® o 31 K o o n®o.
Since Q. := P[1]X. s the simplicial Postnikov 1-stem oK., we actually have a
collection of two-row long exact sequences, one for daetindow of P[1]X.
For each suclk-window Py[1]X., we can use the top row to identify
Om00. = QrfPdlIX = 7 AdlIX = w0

with mg“) Q. = wtwt(l)Pk[l]X. = mmk+1 X, SO the bottom row reduces to:

(k,1) h§k ,1) 8(k’1)
h t
Tt—1Tk1Ke t Q. TemRXe Tt—2Tk-1 %
Im (sEk’”) Im (h{“") Im (o)
Ker (6(" 1))
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Note that the following part of thE*-term of the exact couple for the fibration sequence
Cni1PHUX. — Z,PLOX., (asin B.4)):

. B (dt_l) . _
mZe PLokx, B e pokx, 0¥ Lz optokx, 0P e X -

\ Jinc
Qmi QX = ri¥ x. Z,_om1PHOKX.
~ LD
o, 8. N\ iﬁtz
Tt 2Mk1Xe
1k (jl)# 1k 10k (jlfl)# 1k
moZiPTOFX, moCiP X, m0Zt—1P X, ——=1Ci_1P X, — ...
9y \ Jinc . \ jinc
X, ZemiX. = ® X, Zi_1mXe
) h(k,l) ’ h?ﬁ:;LL)
\ ﬁli \ iﬂt_i
TR XKe T 1Tk Xe

is naturally isomorphic to the exact couple fﬁn+1QkX. — ZaQ*X., since Chy1 and
Z, are limits, so they commute witlP!, and then 71P1Z,_1QXX. = m1Z,_1QXX.,
and so on. This does not imply, of course, th&ﬁk)x. = w57k+1x :

We therefore see from3(7) and @.9 that the differential &, : E7 — EZ ;1
may be identified with:
(4.9)

kD
memXe = mwg"l)x. LN Qwﬁf‘gox = th£|271x

=

Kl A
7Tt727T§ X, 2 m_omkaXe

Now by definition, E3, fits into a commutative diagram:

2
dt+2,k71

2 2 q 2
Efiok-1 Efk Coker @, 1)

(4.10) i j,- J

Im (dt2+27k_l)L> Ker (d2,) —> E2

with exact rows/ j and x monic, and thusEf’:k =Im(qoj).
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From the exactness o#4(3) we see that:
k—1,1 k—1,1
Coker (2,5 ;) = Coker @%3") = Im (s ,"Y)

and
Ker (@) = Ker (@) = Im (n{*")

SO Efjk =Im(gqoj) isindeed the image of the map id.§). O

4.11 Definition An r-truncated spectral sequendeone defined up to and including
the E"-term, together with the differentiad”: E{; — E{_,_;,,, butwithoutrequiring
that d" od" = 0 (so theE'"1-term is defined in terms of the-truncated spectral
sequence only ifd"d" = 0).

The main example is the-truncation of an (ordinary) spectral sequence (such ds tha
of a simplicial space). In this case we do hasfeo d” = 0, of course.

4.12 Corollary Any Reedy fibrant simplicial Postniko¥-stem has a well-defined
2-truncated spiral spectral sequence. MoreoveQif= P[1]X. for some simplicial
space X., this 2-truncated spectral sequence coincides with2tteuncation of the
Bousfield-Friedlander spectral sequence Xar.

In general, we have a less explicit description of the higbens in the spiral spectral
sequence:

4.13 Theorem For eachr > 0, the E'*2-term of the spiral spectral sequence for
a simplicial spaceX. is determined by the spiral-system of X.. Moreover, for
any o € E[f*, we havedf’(a) = 3 € E*' |,,, ifand only if o« and3 have
representativesa € mmiX. and be wt,r,lmﬂxi, respectively, such that:

(4.14) 6900 )00 o (D) 0) = 9@

Proof We naturally identify =¢ ("X, with {{c9X. for k> s, and similarly for
the maps in 4.3), so the spiral {— 1)-system embeds in the spinalsystem (with

an index shift).
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Again we write out theE!-term of the spiral exact couple:

. (s htd . - .
nC P, o praix Y e praix

X

$ ~ (jt;r—l)# .
ﬁtiril\ LTII’]C

Q7Tth—(irvr—)l,r—lx‘ = Wth—(ir’r—)l,rx‘ R0 Zir—1Tigr Xe

;—r—l,r &ﬁt—r—l

br1r Tr—1Ti4r X

. dt—r+1 . . . )
oGP X iz praix Y s e Praix.

. -2 . i ,
TGP X — 2 oz praix 9 o i,
$1§F3 % j\inc
Qﬂ-tu_(lér?l_x. = 7rth_(|él‘)2X. i Zt_37ri+2X,
) ) N &ﬁt 3
b-az T3t 2X.
()
e [ (d5 s i (t—2)# i
mC_1PFOIX, — mZi_ 2P QX ;_‘X. ; 11Ci_oP QX
&1’9}—2 \2#> LTinc
QWE_(lér%X, = ﬂth_(lér)lx. i Zi_omip1 X
) ) w; &ﬁt 5
21 2T+ X
ToZPTQX. 4>(J_t>)f moCiP QX T0Zi_ 1P OIX. ﬁ#ﬂoct_lprﬁix. o
%9[ w\ jlnc
i X, L amX
’ hgl,r)
\ ﬁt¢
i Xe
The differential of{*: E{{* — E{*' ;;., may then be described as a “relation” (cf.

[18, §3.1]) in the usual way:
Given a class o € E{j'*, choose a representative for & € E}; = moCP'QX..

Since it is a cycle fordl; = (ji_1)# o (dh)#, itliesin ZmX. and thus represents an

Algebraic & GeometricZopology XX (20XX)
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elementa € mmX. = EtzI From the exactness of the middle row B.9) we see
that @)«(a) € Ker (1)) = Q" ('Z%X. and in fact @5)x(a) represents@t('or)(é)
Since Ji_p is surjectlve we can choosa_» € mZ,_,P'Q'X. mapping to (jo)#(a)
Becaused? (a) = ") o 08 (@), as in the proof of Propositiof.7 (though h{") 21
need no longer be an |somorph|sm') we see that it is reptieddry ;i_2).(e_>2).

r =1, we are done. Otherwise, we know thd@i(é) = 0, so we can chooseat_z
so that [;_2)«(e_2) = 0, using exactness of the third column of d3.7). Again
this implies that e_» € Ker ((ji_2)#) = th[(iéf)lx and d?;((a)) is represented by
h{ﬂ%z(e{,z). Moreover, we see from3(7) that s 2 (a2) = 836”(5), using the
identification Q)X = m{ (}IX..

Choosing a lift to _3 € mZ_3P"Q'X., we may assume thatj(3).(e_3) = O,
SO g 3 € th”_(i;{)zx. and S) ,(&_3) = & _». Continuing in this way, we finally
reache_,_1 € Qm{ (", 1X. W|th 7 5 (&r—1) = &_r, and so on, and see that
d{jrl((a>) is represented b)h§I [ 1r(eH,l). Since (as in the proof of Proposition
4.7 hgijrlh is an isomorphism, we deduce thef{*(a) isasin @.14. O

4.15 Remark From the exactness of4@) we have ImG(I Dy = Ker & ?0
so the image ofdterl as described in 414 is Ker(at 1, where a{ffl =
CA (sf' D)o (sf' D)oo, ). Therefore, B[/}, embeds naturally
in Im (of b,

4.16 Corollary Every Reedy fibrant simplicial Postnikavstem has a well-defined
(r + 1)-truncated spiral spectral sequence. @f. = P[r]X. for some simplicial
space X., this truncated spectral sequence coincides with (the- 1)-truncation of
the Bousfield-Friedlander spectral sequenceXor
Thus the bigraded homomorophism

dttod™: Bl — B[S 5iia t>2r+2i>0)

serves as the first obstruction to the realizablity of thepsizial Postnikovr -stem Q.
by a simplicial spaceX. .

5 A cosimplicial version

There are actually four variants of the above spectral segpahich we might consider,
for a simplicial or cosimplicial object over simplicial oosimplicial sets. The case of

Algebraic & GeometricZopology XX (20XX)



1014 H-J Baues and D Blanc

bicosimplicial sets is in principle strictly dual to that lsimplicial sets, but because
the category of cosimpliciaetshas no (known) useful model category structure, we
must restrict to bicosimplicial abelian groups - or equewly, ordinary double
complexes. Thus the main new case of interest is that of qdisiiad simplicial sets,

or cosimplicial spaces

5.1 The spectral sequence of a cosimplicial space.If X' € ¢S, is a fibrant
cosimplicial pointed space with total space Xof there are various constructions for
the homotopy spectral sequence Xf:

(a) Using the tower of fibrations for (ToX");2, (cf. [16, X,86]).

(b) Using “relations” on the normalized cochaib§'m X' := mX"NKer (°)N...N
Ker ("1 (cf.[18, §7]).

(c) Using a cofibration sequence dualizing.4) (cf. [23, §3]).

Bousfield and Kan showed that the result is essentially en{gee 18]). Since the
main ingredient needed for to define the spiral exact coglled diagram 3.7), we
use the first approach:

5.2 Definition For any Reedy fibrant cosimplicial pointed spaXe € cS,, consider
the fibration sequence

(5.3) FX % Tot, X ™ Tot, 1 X |

where Tof X" := mags, (Sk,, X") and the fibrationp, is induced by the inclusion
of cosimplicial spaces gki < sk, .

The cokernel of jQ)#: mFnX® — m, Tot; X* is called then-th natural (graded)
cohomotopy groupf X, and denoted wa‘*X'.

5.4 Remark We may identify F,X* with the looped normalized cochain object
Q'N"X*, where

(5.5) N'X" = X"nKer&)N...NnKer" 1),

and 7,N"X* with N"7,X" (see [L6, X, Proposition 6.3]).

Moreover, the composite

Tt QN 2 g FX 9% 1 Tot X B P X 2 QUL
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Stems and spectral sequences 1015

(where 9, is the connecting homomotphism for thé.3)), may then be identified

with the differential
n

(5.6) "= (-1d : N X — N X
i=0

for the normalized cochain compleX* 7, X", so that

(5.7) Ker ¢")/ Coker ¢"1) = 71, X"

(cf. [16, X, §7.2]).

5.8 Proposition For any pointed cosimplicial spac€’ there is a naturadpirallong
exact sequence:

C oo Lol ot Lol 2
(5.9) . N
i WQ;lX. — ... = WE)*X. = X

Proof By choosing a fibrant replacement in the model category afrqagcial sim-

plicial sets defined in16, X, 8§5], if necessary, we may assume thgt is Reedy
fibrant. We then obtain a commutative diagram as $7)( with exact rows and
columns:

(5.10)

0—— Ker(jp)s ——— gnt+ix* ﬂ» Bl X —=0

') M

lhy QX e

0—— Qm [ 1X" 5 7, Toty X' = Z"1, X" —— Cokerh” —0

Sh ~
\ n In —

. h
0——Kerh"¢ yaX m"m X" — Cokerh" —=0
0 0 0 0
in which B™!X" := Im(jny1)s € mTo X and B™lrX = Im (™) =

Im (Ont1 0 (jnr1)#) are the respective coboundary objects.

The construction of the mapls”, ", and 9", and the proof of the exactness &.9),
are then precisely as in3g6. O
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5.11 Definition The spiral n-systenof a pointed cosimplicial spaceX" € ¢S, is
defined to be the collection of long exact sequence$) ( for the Postnikowmn-stem
functor P[n] applied to X*, one for eactk-window of P[n]X".

As in Definition4.2, this may actually be defined for a cosimplicial Postnikegtem
P*, not necessarily realizable @8° = P[n]X".

By construction, the homotopy spectral sequence of a (fipcasimplicial spaceX”,
obtained as in §.1), is associated to the spiral exact coup®.9)\. The proofs of
Proposition4.7 and Theoren#.13use only the description of the spiral exact couple
for X. derived from 6.10, so by using %.10 instead we can prove their analogues
in the cosimplicial case, and show:

5.12 Theorem TheE; »-term of the homotopy spectral sequence for a cosimplicial
space X" is determined by the spiralsystem of X" .

An analogue of Corollarg.16also holds, as well as:

5.13 Proposition The differential d5': E5' — E5>'™  may be identified with
8&71): X — QW;F)Z’OX'.

5.14 Examples As noted in the introduction, many commonly used spectpiseces
arise as the spiral spectral sequence of an appropriatrtgmicial space, so Theorems
4.13and5.12 allow us to extract theiE"- or E,-terms from the appropriate spiral
systems. For instance:

(@) Segal'shomology spectral sequence @f]), the van Kampen spectral sequence
(cf. [25]), and the Hurewicz spectral sequence (6f) are constructed using
bisimplicial sets.

(b) The unstable Adams spectral sequenced4fl7] and [8, 84], Rector’s version
of the Eilenberg-Moore spectral sequence 28]), and Anderson’s generaliza-
tion of the latter (cf. ]) are all associated to cosimplicial spaces.

(c) The usual construction of the stable Adams spectralesezpifor 75X @ Z/p
(cf. [1, 83]) uses a tower of (co)fibrations, rather than a cosirigblgpace, but
when X is finite dimensional, it agrees in a range with the unstabhsien for
¥NX, so Theorenb.12applies stably, too.
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