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Abstract. We describe an obstruction theory for the realization of a Π-algebra – that is, a graded
group G∗ with a prescribed action of the primary homotopy operations – as the homotopy groups
of some space. The obstructions consist of higher homotopy operations, for which we provide an
explicit definition in terms of certain sequences of polyhedra. There is a similar theory for realizing

morphisms between Π-algebras, and thus in particular for distinguishing different realizations of a
fixed Π-algebra.

As an application we show that, for all primes p, the Π-algebra π∗S
r
⊗ Z/p cannot be realized.

1. introduction

Given a sequence of groups G∗ = {Gk}∞k=1 (abelian for k > 1), we ask if it can be realized as the
homotopy groups of some space: G∗

∼= π∗X. This question has a long history, going back to J.H.C.
Whitehead (see [47]; also [18], [19], [20], [28], [30], [40]). Of course, some additional structure must
be imposed on G∗, since any such sequence of groups is realizable by a product of Eilenberg-Mac
Lane spaces: thus Whitehead showed that any prescribed Z[G1]-module structure (=π1-action) on
the higher Gk’s is realizable.

More generally, given a space X, its homotopy groups π∗X support various homotopy operations
(cf. [46, XI, §1]) – i.e., they constitute a Π-algebra: a graded group with an action of the primary
homotopy operations (see §2.4 below). Our problem thus has two parts:

The first is algebraic – choosing a suitable Π-algebra structure for the groups G∗. This question
may be highly non-trivial, given the complicated structure of the collection of all primary homo-
topy operations (which involve, inter alia, all the unstable homotopy groups of spheres, Hilton-Hopf
invariants, etc.). We shall not be concerned with this algebraic problem here (but see remark 8.4
below).

The second is topological: we assume that we are given a full Π-algebra structure on G∗, and try
to find an (or all) X’s with π∗X ∼= G∗ as Π-algebras . This is the question we wish to address; so we
may may formulate our

Basic question: which Π-algebras are realizable, and in how many different ways?

To answer this question, we give an explicit definition of n-th order higher homotopy operations as
subsets of certain track groups [Σn−1X,Y] (n ≥ 2), depending only on homotopy classes of maps
(see §5 below); the subset in question will be non-empty only if certain lower order operations vanish.
The definition involves a sequence of convex “face-map” polyhedra, also known as permutohedra. We
then have:

Theorem A: Given a Π-algebra G∗, there is a sequence of higher homotopy operations (defined in
sections 5 and 6), depending only on maps between wedges of spheres, and taking value in homotopy
groups of spheres, such that G∗

∼= π∗X for some space X if and only if all the operations vanish
coherently.
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Thus the obstruction theory we define for realizing Π-algebras is just a generalization (and formal-
ization) of the well known fact that Toda brackets are an obstruction to attaching cells in constructing
CW complexes.

The second part of the question is a special case of an analogous question on the realizability of a
given morphism between two (realizable) Π-algebras, to which we give a similar answer in

Theorem B: Given an (abstract) morphism φ : π∗X → π∗Y of Π-algebras, there is a sequence
of higher homotopy operations (defined in section 7), taking value in the homotopy groups of Y, such
that φ = π∗(f) for some map f : X → Y if and only if all the operations vanish.

The two theorems above appear to be only of theoretical interest, since it is very difficult to calculate
any specific secondary operations, not to speak of all higher order operations. However, one can in fact
make use of the many calculations of Toda brackets in the literature to deduce the non-realizability
of certain Π-algebras. As an example, we prove the following extension to all primes of Proposition
3.3 of [4]:

Theorem C: For any prime p, the Π-algebra π∗S
r ⊗ Z/p cannot be realized for r ≥ 4(p− 1) (for

r ≥ 6, if p = 2).

(For a discussion of the precise meaning of the expression “the Π-algebra π∗S
r ⊗ Z/p”, see remark

8.4 below).

1.1. notation and conventions. N denotes as usual the natural numbers, and R the reals. T∗ will
denote the category of pointed connected CW complexes with base-point preserving maps, and by a
space we shall always mean an object in T∗, which will be denoted by a boldface letter: X, Sn. (This
is no restriction on the realizability of Π-algebras, by [46, V, Thm 3.2]). In particular, ∆[n] denotes
the standard topological n-simplex in R⋉+1.

The homotopy category of such spaces is denoted by hoT∗; diagrams taking value in hoT∗ will

be distinguished by a preceeding superscript h – for example, hX• ∈ hoT∗
∆op

(see below).
The category of Π-algebras will be denoted Π-Alg.

1.2. organization: In section 2 we give some background on Π-algebras and their simplicial resolu-
tions, and relate these to the realization problem for Π-algebras (§2.9). In section 3 we recall some
facts on rectifying homotopy-commutative diagrams into strictly commutative ones. In section 4 we
describe certain polyhedra, which are used in section 5 to define higher homotopy operations (§5.4).
After further details on adding degeneracies (section 6), we summarize the relation to the realization
problem in Theorem A (=Theorem 6.12).

The question of realizing morphisms of Π-algebras is dealt with in section 7, yielding Theorem B
(=Theorem 7.15). Finally, in section 8 we apply the theory to deduce Theorem C (=Theorem 8.1).

1.3. acknowledgents. I wish to thank Gil Kalai for introducing me to permutohedra, and Emmanuel
Dror-Farjoun, Jeff Smith and Bill Dwyer for several useful conversations. I would also like to thank
Jim Stasheff for pointing out some connections with work in other fields.

It should be noted that Bill Dwyer, Dan Kan, and Chris Stover have developed a different approach
to the realizability of Π-algebras, based on certain “Postnikov approximations” (cf. [12]).

2. Simplicial Π-algebras

As noted above, in order to give content to the question of realizing a given graded group G∗

as π∗X for some space X, we must impose some additional structure on it – namely, that of a
Π-algebra. First, some definitions and notation for simplicial objects:

2.1. simplicial objects. We let ∆ denote the category of ordered sequences mathbfn = 〈0, 1, . . . , n〉
(n ∈ N), with order-preserving maps, and ∆∂ the subcategory having the same objects, but allowing
only 1-1 morphisms (so in particular, morphisms from mathbfn to mathbfm exist only for n ≤ m).
∆op, ∆op

∂ are the opposite categories.
As usual (cf. [26, §2]), a simplicial object over any category C is a functor X : ∆op → C – i.e.,

a sequence of objects {Xn}∞n=0 in C, equipped with face maps di : Xn → Xn−1 and degeneracies
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sj : Xn → Xn+1, satisfying the simplicial identities ([26, §1.1]):

(i) di ◦ dj = dj−1 ◦ di for i < j

(ii) di ◦ sj =







sj−1 ◦ di if i < j
id if i = j, j + 1
sj ◦ di−1 if i > j + 1

(2.2)

(iii) sj ◦ si = si ◦ sj−1 for j > i

We let C∆op

denote the category of simplicial objects over C.

Definition 2.3. An n-simplicial object over C is a sequence of objects {Xk}n
k=0, with face and

degeneracy maps as above in dimensions ≤ n. If we denote by C∆op
n the category of such objects,

there is an obvious truncation functor τn : C∆op

→ C∆op
n .

We shall assume all our simplicial spaces – i.e., objects in T∗
∆op

– are proper , in the sense that
the degeneracy maps are inclusions of subcomplexes (so in particular cofibrations).

We let C∆op

∂ denote the category of simplicial objects without the degeneracies, which we shall call

∆-simplicial objects and denote by X
[∂]
• , (with each X

[∂]
n ∈ C). When C = Set, these have been

called ∆-sets, ss-sets, or restricted simplicial sets (see [33, 21]). Similarly C∆op

∂,n will be the category

of n-∆-simplicial objects. We have a forgetful functor UC : C∆op

→ C∆op

∂ (=“omit degeneracies”).

Definition 2.4. Recall that a Π-algebra is a graded group G∗ = {Gk}∞k=1 (abelian in degrees > 1),
together with an action of the primary homotopy operations (=Whitehead products, as in [46, X,
§7], and compositions) on it, satisfying the usual identities. See [2, §3] or [3, §2.1] for a more explicit
description.

The free Π-algebras are those isomorphic to π∗W, for some (possibly infinite) wedge of spheres
W: More precisely, let T be a graded set {Tj}∞j=1, and let W =

∨∞
j=1

∨

x∈Tj
Sj

x, where each Sj
x

is a j-sphere. Then we say that π∗W is the free Π-algebra generated by T . We shall consider each
element x ∈ Tj to be an element of π∗W, by identifying it with that generator of πjW which
represents the inclusion Sj

x →֒ W.

Remark 2.5. If we let Π denote the homotopy category of wedges of spheres, and F ⊂ Π-Alg the
full subcategory of free Π-algebras, then the functor π∗ : Π → F is an equivalence of categories.

Next, we must consider resolutions of a given Π-algebra; for more details, see [31, II, §4] or [5, §2].
For this we recall some well-known definitions:

Definition 2.6. A simplicial Π-algebra A• is called free if for each n ≥ 0 there is a graded
set T n ⊆ An such that An is the free Π-algebra generated by T n, and each degeneracy map
sj : An → An+1 takes T n to T n+1.

Definition 2.7. We define a free simplicial resolution of a Π-algebra G∗ to be a free simplicial
Π-algebra A•, together with an augmentation ε : A0 → G∗ with

ε ◦ d0 = ε ◦ d1, (2.8)

such that if for each n ≥ 0 the underlying graded group of An is denoted {(An)k}∞k=1 then:

(a) the homotopy groups of the simplicial group (A•)k vanish in dimensions n ≥ 1;
(b) the augmentation induces an isomorphism π0((A•)k) ∼= Gk.

Such resolutions always exist, for any Π-algebra G∗ – see [31, II, §4], or the explicit construction
in [2, §4.3].

2.9. realizing Π-algebras. Now given any Π-algebra G∗, one could try to realize it as follows:

First, choose any free simplicial resolution A• → G∗; since each An is a free Π-algebra, one can
choose a wedge of spheres Wn such that π∗Wn

∼= An, and thus obtain a simplicial space up to

homotopy hW• ∈ hoT∗
∆op

by remark 2.5.
If hW• can be rectified (§3.1) into a (strict) simplicial space W•, its realization (or homotopy

direct limit), the space X = ‖W•‖, is constructed by making identifications in
∐∞

n=0 Wn × ∆[n]
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according to the face and degeneracy maps of W• (cf. [35, §1]). There is a first quadrant spectral
sequence with

E2
s,t = πs(πtW•) ⇒ πs+t‖W•‖ (2.10)

(see [7, Thm B.5], [32]). Since A• → G∗ is a resolution, we find π∗X = π∗‖W•‖ ∼= G∗ as
Π-algebras, so G∗ in fact can be realized. (Clearly π∗X ∼= G∗ as graded groups; and the natural
map W0 → ‖W•‖ (cf. [8, XII, 2.3]) induces the Π-algebra morphism).

Remark 2.11. Let us suppose we only want to realize a given Π-algebra G∗ in a range – that is, find
a space X such that πiX ∼= Gi for k ≤ i ≤ ℓ, with the prescribed action of the relevant homotopy
operations. (We can always assume that G∗, as well as X, is (k − 1)-connected).

In this case we can choose a free Π-algebra resolution A• → G∗ (in which we may take each
An

∼= π∗(
∨

α Srα) to be (k− 1)-connected), and define a new free simplicial Π-algebra B• by setting

Bn = π∗(
∨

rα≤ℓ

Srα).

If we can find a simplicial space W• realizing B•, and set X = ‖W•‖, then (2.10) implies that
πiX ∼= Gi for i ≤ ℓ (though we have no control over the higher homotopy groups).

3. Rectifying homotopy-commutative diagrams

It is well known that diagrams in the homotopy category can be changed into strict diagrams of
spaces if and only if the diagram can be made ∞-homotopy commutative (see, e.g., [6, Cor. 4.21 &
Thm. 4.49]). We shall use the specific version of this statement described by Dwyer, Kan, and Smith
in [11]; for this we need some definitions:

3.1. rectifying a simplical space up to homotopy. Let us assume we are given a simplical space

up to homotopy hY• – that is, an object in hoT∗
∆op

, for which the simplicial identities (2.2) hold
only up to homotopy – and would like to rectify it: i.e., to replace it by a (strict) simplicial space

Y• ∈ T∗
∆op

. For our purposes we need not worry over the precise definition of “replacing hY•”
(see [11, §2.2]); all we require is that upon applying the functor π∗(−) to hY• and Y• we obtain
isomorphic simplicial Π-algebras. (This is also refered to as realizing the diagram hY• in T∗, but
we already have too many kinds of realization in this paper). As a first approximation we shall start
with rectification of the underlying ∆-simplicial space UhoT∗(

hY•).

Definition 3.2. In [9], Cordier and Porter define a simplicial category (cf. [31, II, §1]) F∗∆
op
∂ ,

whose objects are the sequences mathbfn ∈ ∆ (or n ∈ N), and with the function complex
F∗∆

op
∂ (mathbfn,mathbfm) for each n > m, is the simplicial set whose k-simplices are:

(F∗∆
op
∂ (mathbfn,mathbfm))k = {sequences of face maps from mathbfn to mathbfm, arranged

in arbitrary nestings of brackets, (k + 1)-deep}

The face maps are di=“remove i-th level brackets”; the degeneracy maps are sj=“repeat j-th level
brackets”. See [11, §1.4(iv)] for details.

Example 3.3. For example, the 1-simplices of the simplical set F∗∆
op
∂ (2, 0) consist of:

{[[d0][d1]], [[d0][d0]], [[d0d1]], [[d1][d1]], [[d0][d2]], [[d0d2]], [[d1][d2]], [[d1][d1]], [[d1d2]] }

where [[d0d1]] = s0([d0d1]), e.g., d0([[d0][d0]]) = [d0d1], and d1([[d0][d0]]) = [d0][d0].

Definition 3.4. Given a ∆-simplicial space up to homotopy hY
[∂]
• ∈ hoT∗

∆op

∂ , let T #
∗ denote the

simplicial category having objects mathbfn ∈ N, and function complexes

HomT #
∗

(mathbfn,mathbfm) = map(Yn,Ym).

(Recall from [26, §6.4] that for any two spaces X, Y, the function complex map(X,Y) is the simplicial

set whose k-simplices are map(X,Y)k
Def
= Hom(X× ∆[k],Y).)

An ∞-homotopy commutative ∆-simplicial space over hY
[∂]
• is a simplicial functor Y∞ : F∗∆

op
∂ →

T #
∗ , such that for any α ∈ F∗∆

op
∂ (mathbfn,mathbfm), the homotopy class of Y∞(α) is that pre-

scribed by hY
[∂]
• . Thus Y∞ assigns a map Yn → Ym to each 0-simplex of F∗∆

op
∂ (mathbfn,mathbfm),
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a homotopy between the appropriate maps to each 1-simplex, and higher homotopies to the higher
dimensional simplices.

Theorem 3.5. [11, Thm 2.4]. Any ∆-simplicial space up to homotopy hY
[∂]
• ∈ hoT∗

∆op

can be
rectified (in the sense of §3.1) if and only if there is a ∞-homotopy commutative ∆-simplicial space
over hY•.

4. Polyhedra

There is a smaller combinatorial version of the category F∗∆
op
∂ defined above which can be used

to describe the ∞-homotopy commutative ∆-simplicial spaces, by means of certain face-map polyhedra
Pn(δ).

Since all the polyhedra we shall be dealing with here are (combinatorially isomorphic to) polytopes
in R⋉, in this and the following sections we shall use the same notation for an abstract (combinatorial)
polyhedron P and an (unspecified) geometric realization of P as such a polytope.

Definition 4.1. For each 0 < k ≤ n, let

D(k, n)
Def
= {0, 1, . . . , k} × {0, 1, . . . , k, k + 1} × . . .× {0, 1, . . . , n}

where we think of (ik, . . . , in) as corresponding to the composition of face maps

dik
◦ . . . ◦ din

: mathbfn→ mathbfk −mathbf1 in ∆op
∂ .

There is an equivalence relation ∼ on D(k, n), generated by

(ik, . . . , ij , ij+1, . . . , in) ∼ (ik, . . . , ij+1 − 1, ij, . . . , in) if ij < ij+1 (4.2)

(that is, (ik, . . . , in) ∼ (jk, . . . , jn) if the corresponding morphisms in ∆op
∂ are equal: dik

dik+1
. . . din

=
djk

djk+1
. . . djn

– cf. (2.2)(i)). We call n − k the length of δ, and denote it by |δ|. We call an
equivalence class γ ∈ D(j,m)/ ∼ a subclass of δ ∈ D(k, n)/ ∼, written γ ⊆ δ, if k ≤ j ≤ m ≤ n
and δ has some representative (ik, . . . , ij, . . . , im, . . . in) such that γ = [(ij , . . . , im)].

Definition 4.3. To every equivalence class δ = [(ik, . . . , in)] ∈ D(k, n)/ ∼ we associate an (n− k)-
dimensional abstract polyhedral complex Pn−k(δ), defined by induction on d = |δ| = n−k, starting
with P0([in]) = a point.

For each representative (ik, . . . ,in) ∈ D(k, n) of δ, and each partition of (ik, . . . ,in) into r
consecutive blocks

〈 ik, . . . iℓ1 | iℓ1+1, . . . iℓ2 | . . . |iℓr−1+1, . . . in 〉

of size s1 = (ℓ1 − k), . . . , sr = (n− ℓr−1 + 1) respectively, Pn−k(δ) will have an (s1 − 1) · (s2 −
1) · . . . · (sr − 1))-dimensional sub-polyhedron

Ps1−1([ik, . . . iℓ1 ]) × Ps2−1([iℓ1+1, . . . iℓ2 ]) × . . .× Psr−1([iℓr−1+1, . . . in]). (4.4)

We denote by Pn(δ)(k) the union of all sub-polyhedra of Pn(δ) of dimension ≤ k.

In particular, if r = n we see that Pn−k(δ) has (n − k + 1)! vertices, corresponding to the
different ways of decomposing the composite face map δ : mathbfn → mathbfk. All Pd(δ)’s of
the same dimension d are isomorphic.

Example 4.5. The 1-face-map polyhedron P1(δ) is isomorphic to a 1-simplex ∆[1], and the
2-face-map polyhedron P2(δ) is a hexagon, as in Figure 1:

The 3-face-map polyhedron P3(δ) is isomorphic to a truncated cuboctohedron, whose facets consist
of 8 hexagons P2(γ) and 6 squares P1(β) × P1(β

′). An example appears in Figure 2:

Definition 4.6. Given n + 1 real numbers a0 < a1 < . . . < an, the corresponding permutohe-
dron Pen = Pen(a0, . . . , an) is defined to be the convex hull in R⋉+1 of the (n + 1)! points
(σ(a0), σ(a2), . . . , σ(an)) ∈ R⋉+1, indexed by permutations σ ∈ Σn+1. (The concept goes back
to Schoute at the beginning of the century; cf. [34, 15]). It is an n-dimensional polyhedron, and
different choices of a0, . . . , an yield combinatorially isomorphic polyhedra.
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Figure 2. The 3-face-map polyhedron P3(〈0, 1, 2, 3〉)

Such polyhedra have figured in algebraic topology (under various names) in the context of iterated
loop spaces, in the work of Milgram [27, §4], Stasheff [39, §11], Baues [1, III, (4.5)], and others. They
also appear in category theory (e.g., [41]).

Lemma 4.7. For any δ ∈ D(k, k + n)/ ∼ and a0 < . . . < an, the polyhedra Pn(δ) and
Pen(a0, . . . , an) are (combinatorially) isomorphic.

Proof. Without loss of generality we may assume δ = [(0, 1, . . . , n)], and define a 1-1 mapping Ψ
between sequences (i0, . . . , in) ∈ D(0, n) representing δ (and thus corresponding to the vertices of
Pn(δ)) and permutations σ ∈ Σn+1 (corresponding to the vertices of Pen), as follows:

Set Ψ(0, 1, . . . , n) = (a0, a1, . . . , an) ∈ Σn+1. Now any other (i1, . . . , in+1) ∈ D(1, n + 1)
equivalent under ∼ to (0, 1, . . . , n) may be obtained from it by a sequence of applications of the rule
(4.2), and thus we may define Ψ inductively by the requirement that if ij < ij+1 then

Ψ(ik, . . . , ij, ij+1, . . . , in) = (j, j + 1) ◦ Ψ(ik, . . . , ij+1 − 1, ij, . . . , in).

where (j, j + 1) ∈ Σn+1 denotes the transposition. Note that vertices of Pn(δ) are connected by
an edge if and only if they are indexed by (ik, . . ., ij, ij+1, . . ., in) and (ik, . . ., ij+1 − 1, ij, . . ., in)
respectively (ij < ij+1). Moreover, [13, Thm 1] shows that the corresponding vertices (under Ψ) are
precisely those connected by edges in Pen.
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Now recall from [13, Thm 2] that Pen may be described as the set of points x̄ = (x0, . . . , xn) ∈
R⋉+1 satisfying

∑

i∈Jk

xi ≥
k−1
∑

i=0

ai for every Jk ⊂ {0, 1, . . . , n}, |Jk| = k ≤ n (4.8)

n
∑

i=0

xi =

n
∑

i=0

ai
1 (4.9)

Moreover, any codimension m sub-polyhedron P of Pen is defined by requiring equality in m of
the inequalities in (4.8), corresponding to any choice of m subsets of the form Jk1 ⊂ Jk2 ⊂ . . . ⊂ Jkm

(ibid.).
Setting J ′

1 = Jk1 and J ′
j = Jkj

− Jkj−1 = {i0, . . . iℓ} (with ℓ = kj − kj−1 − 1), with y0 =
xi0 , . . . , yℓ = xiℓ

and b0 = akj−1+1, . . . , bℓ = akj
, one has b0 < b1 < . . . bℓ and

ℓ
∑

i=0

yi =

ℓ
∑

i=0

bi and
∑

i∈Kr

yi ≥
r−1
∑

i=0

bi for every Kr ⊂ {0, 1, . . . , ℓ}, |Jr| = r ≤ ℓ.

Thus the sub-polyhedron P is isomorphic to a product of permutohedra
∏

Peℓ−1(b0, . . . , bℓ),

and a simple counting argument shows that these correspond to the codimension m sub-polyhedra of
Pn(δ), so by induction (starting with d = 1) one finds that Pn(δ) ∼= Pen. �

Corollary 4.10. (cf. [27, Lemma 4.2]) Pn(δ)(n−1) is homeomorphic to Sn−1. 2

4.10. the connection to F∗∆
op
∂ . The description of ∞-homotopy commutative diagrams using

F∗∆
op
∂ (§3.4) could also be stated in terms of appropriate polyhedra – in fact, if we disregard

the degeneracies (as we may), the simplicial sets F∗∆
op
∂ (mathbfn,mathbfm) are simplicial com-

plexes, whose components correspond to the various Pn−m(δ) with δ ∈ D(m,n)/ ∼. It is not hard
to see that the component corresponding to Pn−m(δ) is a “barycentric subdivision” of the face-map
polyhedron, in which we have added a barycenter to each sub-polyhedron, corresponding to the map
δ : mathbfn→ mathbfm (as a result, the products of polyhedra (4.4) are also subdivided).

For example, the component in F∗∆
op
∂ (3, 0) of δ = [(0, 1, 2)] is the subdivided hexagon of Figure

3 below.

r(0)(1)(1) �
�
�
�

((0))((1)(1))

r(0)(12) �
�
�
�

((0))((1)(2))

r(0)(1)(2)
((0)((1))((2))

r
(01)(2)

((0)((0))((2))
r(0)(0)(2)
A
A
A
Ar(0)(02)
A
A
A
Ar(0)(1)(0)

A
A
A
Ar(01)(2)
A
A
A
Ar(0)(0)(1) r

(0)(01)
r(0)(0)(0)�
�
�
�
r(01)(0)�
�
�
�

r
(012)

((0)(1)(1))
HHHHH

((0)(02))
HH

S
S

S
SS

((0)(1)(2))
S

S
S

(((0))((1)(1)))
�

�
�

�
�

�
�
�

������

��������

�
�

�
�

�
�

�
�

S
S

S
S

S
S

S
S

HHHHHHHH

Figure 3. F∗∆
op
∂ (3, 0) (partial description)

1This condition is omitted in [13]
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The reason for the subdivision is that definition 3.4 requires the choice of representatives not only
for each arrow in ∆∂ (i.e., each individual face map), but also for all possible composites. However,
it is evidently more convenient to work with the more economical face-map polyhedra – as seen from
a comparison of Figures 1 and 3.

Example 4.12. To illustrate this, let hY
[∂]
• be a ∆-simplicial space up to homotopy. In the face-

map polyhedron approach to rectifying hY
[∂]
• , initially we would choose representatives only for each

“indecomposable” face map di : Yn → Yn−1. On the other hand, the F∗∆
op
∂ approach of §3.4

requires also explicit choices for each composite face map – such as d1d2 : Yn → Yn−2 (which is
the same as d1d1).

However, once we choose a homotopy between the composites: H : d1 ◦ d1 ∼ d1 ◦ d2 – i.e., a
map H : P1(0, 1) × Yn → Yn−2 – we are designating the restriction of H to the barycenter of
P1(0, 1) ∼= ∆[1] as our representative for the composite d1d2 = d1d1. Similarly, in Figure 3 the
restriction of the higher homotopy G : P2(0, 1, 2)⋉Yn → Yn−3 to the barycenter of P2(0, 1, 2) will
be the representative we select for the composite face map d1d1d2.

5. Higher homotopy operations

We now wish to use the above face-map polyhedra to give a general definition of higher homotopy
operations (for a given ∆-simplicial space up to homotopy):

First recall that if X,Y ∈ T∗, their half-smash is X ⋉ Y
Def
= (X × Y)/(X × {∗}); if X is a

suspension, there is a (non-canonical) homotopy equivalence

X ⋉ Y ≃ X ∧ Y ∨X.

Definition 5.1. Let hY
[∂]
• ∈ hoT∗

∆op

∂ be a ∆-simplicial space up to homotopy, and C be a set of
equivalence classes δ ∈ D(n − k, n)/ ∼ (for various n, k) which is closed under taking subclasses

(i.e., γ ⊆ δ ∈ C ⇒ γ ∈ C). A compatible collection for C and hY
[∂]
• is a set {gδ}δ∈C of maps

gδ : Pn−k(δ) ⋉ Yn → Yk−1 for each δ = [(ik, . . . , in)] ∈ C, satisfying the following condition:
If 〈 ik, . . . iℓ1 | iℓ1+1, . . . iℓ2 | . . . |iℓr−1+1, . . . in 〉 is a partition of some sequence representing δ

into r blocks, with γ1 = [(ik, . . . iℓ1)], . . . , γr = [(iℓr−1+1, . . . in)], and we set P = Pℓ1−k−1(γ1) ×

Pℓ2−ℓ1(γ2) . . . Pn−ℓr−1(γr), then we require that gδ|P⋉Y n be the composite of the corresponding
gγi ’s in the sense that

gδ(x1, . . . , xr, y) = gγ1(x1, g
γ2(x2, . . . , g

γr(xr, y) . . . )) (5.2)

for xi ∈ Pℓi−ℓi−1(γi) and y ∈ Yn.

We further require that if δ = [ij] is of length 0, then gδ must be in the prescribed homotopy
class of [dij

] ∈ [Yj+1, Yj]. Thus in particular, for each vertex v of Pk(δ) indexed by (in−k, . . . , in),

the map gδ|{v}×Yn
represents the class [din−k

◦ . . . ◦ din
].

We shall usually be interested in such collections only up to a suitable homotopy relation: If
{gδ}δ∈C and {ḡδ}δ∈C are two compatible collections for C, a compatible homotopy between them is
a collection of homotopies {Hδ : gδ ∼ ḡδ}δ∈C such that for each 0 ≤ t ≤ 1, the maps {Hδ

t }δ∈C

constitute a compatible collection for C.

Definition 5.3. For any (fixed) class δ = [(in−k, . . . , in)] ∈ D(k, n)/ ∼, let C(δ) denote the
collection of all proper subclasses of δ. Then any compatible collection {gγ}γ⊂δ for C(δ) induces a

map f = f δ : Pk(δ)(k−1) ⋉Yn → Yn−k−1 (since all the faces of Pk(δ)(k−1) are products of Pj(γ)’s
for γ ∈ C(δ), and condition (5.2) guarantees that the gγ ’s agree on intersections).

Note that compatibly homotopic collections induce homotopic maps: f ∼ f̄ .

Definition 5.4. Given hY
[∂]
• as above, for each k ≥ 2 and δ ∈ D(n−k, n) the k-th order homotopy

operation associated to hY• and δ is a subset 〈〈δ〉〉 of the track group [Σk−1Yn,Yn−k−1], defined
as follows:

Let S ⊆ [Pk(δ)(k−1) ⋉Yn, Yn−k−1] be the set of homotopy classes of maps f = f δ : Pk(δ)(k−1) ⋉

Yn → Yn−k−1 which are induced as above by some compatible collection {gγ}γ⊂δ for C(δ).
Now choose a splitting

Pk(δ)(k−1)
⋉ Yn

∼= Sk−1
⋉ Yn ≃ Sk−1 ∧ Yn ∨ Yn (5.5)
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and let 〈〈δ〉〉 ⊆ [Σk−1Yn, Yn−k−1] be the image under the resulting projection of the subset
S ⊆ [Pk(δ)(k−1) ⋉ Yn, Yn−k−1]

Note that the projection of a class [f ] ∈ S on the other summand [Yn,Yn−k−1] coming from
the splitting (5.5) is of no interest, since it is just the class of δ (considered as a composite face map
in hY•).

5.6. coherent vanishing. It is clearly a necessary condition in order for the subset 〈〈δ〉〉 to be
non-empty that all the lower order operations (for subclasses γ ⊂ δ) vanish – i.e., contain the null
class – because otherwise the various gγ : Pj(γ)

(j−1)
⋉ Ym → Ym−j−1 cannot even extend over

the interior of Pj(γ). A sufficent condition is that they do so coherently, in the following sense:

Definition 5.7. We assume that for each of the maximal proper subclasses γ ⊂ δ (with |γ| =
|δ| − 1) we have a compatible collection {gβ,γ}β⊂γ for C(γ) (§5.1), such that the induced map

fγ : Pj(γ)
(j−1) ⋉ Ym → Ym−j−1 (§5.3) extends to a map gγ : Pj(γ) ⋉ Ym → Ym−j−1 (i.e., the

higher homotopy operation associated to γ vanishes). We say that the collections {{gβ,γ}β⊂γ}γ∈C(δ)

are ℓ-coherent if gβ,γ = gβ,γ′

whenever β is a proper subclass of both γ and γ′ of length |β| ≤ ℓ.

If the collections {gβ,γ}β⊂γ are (|δ| − 1)-coherent, they in fact fit together to form a compatible
collection for C(δ), and thus induce an element of 〈〈δ〉〉.

Remark 5.8. The condition for 0-coherence just says that we have choosen (arbitrary) fixed represen-
tatives f ik : Yk → Yk−1 in the prescribed homotopy classes of the face map dik

. Note that the
resulting elements of 〈〈δ〉〉 are independent of these choices, since any homotopy H ik : f ik ∼ f̄ ik

between two such choices can be used radially on small balls around each vertex of the P (γ)’s to
define a homotopy between corresponding representatives of members of 〈〈δ〉〉.

More generally, let {gγ}γ∈C and {ḡγ}γ∈C be two (ℓ − 1)-coherent compatible collections for
C. Assume that for some γ0 ∈ D(m − ℓ,m)/ ∼ we have a homotopy H : ḡγ0 ∼ gγ0 (rel
Pℓ(γ0)

(ℓ−1) ⋉ Ym). Then we can (repeatedly) use the homotopy extension property for the DNR’s
Pk(γ)(k−1) ⊂ Pk(γ) (cf. [46, I, (1.9), §5]) to produce a compatible collection {ĝγ}γ∈C such that
ĝγ = ḡγ for |γ| ≤ ℓ, γ 6= γ0, and ĝγ0 = gγ0 , as well as a compatible homotopy {Hγ : ḡγ ∼ ĝγ}γ∈C

extending H .

5.9. obstructions to coherence. Note that any δ ∈ D(k, n)/ ∼ has a canonical representative
(ik, ik+1, . . . , in) ∈ D(k, n) with ik < ik+1 < . . . < in. This allows us to define a linear ordering
≺ on all δ ∈

⋃

n,k D(k, n)/ ∼ – first by |δ| = (n − k), then by k, and then by left lexicographic

ordering (say) on the canonical representatives.

Given (ℓ − 1)-coherent compatible collections {{gβ,γ}β⊂γ}γ as above, we have a sequence of
obstructions to ℓ-coherence, defined as follows: order the maximal proper subclasses of δ under ≺

γ1 ≺ γ2 ≺ . . . γs ≺ γs+1 ≺ . . . ≺ γr,

and assume by induction on s ≥ 1 that we have ℓ-coherence for {{gβ,γi}β⊂γi
}s

i=1. Next, consider
all the classes β of length ℓ such that both β ⊂ γs+1 and β ⊂ γki

for some 1 ≤ ki ≤ s, and order
them: β1 ≺ β2 ≺ . . . βt. Assume by a further induction on m ≥ 0 that γ1, . . . γs, γs+1 satisfy the
ℓ-coherence condition with respect to {β1, . . . βm}.

Now let β = βm+1 ∈ D(m − ℓ,m)/ ∼, and gβ = gβ,γi (by assumption, in does not matter
which 1 ≤ i ≤ s we choose), ḡβ = gβ,γs+1. Since we have (ℓ − 1)-coherence, ḡβ|Pℓ(β)(ℓ−1)⋉Ym

=

gβ|Pℓ(β)(ℓ−1)⋉Ym
, and since Pℓ(β)(ℓ−1) ∼= Sℓ−1 and Pℓ(β) ∼= CSℓ−1 (Lemma 4.7), gβ and ḡβ

together define an map ϕs+1 : ΣYm → Ym−ℓ−1, which is nullhomotopic if and only if gβ ∼ ḡβ rel
Pℓ(β)(ℓ−1)

⋉ Ym.
But by remark 5.8, in this case we have a compatible homotopy of {gβ,γs+1}β⊂γs+1 with a

compatible collection {ĝβ}β⊂γs+1. If we now replace the given collection {gβ,γs+1}β⊂γs+1 by

{ĝβ}β⊂γs+1, we find that the new {gβ,γ1}, . . . , {gβ,γs+1} satisfy the ℓ-coherence condition with
respect to {β1, . . . βm+1} – completing the inner induction. When m = t we have obtained
ℓ-coherence for the new {{gβ,γi}β⊂γi

}s+1
i=1 .

Thus we have a sequence of obstruction classes in various track groups [ϕi] ∈ [ΣYmi
,Ymi−ℓ−1]

(i = 1, . . . , t), each defined only after we have chosen a nullhomotopy for the previous one, whose
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vanishing guarantees the ℓ-coherence of new collections compatibly homotopic to the given collections
{{gβ,γ}β⊂γ}γ).

5.10. the relation to Toda brackets. We have given a new definition of second order homotopy
operations here, and one would of course like to know how these are related to the usual Toda brackets:

Let there be given homotopy classes Y3
γ

−→ Y2
β

−→ Y1
α

−→ Y0. Choosing representatives a,
b, c for α, β, γ respectively, as well as nullhomotopies F : a ◦ b ≃ ∗, G : b ◦ c ≃ ∗, one defines a
map f : ΣY3 → Y0 as the “sum” of a ◦G and F ◦C(c) (as maps of : CY3 → Y0). Varying the
choices yields other representatives of the double coset

〈α, β, γ〉 ∈ [ΣY3,Y0] / ( (Σγ)#[ΣY2,Y0] + α#[ΣY3,Y1] ) (5.11)

(see [43, Lemma 1.1]). We assume for simplicity that all spaces in question are suspensions. The

corresponding 3-∆-simplicial space up to homotopy hY
[3,∂]
• ∈ hoT∗

∆op

∂,3 has the d0’s equal to α, β,
γ respectively, and all other face maps equal to the null class.

If we now use the choices of a, b, c, F , G made above, (and the null map to represent the null
class, or homotopies between null maps), we obtain maps of the boundaries of the four 2-face-map
polyhedra P2(δ)

(1) with δ = 〈0, 1, 2〉, 〈0, 1, 3〉, 〈0, 2, 3〉, or 〈1, 2, 3〉. It is easy to see all but the
first will be trivial, while if H∗ denotes the constant homotopy between null maps then the map of
P2(〈0, 1, 2〉)(1) ⋉ Y3 into Y0 – representing the usual construction of the Toda bracket 〈α, β, γ〉 –
is described by the diagram in Figure 4.

�
�

�
H∗ ◦ d2

r
d0d1d2 = ∗

Q
Q

Q
d0 ◦H∗

rd0d1d1 = ∗

H∗ ◦ d1

r
d0d0d1 = ∗�

�
� a ◦G
r

d0d0d0 = a ◦ b ◦ c

r∗ = d0d1d0 Q
Q

QF ◦ c

r∗ = d0d0d2

d0 ◦H∗

Figure 4. The Toda bracket

However, the construction of the map P2(〈0, 1, 2〉)(1) ⋉ Y3 → Y0 is “more homotopy-theoretic”
in that it does not require specific representatives for any maps, including the null class (unlike the
usual Toda bracket); as a result, we might expect it to have greater indeterminacy. This does not
happen, in fact: by a slight variant of our previous notation, let 〈〈α, β, γ〉〉 ⊆ [ΣY3,Y0] denote the

coset representing the secondary homotopy operation determined by hY
[3,∂]
• . Then

Lemma 5.12. For Y3
γ

−→ Y2
β

−→ Y1
α

−→ Y0 as above we have

〈α, β, γ〉 = 〈〈α, β, γ〉〉 ⊆ [ΣY3,Y0].

Proof. We showed above how the representative of the usual Toda bracket 〈α, β, γ〉 determined by
a, b, c, and appropriate nullhomotopies yields an element of 〈〈α, β, γ〉〉.

In general, to obtain a representative of 〈〈α, β, γ〉〉 one must choose maps fi : Y1 → Y0 (i = 0, 1),
gi : Y2 → Y1 (i = 0, 1, 2), and hi : Y3 → Y2 (i = 0, . . . , 3) to represent all face maps

in hY• ∈ hoT∗
∆op

∂,3 , with all but f0 ≃ a, g0 ≃ b and h0 ≃ c being nullhomotopic (but not
necessarily null!). In addition, we must choose homotopies F : f0 ◦ g1 ≃ f0 ◦ g0, G : g0 ◦h1 ≃ g0 ◦h0,
G′ : g0◦h2 ≃ g1◦h0, G

′′ : g1 ◦h2 ≃ g1 ◦h1, and so on. This yields a map Y3 ⋉P2(〈0,1,2〉)(1) → Y0

represented by the diagram:
To reduce this more general construction to the usual Toda bracket (as represented by Figure 4

above), we must choose nullhomotopies H : f1 ≃ ∗, K : g1 ≃ ∗, L : h1 ≃ ∗, and M : h2 ≃ ∗, to
obtain a diagram as in Figure 6.
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�
�

�
F ◦ h2

r
f0g1h2

Q
Q

Q
f0 ◦G′′

rf0g1h1

F ◦ h1

r
f0g0h1�

�
� f0 ◦Gr

f0g0h0

rf0g1h0 Q
Q

QF ◦ h0

rf0g0h2

f0 ◦G
′

Figure 5. Generalized Toda brackets

�

f0Kh0

r

6

∗

r

Q
Q

Q
Q

Q
Q

Qk

f0g0M

a

Q
Q

Q
Q

Q
QQk

f0g1M

r

�
�

�
��3∗

b �
�

�
�

�
��3

f0Kh1

r-∗

c

�
�

�
�

�
�

�3
f0Kh1

r

Q
Q

Q
Q

Qs

∗

d

?

∗

r-
f0g1L

e

?

∗

r

Q
Q

Q
Q

Qs

-
f0g0L

f

�
�

�
��+

Fh2

r

f0g1h2

Q
Q

Q
QQs

f0G
′′

r f0g1h1

?

Fh1

r f0g0h1
�

�
�

��+
f0G

r

f0g0h0

rf0g1h0
Q

Q
Q

QQsFh0

rf0g0h2

?

f0G
′

Figure 6

Our general secondary operation as described in Figure 5 yields an ordinary Toda bracket only
if the 2-simplices marked a. . .f in the diagram (sometimes shown as squares for typographical
convenience) can be filled in by maps ∆[2] × Y3 → Y0 extending the indicated maps on the
boundaries.

For region b one may define H : Y3 × I × I → Y0 by H(y, s, t) = F (M(y, s), t), and similarly
for regions c, e, f . On the other hand, in order to fill region a, one obtains a certain non-standard
“Toda bracket” ϕ ∈ [ΣY3,Y1] (which is the sum of g0 ◦M : CY3 → Y1, G′ : Y3 × I → Y1, and
K ◦Ch0 : CY3 → Y1), and a can be filled in if and only if f0 ◦ϕ ≃ ∗. Similarly for region d. Thus
the indeterminacy of 〈〈α, β, γ〉〉 is contained in 〈α, β, γ〉 + α∗[ΣY3,Y1] ⊆ 〈α, β, γ〉, by (5.11). �

One can similarly relate other constructions of secondary homotopy operations, such as those of
Hardie (cf. [16, 17]) or Spanier [38], to the definition above; likewise for higher order operations (see
[14], [45], and compare [37]).

Similar higher order operations (in an algebraic context) have also been considered by Kapranov
and Voevodsky (e.g., [22, 23, 24]), in the connection with Mac Lane’s categorical theory of coherence
(see [25]).

6. Adding degeneracies

Let there be given a full simplicial space up to homotopy hW• ∈ hoT∗
∆op

, and assume we have

rectified the underlying ∆-simplicial space, so that W
[∂]
• ∈ T∗

∆op

∂ . We wish to add degeneracy maps
sj : Wn → Wn+1 so as to obtain a full rectification of hW•.
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6.1. relative rectification. Now Dwyer, Kan and Smith have a relative version of the theory refered
to in §3, in which they assume given a category D, a subcategory C ⊂ D (with Obj(C) = Obj(D)),
and a diagram J : C → T∗ which extends to a “diagram up to homotopy” K : D → hoT∗.

Analogously to the F∗∆
op
∂ of §3.2, one can define a category F C

∗ D and thus a concept of a
∞-homotopy commutative (D, C)-diagram over (J,K). As in section 5, the existence of such a
diagram turns out to be equivalent in our context to the coherent vanishing of a certain sequence of
higher homotopy operations. In our case it is most convenient to assume by induction that we have

succeeded in adding (strict) degeneracies to W
[∂]
• through simplicial dimension n, and now wish to

choose representatives for the maps [sj ] : Wn → Wn+1 in such a way as to satisfy the identities
(2.2)(ii) for di : Wn+1 → Wn+1 and (2.2)(iii) for si : Wn−1 → Wn (and the new sj ’s).

Thus D = ∆op
n+1 is the (n + 1)-truncated subcategory of ∆op, and C = ∆op

n ∪ ∆op
∂,n+1 is

the subcategory of D consisting of face-maps through simplicial dimension n+ 1, and degeneracies
through simplicial dimension n. The additional morphisms in D are of course just the degeneracies
sj : mathbfn→ mathbfn+mathbf1.

6.2. simplicial-morphism polyhedra. We now define a collection of polyhedra which serve to
construct the obstruction to this relative rectification problem:

Definition 6.3. For each k,m ≥ 0, we denote by E(k,m) the set of all sequences of face and
degeneracy maps in ∆op which compose to yield a simplicial morphism φ : mathbfk → mathbfm.
Thus a typical element may be represented by a sequence of sequences 〈I1, J1, I2, J2, . . . , Ir, Jr〉
where Ia = (ia1 , i

a
2 , . . . , i

a
ta

), Ja = (ja
1 , j

a
2 , . . . , j

a
ua

) with 0 ≤ i11 ≤ k, 0 ≤ i12 ≤ k − 1, . . . and

0 ≤ j11 ≤ k − t1, . . . . We write |Ia| = ta, |Ja| = ua for the lengths of the sequences. I1 and Jr

are allowed to be empty.
This corresponds to the compositition of simplicial morphisms sJr ◦ dIr ◦ . . . ◦ sJ1 ◦ dI1 , where

dIa = dia
ta
◦ . . . dia

1
and and sJa = sja

ua
◦ . . . sja

1
. By convention, the empty sequence 〈〉 corresponds

to the identity map id : mathbfk → mathbfk = mathbfm.
We denote by E(k,m;n) ⊂ E(k,m) the set of such sequences which do not factor through

mathbfn+mathbf1.

Example 6.4. E(0, 0) = {d∅, d0 ◦ s0, d1 ◦ s0, d0 ◦ s0 ◦ d0 ◦ s0, . . . d0 ◦ d0 ◦ s0 ◦ s0, . . . }, while
E(0, 0; 1) = {d∅, d0 ◦ s0, d1 ◦ s0, d0 ◦ s0 ◦ d0 ◦ s0, d1 ◦ s0 ◦ d0 ◦ s0, . . . }.

There is an equivalence relation ∼ on E(k,m) (or E(k,m;n)) generated by the simplicial identies
(2.2), and E(k,m)/ ∼ is just Hom∆op(mathbfk,mathbfm) (and if n ≥ k,m, this is the same as
E(k,m;n)/ ∼). Every class φ in E(k,m)/ ∼ has a canonical representative of the form φ = sJ ◦ dI

with I = i1 > i2 > . . . > is and J = j1 < j2 < . . . < jt.

Definition 6.5. The simplicial-morphism polyhedra F (φ, n) are defined analogously to the face-map
polyhedra of §4.3: that is, for each simplicial morphism φ : mathbfk → mathbfm in ∆op (i.e.,
φ ∈ E(k,m)/ ∼), with k, n ≤ n+ 1, there is a polyhedron F (φ, n) whose vertices are indexed by
E(k,m;n). However, since these polyhedra are infinite-dimensional, in order to obtain higher order
operations as in §5 we must filter them by finite-dimensional polyhedra Fd(φ, n) ⊆ Fd+1(φ, n) ⊆
. . . F (φ, n), defined as follows:

The vertices of Fd(φ, n) are indexed by those sequences in E(k,m;n) of length p ≤ d:

Λ = 〈λ1, λ2, . . . , λp〉 = 〈sir
ur
, . . . , sjr

r
, dir

tr
, . . . , dir

1
, . . . , sj1

u1
, . . . , sj1

1
, di1s1

, . . . , di11
〉

(that is, each λℓ is either an sj or a di) such that λ1 ◦ . . . ◦ λp = φ.
More generally, for each such sequence Λ = 〈λ1, λ2, . . . , λp〉 representing φ in ∆op, with p ≤ d,

and each partition of Λ into r consecutive blocks:

〈 λ1, . . . λℓ1 | λℓ1+1, . . . λℓ2 | . . . |λℓr−1+1, . . . λn 〉

of size e1 = (ℓ1 − k), . . . , er = (n− ℓr−1 + 1) respectively, Pn−k(δ) will have a sub-polyhedron

Fe1 (λk ◦ . . . ◦ λℓ1 , n) × Fe2 (λℓ1+1 ◦ . . . ◦ λℓ2 , n) × . . .× Fer
(λℓr−1+1◦, . . . ◦ λp, n]).

(The vertices are obtained when all ei = 1).
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Unfortunately the F (φ, n)’s and Fd(φ, n)’s do not have any simple complete combinatorial
description like that of the face-map polyhedra (Lemma 4.7). In particular, as the following example
shows, they are not generally convex polytopes, but only the union of such. Nevertheless, it is
evident that one may describe an algorithm for constructing each Fd(φ, n), based on combinatorial
information only.

Example 6.6. For example, for φ = d0 : mathbf1 → 0, F1(φ, 1) = F2(φ, 1) consists of a single
vertex (d0), while F3(φ, 1) appears in Figure 7.
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Figure 7. F3(φ, 1)

F5(φ, 1) = F6(φ, 1) has 1 + 8 + 64 = 73 vertices.
For ψ = d0 : 2 → mathbf1 we find F3(ψ, 2) resembles F3(φ, 1) above, but with 15 vertices,

arranged in 4 quadrangles and one triangle (with a common vertice).

6.7. obstructions to adding degeneracies. Let there be given a (strict) ∆-simplicial space W
[∂]
• ,

for which we have specified homotopy classes [s̄j] ∈ [Wn,Wn+1] for the degeneracies, extending

W
[∂]
• to a full simplical space up to homotopy. (Actually, in the light of [36, Proposition A.1(iv)] for

our purposes we do not care which classes [sj ] are chosen; but in the context of §2.9 these classes
are in fact given to us).

We assume by induction that we have already chosen representatives for the degeneracies on Wm

for m < n in such a way that τnW• is a (strict) n-simplicial space, and we want to choose
representatives sj : Wn → Wn+1 making τn+1W• into a strict (n+ 1)-simplicial space – all this
without changing the di’s.

Now the analogue of section 5 allows us to define higher homotopy operations based on the
simplicial-morphism polyhedra, which will serve as obstructions to this relative rectification prob-
lem:

As in §5.9 there is a linear ordering ≺ on all φ ∈
⋃

k,m≤n E(k,m)/ ∼ – first by |k −m|, then

by k, and then by left lexicographic ordering (say) on the canonical representative sJ ◦ dI for φ.
For each n, the obstructions to “rectifying” the additional degeneracies sj : Wn → Wn+1 are

constructed by a triple induction: first on the simplicial morphisms φ : mathbfk → mathbfm
(k,m ≤ n), ordered by ≺; then on the filtration dimension d on Fd(φ;n); and finally, on the
dimension of the faces of Fd(φ;n).

Of course, we will need to ensure coherence between the choices of maps and homotopies made
at the various stages, in a manner analogous to §5.6-5.9. In fact, because the faces of Fd(φ;n)
are not (homeomorphic to) cells, in order to obtain higher homotopy operations taking value in
subsets of homotopy groups it is necessary first to subdivide each face into sub-polyhedra which are
combinatorially equivalent to cells (e.g., convex polyhedra), define the higher operations on these
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(suitably ordered), and then use coherence obstructions – also taking value in homotopy groups –
to get coherent vanishing as in 5.9.

We do not attempt to provide full details here, both because they are much more complicated
than the description in sections 4 & 5 (and in particular, lack an explicit combinatorial description),
and because they will not be needed for applications in the stable range by Lemma 6.10 below (and
possibly not at all – see Conjecture 6.9 below).

Summary 6.8. Given a simplicial space up to homotopy hW•, the obstructions to rectifying it have
been defined in two stages:

First, we have the sequence of higher homotopy operations of §5.4, whose coherent vanishings (§5.6)
are the condition for successively rectifying the n-∆-simplicial spaces up to homotopy τnUhoT∗(

hW•).
Then, for each possible choice of a ∆-simplicial space-rectification, we have the sequence of ob-

structions of §6.7 to adding degeneracies. If these vanish (coherently), this particular ∆-simplicial
space-rectification can be extended to a rectification of the full simplicial space.

One could evidently combine the obstructions to rectification of hW• into a single sequence,
rather than first rectifying the underlying ∆-simplicial space. (At the n-th stage we would be trying
to extend the given rectification of τh

nW• to simplicial dimension (n + 1), including both the face
maps di : Wn+1 → Wn and the degeneracies sj : Wn → Wn+1). Our motivation for dealing with
the ∆-simplicial space rectification first (in sections 4 & 5) is the following

Conjecture 6.9. If hY• ∈ hoT∗
∆op

is a simplicial space up to homotopy, and Y
[∂]
• ∈ T∗

∆op

∂ is a
∆-simplicial space rectifying UhoT∗(

hY•), then hY• itself may be rectified.

A weaker form of the conjecture would state that if hY• is a “resolution up to homotopy” of a

space X in the sense of §2.9, and Y
[∂]
• is a ∆-simplicial space rectification, then the homotopy colimit

of Y
[∂]
• (see §7.1) is weakly equivalent to X.

There is some evidence for the conjecture, both algebraic and other (cf. [36, Proposition A.1(iv)]).
A discrete version of this is known to hold (see [21] and [33, Theorem 5.7]). In a future paper we
intend to show that the weakened conjecture is true if the Π-algebra resolution of §2.9 is of a suitable
form (that described in [2, §4.3]).

In addition, we have:

Lemma 6.10. In order to realize a Π-algebra G∗ in the stable range (see §2.11), it suffices to realize
the underlying ∆-simplicial Π-algebra UΠ-AlgA• of a resolution A• → G∗.

Proof. In the stable range a Π-algebra is just a (truncated) module over the stable homotopy ring
πS
∗ S0, and such modules form an abelian category. Thus a simplicial resolution A• → G∗, suitably

truncated, is equivalent to an ordinary chain-complex resolution (cf. [10, §1]), which may be obtained
from A• by taking the quotient of each An by the (free) submodule generated by the image of the

degeneracies. Once this has been realized by a ∆-simplicial space Ŵ• as in §2.11, a full simplicial
space W• may be obtained from it by “adding all degeneracies” (see [2, §4.5.1] and [26, p. 95(i)]). �

As noted above, by Theorem 3.5 the coherent vanishing of the higher homotopy operations defined
in §5.4 & 6.7 is a sufficient condition for rectification of the simplicial space up to homotopy hW• of
§2.9, and thus for realizing the Π-algebra G∗. Conversely, Dwyer, Kan, and Stover have shown;

Proposition 6.11. [12] If A• → G∗ is a free simplicial resolution of the Π-algebra G∗, and
G∗

∼= π∗X for some space X, then A• may be realized by a (strict) simplicial space.

Thus the non-realizability of one resolution A• → G∗ will imply the non-realizability of the
Π-algebra G∗. We can sum up the results of this section in

Theorem 6.12. Given a Π-algebra G∗, there is a space X such that G∗
∼= π∗X if and only if all

the sequence of higher homotopy operations defined in §5.4 & 6.7 (which depend only on maps between
wedges of spheres, and take value in homotopy groups of spheres) vanish coherently.
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7. Realization of morphisms

We next consider the question of realizing a given morphism φ : G∗ → H∗ between two Π-algebras
– assuming, of course, that G∗ and H∗ are realizable. Thus we have G∗

∼= π∗X and H∗
∼= π∗Y,

and we want a map f : X → Y such that π∗(f) = φ.

7.1. realizing φ. As in §2.9, choose any two free simplicial resolutions A• → G∗ and B• → H∗

which are realizable by (strict) augmented simplicial spaces V•
η

−→ X and W•
ε

−→ Y. By the
universal property of free resolutions (cf. [31, I,§1]), φ induces a morphism of simplicial Π-algebras

φ̃ : A• → B• (unique up to simplicial homotopy) – and thus a simplicial morphism “up to homotopy”

[f•] : V• → W• in hoT∗
∆op

∂ by remark 2.5.

The homotopy colimit, or realization, of a ∆-simplicial space Z
[∂]
• is constructed analogously to

the realization of a simplicial space (§2.9) – without making the identifications imposed by the

degeneracies; it too is denoted by ‖Z
[∂]
• ‖. See [8, XII, §2]. By [36, Proposition A.1(iv)], for

Z
[∂]
• = V

[∂]
• (the underlying ∆-simplicial space of V•), this space is homotopy equivalent to the

realization ‖V•‖ of the full simplicial space – and thus to X.

Thus if [f•] can be represented by a (strict) map of ∆-simplicial spaces f• : V
[∂]
• → W

[∂]
• , then

its realization ‖f•‖ : ‖V
[∂]
• ‖ → ‖W

[∂]
• ‖ yields the required map f : X → Y with π∗(f) = φ, since

‖V
[∂]
• ‖ → X and ‖W

[∂]
• ‖ → Y are (weak) homotopy equivalences.

In fact, we do not need to rectify [f•] itself: Note that 2.2(i) and (2.8) imply that all composite
face maps di1 ◦ di2 ◦ . . . din

: Wn → W0 are equal after composing with ε : W0 → Y; call the
resulting map λn : Wn → Y. Thus if we can produce maps hn : Vn → Y with [hn] = [λn] ◦ [fn]
such that

hn−1 ◦ di = hn for all 0 ≤ i ≤ n, (7.2)

then by the functoriality of the homotopy colimit we obtain a map g : ‖V
[∂]
• ‖ → Y with π∗g = φ.

7.3. rectifying g. We now wish to apply the theory for relative rectification refered to in §6.1: here
C = ∆op

∂ , D = ∆op
∂

∐

{∗} (where {∗} is the category with one object and its identity morphism),
and the additional morphisms in D consist of a single γn ∈ D(mathbfn, ∗) for each n ≥ 0, with
γn−1 ◦ di = γn. Thus the diagram K : D → hoT∗ extending J consists of a collection of homotopy
classes [hn] ∈ [Vn,Y] satisfying (7.2) up to homotopy.

(Note that once we know such classes [hn] exist – which in our context is guaranteed by the
existence of the ∆-simplicial map up to homotopy [f•] – they are completely determined by [h0]
and (7.2)).

In this case the existence of a ∞-homotopy commutative (D, C)-diagram over (J,K) (cf. §6.1) turns
out to be equivalent to the coherent vanishing of a sequence of certain higher homotopy operations,
which can be explicitly described in this case in much simpler (and more explicit) terms than those
of §6.7:

7.4. cubical polyhedra. If A ⊆ B are two sets with |B \ A| = r + 1 (where |S| denotes the
cardinality of a set S), then the lattice of subsets A ⊆ E ⊆ B is in one-to-one correspondence
with the vertices of an (r + 1)-dimensional cube, which we shall denote by Cr+1(A,B), or simply
C(A,B). More generally, the k-dimensional faces of Cr+1(A,B) are just the Ck(D,E) where
A ⊆ D ⊆ E ⊆ B and |E \D| = k. (We shall write vE for C0(E,E), and C(B) for C(∅, B)).

Definition 7.5. If in the above description we require that the second inclusion – i.e., E ⊂ B
– be strict (E 6= B), we obtain an r-dimensional sub-polyhedron Lr(A,B) ⊂ Cr+1(A,B), which
is the star of the vertex vA in the boundary ∂Cr+1(A,B) of the cube. We call this an r-lattice
polyhedron.

The boundary of Lr(A,B), denoted by ∂Lr(A,B), corresponds to the subsets A ⊂ D ⊆ E ⊂ B
(both ends strict inclusions). It is homeomorphic to Sr−1.

Example 7.6. The 2-dimensional lattice polyhedron L2(∅, {0, 1, 2}) is isomorphic to a hexagon; the
solid lines indicate ∂L2(∅, {0, 1, 2}) (compare [42]):

The 3-dimensional lattice polyhedron L3(A,B) has 15 vertices, 26 edges, 17 square faces, and
four 3-cube facets.
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7.7. higher homotopy operations. We shall use the lattice polyhedra to define appropriate higher
homotopy operations, analogous to those of section 5, as follows:

Let n be a (fixed) natural number; we associate to any set A = {i1, i2, . . . , ik} ⊆ {0, 1, . . . , n} (with

i1 < i2 < . . . < ik) the composite face map dA
Def
= di1 ◦di2 ◦. . .◦dik

: mathbfn→ mathbfn−mathbfk,
with d∅ = id. If A ⊆ B ⊆ {0, 1, . . . , n}, the simplicial identity 2.2(i) guarantees that we can factor
dB as d(A,B)◦dA for some composite face map d(A,B) = dj1 ◦. . .◦djm

(where j1 < . . . < jm). We set

T (A,B)
Def
= {j1, . . . , jm}, so that d(A,B) = dT (A,B). (In general T (A,B) 6= B \ A.) For example,

if A = {0, 4} and B = {0, 1, 4, 7}, then dB = d0d1d4d7 = (d0d5) ◦ (d0d4), so T (A,B) = {0, 5}.
Note that for every D ⊆ E with T (D,E) = T there is a canonical (combinatorial) isomorphism

φD,E : Cm(D,E) → Cm(∅, T ).

Definition 7.8. Let there be given a (strict) ∆-simplicial space V•, a space Y, a sequence of
homotopy classes [h•] : V• → Y satisfying (7.2) up to homotopy. Then for each n ∈ N, an ∂Ln-
compatible collection for this data is a set of maps gT,m : C(T ) ⋉ Vm → Y, defined for each subset
T ⊂ {0, 1, . . . n} with |T | ≤ n− 1 and 0 ≤ m ≤ n− |T |. We require that g∅,m : C0(∅)×Vm → Y

be in the homotopy class of [hm] : Vm → Y for each 0 ≤ m ≤ n.
Now for every ∅ 6= D ⊆ E ⊂ {0, . . . , n} with T = T (D,E) we may define maps ḡ(D,E) :

C(D,E) ⋉ Vm → Y by setting

ḡ(D,E) = gT,n−|D| ◦ (φD,E
⋉ idVm

). (7.9)

These ḡ’s are required to satisfy a compatibility condition analogous to (5.2): namely, if ∅ 6= D ⊆
D′ ⊆ E′ ⊆ E ⊂ {0, . . . , n} and i : C(D′, E′) →֒ C(D,E) is the inclusion, we ask that

ḡ(D,E)|C(D′,E′)⋉Vn−|D|
= ḡ(D′,E′) ◦ (i⋉ dT (D,D′)). (7.10)

As in §5.3, such a compatible collection induces a map f : ∂Cn+1({0, . . . , n}) ⋉ Vn → Y, since
(7.10) guarantees that after precomposing all the ḡD,E ’s with i⋉ dD they will agree on all common
faces of ∂Cn+1({0, . . . , n}).

We similarly define an Ln-compatible collection by allowing |T | = n (that is, D = ∅) in the
definition above.

Definition 7.11. Fix a splitting ∂Ln({0, . . . , n}) ⋉ Vn ≃ Σr−1Vn ∨Vn We define the n-th order
higher homotopy operation associated with [h•] : V• → Y), which we denote by 〈〈0, . . . , n〉〉 ⊆
[Σn−1Vn,Y], to be the image under the projection associated to this splitting of the set of classes
in [∂Ln({0, . . . , n}) ⋉ Vn,Y] represented by those maps f : ∂Ln({0, . . . , n}) ⋉ Vn → Y which are
induced by such ∂Ln-compatible collections {gT,k} (compare §5.4). Again we say that 〈〈0, . . . , n〉〉
vanishes if it contains the null class.

Note that in our case Vn is homotopy equivalent to a wedge of spheres, so that the operations
defined are subsets of the homotopy groups of Y (or X). Moreover, ∂L2 ∼= P2(δ), so the second
order homotopy operations defined here are again Toda brackets (§5.10).

Remark 7.12. Observe also that any nullhomotopy for such a map f : ∂Ln({0, . . . , n}) ⋉ Vn → Y

– i.e., an extension of f to F : Ln({0, . . . , n}) ⋉ Vn → Y – yields a choice of maps ḡ(E) :
C(E) ⋉ Vn → Y for all E ⊂ B (including ḡ∅ : v∅ × Vn → Y, in the class of [hn]) which are
compatible (in the sense of (7.10)) with the given ḡD,E’s.
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Moreover, this in fact gives us an Ln-compatible collection {gT,m}, since (7.9) can be used to
define the missing gT,m’s – see §7.14 below.

7.13. obstructions to rectification. The obstructions to the rectification of [h•] : V• → Y – and
thus to the realization of φ – are the higher homotopy operations 〈〈0, . . . , n〉〉 ⊆ [Σn−1Vn,Y]: if
these all vanish, then [h•] is rectifiable, and thus φ can be realized.

Unlike the situation in §5.6, however, in this case the vanishing of 〈〈0, . . . , n〉〉 is also a sufficient
condition for the non-emptiness of 〈〈0, . . . , n+ 1〉〉 – i.e., for the existence of a ∂Ln+1-compatible
collection extending the given collection {gT,m} for Ln (which was itself extended from a ∂Ln-
collection by means of a nullhomotopy, as explained in §7.12).

The reason for this is that ∂Ln+1({0, . . . , n + 1}) is the union of the (n + 2) lattice poly-
hedra {Ln({k}, {0, . . . , n + 1})}n+1

k=0 , with Ln({k}, {0, . . . , n + 1}) ∩ Ln({j}, {0, . . . , n + 1}) =
Ln−1({k, j}, {0, . . . , n+ 1}), and so on.

Now it follows from (2.2)(i) that T ({k}, {0, . . . , n+ 1}) = {0, 1, . . . , n}, so that

φ{k},{0,... ,n+1} : Ln({k}, {0, . . . , n+ 1})
∼=
−→ Ln({0, . . . , n}).

This, together with (7.9) and §7.12, implies that the Ln-compatible collection {gT,m} for Ln({0, . . . , n})
is already a ∂Ln+1-compatible collection.

Note the lattice polyhedra described above provide a smaller combinatorial model than the mapping
spaces needed in §7.3; however, the discussion of §4.10 carries over to the present situation.

Example 7.14. For n = 1 we have the following picture (where the maps at each vertex or face of
L1({0, 1}) actually map L1(0, 1) ⋉ V1 → Y):

g∅,0 ◦ d0

{0}{0}
g{0},1

p p p p p p p p p p p p p p p p p p p p�
g∅,1

∅
g{1},1

p p p p p p p p p p p p p p p p p p p p-
g∅,0 ◦ d1

{1}

There is of course no first order obstruction to rectification, since we are assuming (7.2) holds up
to homotopy – i.e., that the homotopy filling in g∅,0 ◦ d0

∐

g∅,0 ◦ d1 : S0 ⋉ V1 → Y exists.
For n = 2 we then have the situation depicted in Figure 8, in which the maps on ∂L2({0, 1, 2}) are

determined by precompositions of face maps with those of L1({0, 1, }), as noted. If the corresponding
2-order homotopy operation vanishes – i.e., if the prescribed map on ∂L2 ⋉ Y extends to a map G
on all of L2 ⋉ Y – we obtain a choice of maps gT,2 as indicated, by setting g∅,2 : V2 → Y to be
the restriction of G to the “barycenter” of L2, and so on (cf. §7.12).

Thus Corollary 4.5 of [11] (the analogue of Theorem 3.5) yields the following

Theorem 7.15. Given an morphism φ : π∗X → π∗Y of Π-algebras, there is a map f : X → Y

such that φ = π∗f if and only if the sequence of higher homotopy operations 〈〈0, 1, . . . n〉〉, defined
in §7.13 and taking value in the homotopy groups of Y, vanish for all n ≥ 2.

Remark 7.16. One should think of the above construction as comparing certain higher operations in
π∗X – which necessarily vanish, since the augmented simplicial space V• → X is strict – with
the corresponding operations (under [f•]) in π∗Y, whose vanishing is thus a sufficient condition for
φ to be realizable.

In the particular case where G∗ = H∗ and φ is the identity, we are addressing the question of
how many homotopy types can realize a given Π-algebra. In this case if f : X → Y is a weak
equivalence (so a homotopy equivalence), corresponding higher homotopy operations must be mapped
isomorphically under f∗.

Summary 7.17. Putting together the results of the last two sections, we obtain, for each space X, a
collection of non-vanishing higher homotopy operations, as follows:

1. Choose some fixed free simplicial resolution of Π-algebras A• → π∗X, together with a
fixed realization by an augmented simplicial space V• → X.

2. Consider all possible choices of coherently vanishing sequences of higher homotopy opera-
tions, thus obtaining all possible realizations Y of π∗X (by Proposition 6.11) – each with
a chosen simplicial space W• → Y realizing A• → π∗X(∼= π∗Y).
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Figure 8. The second order operation 〈〈0, 1, 2〉〉

3. For each such W• → Y, try to construct a homotopy equivalence f : Y → X realizing
the given isomorphism π∗Y ∼= π∗X. If this is fails, we add the higher homotopy operation
in πnX which serves as an obstruction to the existence of f to our collection.

Thus we may interpret Theorem 7.15 as saying that the Π-algebra π∗X, together with this collection
of higher operations, constitute a complete set of “algebraic” invariants for the (weak) homotopy type
of X. This set of invariants is dual in some sense to the k-invariants of its Postnikov system.

Example 7.18. Consider the Π-algebra G∗ with Gr = Z/2〈α〉, Gr+1 = Z/2〈α ◦ ηr〉, and
Gr+2 = Z/2〈β〉, where α ◦ ηr ◦ ηr+1 = 0, and all other groups are 0. (Here ηk is the suspended
Hopf map, and we assume r ≥ 4.)

The only higher order operation we need consider in counting realizations of G∗ is 〈〈ηr , 2ιr, α〉〉 ⊆
Gr+2 = Z/2, which by Lemma 5.12 coincides with the Toda bracket 〈ηr , 2ιr, α〉, consisting of a
single element (see (5.11)). Thus G∗ has exactly two realizations in this case, depending on whether
〈〈ηr , 2ιr, α〉〉 = {β} or 〈〈ηr, 2ιr, α〉〉 = {0}.

In the first case the realization X is just the (r+2)-nd stage in the Postnikov tower for Σr−1RP2∪η2α

er+3 (cf. [2, §6.3]). In the second case the realization is the product of K(Z/2,r + 2) and the
(r + 1)-st stage in the Postnikov tower for Σr−1RP2.

8. An application

We now apply the above theory to a specific example (in which only second-order operations will
figure) to prove:

Theorem 8.1. For any prime p, the Π-algebra π∗S
r ⊗ Z/p cannot be realized for r ≥ 4(p− 1) (for

r ≥ 6, if p = 2)

Proof. Since the case p = 2 is contained in [4, Prop 3.3], we may fix a prime p > 2 and let
G∗ = π∗S

r ⊗ Z/p ∈ Π-Alg. We shall show that G∗ cannot even be realized in the stable range
(see §2.11) i ≤ r + 2p − 3 – so (as in the proof of Lemma 6.10) it suffices to produce an ordinary
chain-complex resolution of modules over πs

∗S
0. Such a resolution is given by:

. . .→ π∗S
r+4p−6 ∨ Sr+2p−3 (α1,pι)

−→ π∗S
r+2p−3 α1−→ π∗S

r pι
−→ π∗S

r →→ G∗. (8.2)

But 〈α1, α1, pι〉 = {α2} ⊂ πr+4p−5S
r by [43, p. 179 & Prop 3.4], since p annihilates πr+4p−5S

r,
and thus by Lemma 5.12 also 〈〈α1, α1, pι〉〉 = {α2} 6= 0, so this serves as an obstruction to realizing
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any extension of resolution (8.2) to a full simplicial resolution of G∗. Thus by Proposition 6.11 and
Theorem 3.5, G∗ is not realizable. �

Remark 8.3. Since we only need to use it in the stable range, Proposition 6.11 can be proved very
simply in our case:

Namely, assume that G∗
∼= π∗X, and (as in the proof of Lemma 6.10) it suffices to consider a

∆-simplicial space up to homotopy hW• → X corresponding to (8.2) – in our example Ŵ0 = Sr,

Ŵ1 = Sr, and so on. (All face maps but d0 are 0). If we change the augmentation ε : W0 → X

into a fibration, then d0 : Ŵ1 → W0 (which in our example is the degree p map) factors through
the fiber of ε, so ε◦d0 = ε◦d1 holds exactly. Proceeding in this way we obtain a strict ∆-simplicial
space.

Remark 8.4. It should also be remarked that we are also faced here with the algebraic question posed
at the beginning of section 1 – that is, what Π-algebra structure (if any) we can impose on π∗S

r⊗Z/p.
The problem is that for arbitrary α ∈ πnSk, the composition operation α# : πkS

r → πnSr need
not be a homomorphism, so applying − ⊗ Z/p to the graded abelian group π∗S

r will not always
yield a well-defined operation α# ⊗ Z/p.

To illustrate this problem, consider α ∈ πnSk and β ∈ πkS
r. By [46, XI, (8.10)] we know that

α#(3β) ≡ 3α#(β) + 3(h0(α))#[β, β] modulo 2

where h0(α) ∈ πnS2k−1 denotes the first non-trivial Hopf-Hilton invariant (cf. [46, XI, §8]). Thus if
we denote by β̄ ∈ πkS

r ⊗Z/2 the reduction modulo 2 of β, we see that the composition α#(β̄) is
not well defined unless

(h0(α))#[β, β] ≡ 0 modulo 2 (8.5)

Of course, this relation will not hold in general – for example, if ι4 is a generator of π4S
4, then

[ι4, ι4] = 2ν4 − α4 where ν4, the Hopf map, generates an infinite cyclic summand in π7S
4 and α4

generates a Z/12 summand (cf. [44, IV]). Since ν4 is an element of Hopf invariant 1, h0(ν4) = ι7
(cf. [46, XI, (4.4) & (8.8)]), so (8.5) fails for α = ν4, β = ι4.

This difficulty does not arise if we restrict attention to the stable range (see remark 2.11) –
that is, if we try to find a space X with an isomorphism of truncated Π-algebras {ϕi : πiX →
πiS

r ⊗ Z/p}i=2r−2

i=1
. The proof of Theorem 8.1 shows this is impossible, regardless of how we may

try to define πiS
r ⊗ Z/p for i ≥ 2r − 1. This allows us to avoid the algebraic question as to the

precise meaning (if any) of the expression π∗S
r ⊗ Z/p, while still making sense of Theorem 8.1.

More generally, there is no problem in reducing modulo p any abelian Π-algebra – i.e., one in
which all Whitehead products vanish (cf. [3, §3.2]) – since in this case all composition operations
are homomorphisms. In particular, this will hold for π∗S

2m+1 if p is odd by [46, X, (7.5)].
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(1991) No. 1, pp. 29-46.
[25] S. Mac Lane, “Natural associativity and commutativity”, Rice U. Stud. 49 (1963) No. 4, pp. 28-46.
[26] J.P. May, Simplicial Objects in Algebraic Topology, U. Chicago Press, Chicago-London, 1967.
[27] R.J. Milgram, “Iterated loop spaces”, Ann. Math. (2) 84 (1966) pp. 386-403.
[28] H. Miyazaki, “On realizations of some Whitehead products”, Tôhoku Math. J., Ser. II 12 (1960), pp. 1-30.
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