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0 Introduction

A recurring problem in algebraic topology is the rectification of homotopy-
commutative diagrams: given a diagram F : D → ho T∗ (i.e., a functor
from a small category to the homotopy category of topological spaces), we ask
whether F lifts to F̂ : D→ T∗ , and if so, in how many ways.

Such questions arise naturally in determining if a given H -space is a loop space;
in defining Steenrod operations; in analyzing structured ring spectra; and so on.
Our goal here is to present an obstruction-theoretic approach to an algebraic
version of this question.

0.1 Diagrams of Π-algebras. Recall that a Π-algebra is a graded group
equipped with an action of the primary homotopy operations (Whitehead prod-
ucts and compositions), modeled on the homotopy groups of a space (see §1
below). In [21, 22], Dwyer, Kan, and Stover set out to construct an obstruction
theory for realizing a given Π-algebra Λ as Λ ∼= π∗X , for some space X . The
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program was completed in [10], using methods developed by Dwyer and Kan in
a series of papers which established a general obstruction theory for rectifying
homotopy-commutative diagrams (see [16, 17, 18, 19, 20]). Our goal here is to
extend this program to address the following:

0.2 Diagram realization question. Can a given diagram of Π-algebras
Λ : D→ Π-Alg be realized – that is, lifted to a diagram of spaces Λ̂ : D→ T∗
with π∗ ◦ Λ̂ = Λ?

The answer we provide is in the form an obstruction theory: we inductively
define a sequence of cohomology classes kn ∈ H

n+2(Λ;ΩnΛ), and show that
Λ is realizable precisely when kn = 0 for all n. The case of a single Π-
algebra was treated in [10], and the extension to our context is straightforward.
However, the description there was in terms of moduli spaces, and it seems
worthwhile making obstruction theory explicit. A further generalization of this
theory appears in [9], but it is not easy to extract from it the simpler version
needed here.

0.3 Generalized Π-algebras. In fact, it turns out that this approach may
be carried out somewhat more generally, for any E2 -model category sC (see
Section 3), once we have chosen a set A of homotopy cogroup objects in C to
play the role of the spheres {Sn}∞n=1 in T∗ :

Note that a Π-algebra can be thought of as a product-preserving functor T :
Πop → Set∗ , where Π is the subcategory of finite wedges of spheres in hoT∗ .
Similarly defining ΠA ⊆ ho C for any A as above, we define a ΠA -algebra to
be a product-preserving functor Πop

A → Set∗ .

For example, a map φ : Γ → Λ of ordinary Π-algebras corresponds to a
diagram in (ΠA-Alg)D , where D has two objects and a single non-identity
map 0→ 1. Setting

A := {Sn
Id
→ Sn, ∗ → Sn}n∈N ,

we can think of φ as a generalized ΠA -algebra. The realization question for
diagrams of Π-algebras is thus a special case of the the following:

0.4 General Realization Question. Given a model category C with set
of models A, when is a ΠA -algebra Λ realizable in C? That is, is there an
X ∈ C such that πAX ∼= Λ (where πAX is defined by A 7→ [A,X]C ?)
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On Realizing Diagrams of Π-algebras 3

Again, this is not meant to be a gratuitous exercise in generalization: it allows
us to answer in a systematic way the same question for (diagrams of) localized
or n-connected spaces, spectra, n-types, and so on.

0.5 Notation and conventions. T will denote the category of topological
spaces, and T∗ that of pointed connected topological spaces. By a space we
shall always mean an object in T∗ .

The category of groups is denoted by Gp, and that of pointed sets by Set∗ .
For any category C , grA C denotes the category of A-graded objects over
C (i.e., the category CA of diagrams indexed by the discrete category A),
and sC that of simplicial objects over C . The category of simplical sets will
be denoted by S , that of pointed connected simplicial sets by S∗ , and that
of simplicial groups by G . For any Z ∈ C , write c(Z)• for the constant
simplicial object determined by Z .

The suspension in a model category C will denote the usual pushout of the
inclusions in two cones (i.e. factorizations of the final map as a cofibration
followed by an acyclic fibration), following Quillen [34, I, §2]. This operation
will be indicated by ΣC henceforth.

0.6 Definition The category of simplicial objects X0, . . . ,Xn truncated at
the n-th dimension will be denoted by snC . If C has enough colimits, the
obvious truncation functor trn : sC → snC has a left adjoint ρn : snC → sC ,
and the composite skn := ρn ◦ trn : sC → sC is called the n-skeleton functor.
Thus sknX• is “freely generated” as a simplicial object by X0, . . . ,Xn .

0.7 Definition Let ∆[n] denote the standard n-simplex in S , generated
by σn ∈ ∆[n]n , with boundary ∂∆[n] (the sub-object generated by diσn
for 0 ≤ i ≤ n). Similarly, the kth-horn Λk[n] is the sub-object generated
by diσn for i 6= k . The simplicial n-sphere is Sn := ∆[n]/∂∆[n].

If C has enough colimits, for M ∈ S∗ and X ∈ C , we define X⊗̂M ∈ sC by
(X⊗̂M)n :=

∐

m∈Mn
X , with face and degeneracy maps induced from those of

M . For Y ∈ sC , define Y ⊗M ∈ sC by (Y ⊗M)n :=
∐

m∈Mn
Ym . The

simplicial suspension functor − ⊗ Sn (on sC ) is defined by Y ⊗ Sn :=
Y ⊗ (∆[n]/∂∆[n]).

The main result of this paper is an obstruction theory for dealing with the
general realization question, expressed in the following:
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4 D. Blanc, M.W. Johnson, and J.M. Turner

0.8 Theorem [Theorems 5.6 & 5.7 below] A ΠA -algebra Λ can be realized
in C if and only if an inductively-defined sequence of cohomology classes in
Hn+3

Λ (Λ; Ωn+1Λ) all vanish. The different realizations (if any) are classified
(up to homotopy) by elements of Hn+2

Λ (Λ; Ωn+1Λ).

0.9 Higher homotopy operations.

Higher order homotopy operations appear as obstructions to rectifying homo-
topy commutative diagrams, so, as one might expect, they tie in with our
approach (in more than one way). One of the original motivations for this
paper was to try to understand the intriguing relationship between the dia-
gram realization question, framed in the algebraic language of Π-algebras and
cohomology, and the motivating topological problem of rectifying homotopy
commutative diagrams. A general answer is still beyond us (but see Remark
0.16 below). We shall, however, show how this connection appears in a specific
example, which we will be using as a leitmotif to illustrate various constructions
throughout this paper.

0.10 Definition Given a homotopy commutative diagram:

W
f

//

∗

$$
X

g
//

∗

77Y
h // Z (0.11)

the Toda bracket 〈f, g, h〉 ⊆ [ΣW,Z] is the set of all homotopy classes which
are pushout maps k in the following diagram:

W

PO

i1 //

i2
��

CW

�� G◦Cf

��

CW //

h◦F --

ΣW
k

%%
Z

(0.12)

where G : h ◦ g ∼ ∗ and F : g ◦ f ∼ ∗ are any nullhomotopies.

Note that 〈f, g, h〉 is the obstruction to rectifying the homotopy commutative
diagram (0.11), in the sense that it vanishes (i.e., contains the null class) if
and only if (0.11) can be rectified (that is, realized by a strictly commutative
diagram, with the null maps represented by actual zero maps).
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On Realizing Diagrams of Π-algebras 5

0.13 Example Recall that in the stable range:

πiS
k ∼=































Z〈ι〉 for i = k

(Z/2)〈η〉 for i = k + 1

(Z/4)〈η2〉 for i = k + 2

(Z/24)〈ν〉 for i = k + 3

0 for i = k + 4, k + 5

(0.14)

where η3 = 12ν (cf. [38, 14.1]). Thus, for k ≥ 3, the sequence:

Sk+2
η

// Sk+1 2 // Sk+1
η

// Sk

is an instance of (0.11), with the corresponding Toda bracket:

〈η, 2, η〉 = {ν, ν + η3} = {±ν} ⊆ πk+3S
k (0.15)

(See [38, (5.4)]).

0.16 Remark Given a homotopy-commutative diagram F : D → hoT∗ of
topological spaces (for most reasonable indexing diagrams D), a suitable higher
homotopy operation appears as the obstruction to rectifying F (that is, lifting
it to T∗). However, in many applications all spaces in the diagram (except
perhaps F (∗), where ∗ is terminal in D) are (wedges of) spheres – as in
Example 0.13.

In this case we can replace F by the corresponding diagram of Π-algebras
π∗ ◦F : D→ Π-Alg with no loss of generality (beyond the choice of realization
for π∗F (∗)), and any obstruction to realizing π∗ ◦ F is in particular an
obstruction to rectifying F . Thus Theorem 0.8 provides a way to describe
many higher homotopy operations algebraically, in terms of suitable cohomology
classes. We hope to pursue this point further in a future paper.

0.17 Organization.

In Section 1 we define our objects of study, ΠA -algebras and some related alge-
braic concepts. Section 2 begins a detailed analysis of resolution model category
structures on sC , and their basic properties, giving several important exam-
ples. Section 3 defines E2 -model categories, which are a special kind of resolu-
tion model category provided with additional structures, such as Eilenberg-Mac
Lane objects and Postnikov towers. The motivating examples of diagram cat-
egories of spaces, as well as the main algebraic categories, are all instances of
this. In fact, we show that any diagram category on an E2 -model category is
another, which provides a broad class of examples.
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6 D. Blanc, M.W. Johnson, and J.M. Turner

In Section 4, we define the cohomology theory associated to an E2 -model
category structure and describe some of its basic properties. We illustrate this
for the simplest example of a diagram category, namely an arrow category, and
show how the cohomology of an arrow relates to that of the source and target
objects.

The technical heart of the paper is the obstruction theory for dealing with
the general realization question, which appears in Section 5. As expected, we
induct up the construction of the Postnikov tower of our (putative) simplicial
object expected to yield a realization of Λ. Section 6 provides a more explicit
description of the single map case, illustrating it with a detailed example.

0.18 Acknowledgements We would like to thank the referee for his or her
comments. The third author was supported by NSF grant DMS-0206647 and
a Calvin Research Fellowship (SDG).

1 ΠA-algebras

The functor X 7→ π∗X is corepresented by spheres in the homotopy category
of spaces. If we want to include the group structures, Whitehead products, and
π1 -actions as well, we expand the domain category (choices of the argument
? for [?,X]) to finite wedges of spheres, and require that wedges be sent to
products. This definition extends to other model categories, using the relevant
properties of spheres:

1.1 Definition Let C be a cofibrantly generated pointed model category which
is right proper – that is, the pullback of a weak equivalence along a fibration is a
weak equivalence. A collection of models for C is a set A of cofibrant homotopy
cogroup objects in C , closed under suspension in C (denoted by ΣC ).

1.2 Definition Given a model category C as above and a set A of models
for C , let ΠA denote the full subcategory of ho C consisting of fibrant
and cofibrant objects weakly equivalent to finite coproducts of objects from A
(which become products in Πop

A ). A ΠA -algebra is defined to be a product-
preserving functor Πop

A → Set∗ , and the category of ΠA -algebras (and natural
transformations) will be denoted by ΠA-Alg .

Since the suspension operator in C preserves the class of cofibrant homotopy
cogroup objects, in many of our examples A is generated under ΣC by a much
smaller set. For example, the set of spheres used to define ordinary Π-algebras
is generated by the circle S1 .
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On Realizing Diagrams of Π-algebras 7

1.3 Example The canonical example of a ΠA -algebra is a realizable ΠA -
algebra – that is, one given by [?,X]C for some X ∈ C . This will be referred
to as the homotopy ΠA -algebra of X ; it defines a functor πA : ho C → ΠA-Alg .

1.4 Remark When C = Gp is the category of groups, and A = {Z}, the
category of ΠA -algebras is equivalent to Gp itself. In §2.8(f), we allow for a
range of universal algebras as examples for C . As noted in [34, §II.], there is an
(unique) object D ∈ C such that, for A = {D}, the category ΠA-Alg is
equivalent to C .

On the other hand, in the resulting resolution model category G = sC with
A = {Z}, (under the constant embedding of C in sC ), the category ΠA ,
consisting of all suspensions of Z and coproducts thereof, is just the G -version
of the collection of all wedges of spheres (in T∗ ), so ΠA-Alg is the original
category of Π-algebras (cf. [37, §2]). See §0.13 and §1.21 for examples of such
Π-algebras.

1.5 The Free functor.

There is a forgetful functor O : ΠA-Alg → grA Set∗ to the category of A-
graded pointed sets, with left adjoint F : grA Set∗ → ΠA-Alg . We call F (W )
the free ΠA -algebra generated by W ∈ grA Set∗ . Thus ΠA-Alg is an FP-
sketchable variety of universal algebras as in §2.8(f), sketched by the G-theory
Θ := ΠA . In particular, ΠA-Alg is complete and cocomplete (see [1, §1]).

1.6 Products and coproducts.

We now describe a variety of constructions which will be used at various points
later. Given two ΠA -algebras Λ and Γ over a fixed ΠA -algebra B , we define
their fibered product Λ ×B Γ in ΠA-Alg/B by declaring its value on an
object U ∈ ΠA to be the set-theoretic pullback:

(Λ×B Γ)(U)

��

//
∏

β(Λ(U)×Q

γ B(Uγ) Γ(Uβ))

∼

��
∏

α(Λ(Uα)×Q

γ B(Uγ) Γ(U)) ∼ //
∏

α

∏

β(Λ(Uα)×Q

γ B(Uγ) Γ(Uβ))

(1.7)

whenever U =
∐

α Uα for Uα ∈ ΠA .

Similarily, the coproduct Λ0∐Λ1 of two ΠA -algebras Λ0 and Λ1 may be
characterized explicitly by first setting Λ0∐Λ1 := F (W0∨W1), if Λ0 = F (W0)
and Λ1 = F (W1) are free; and, more generally, as the natural group quotient

(FOΛ0 ∐ FOΛ1)/I
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8 D. Blanc, M.W. Johnson, and J.M. Turner

where I is the smallest ideal containing the kernels Ki of FOΛi → Λi for
i = 0, 1. Note there is also a coequalizer in ΠA-Alg :

(FO)2Λ0 ∐ (FO)2Λ1
−→
−→ (FO)Λ0 ∐ (FO)Λ1 → Λ0 ∐ Λ1

induced by the two adjunction maps FO → Id and Id→ OF .

1.8 Definition An ideal in a ΠA -algebra Λ is a sub-ΠA -algebra I ⊂ Λ, such
that for any U ∈ ΠA , the top arrow in the commuting diagram:

Λ(U)× I(U) //

��

I(U)

��
Λ(U)× Λ(U) // Λ(U)

(1.9)

exists. (Uniqueness follows from injectivity of I(U) → Λ(U)). For example,
the kernel Ker (f) := ∗ ×Γ Λ of a map of ΠA -algebras f : Λ → Γ is an
ideal.

1.10 Definition For a fixed ΠA -algebra Λ, a Λ-ΠA-algebra is a map of ΠA -
algebras i : Λ→ Γ. In particular, given W ∈ grA Set∗ , the free Λ-ΠA -algebra
on W is defined by FΛ(W ) := F (W ) ∐ Λ. Similarly, we can define the Λ-
coproduct Γ1 ∐Λ Γ2 of two Λ-ΠA -algebras Γ1 and Γ2 as a coequalizer
in ΠA-Alg :

Λ −→−→ Γ1 ∐ Γ2 → Γ1 ∐Λ Γ2

where the left pair of maps is defined using the maps to left/right factors
Λ −→−→ Λ ∐ Λ together with the coproduct of the Λ-algebra structure maps
for Γi , i = 1, 2.

Given an ideal I ⊆ Λ, the quotient ΠA -algebra of Λ by I is then defined:
Λ/I := ∗ ∐I Λ.

1.11 Definition If Λ is a ΠA -algebra, define the loop ΠA -algebra ΩΛ by
ΩΛ(U) := Λ(ΣCU), where ΣCU is the suspension of U in C .

1.12 Abelian ΠA -algebras.

An abelian group object M in ΠA-Alg is called an abelian ΠA -algebra –
i.e., if HomΠA-Alg(B,M) has a natural abelian group structure for any B .
Note that the structure is induced by the underlying A-graded group structure
in ΠA-Alg , so in particular OM is an A-graded abelian group.
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On Realizing Diagrams of Π-algebras 9

Denote by Ab(ΠA-Alg) the subcategory of abelian ΠA -algebras. The in-
clusion functor Ab(ΠA-Alg) → ΠA-Alg has a left adjoint Ab, called the
abelianization functor, defined for Λ = F (W ) by:

(Ab(F (W )))(A) := ⊕WA
Ab(πA(A)) .

For general Λ, define Ab(Λ) to be the coequalizer in ΠA-Alg :

Ab((FO)2Λ) −→−→ Ab((FO)Λ) → Ab(Λ).

Note that the composite Ab ◦ F : grA Set∗ → Ab(ΠA-Alg) is left adjoint
to the forgetful functor, so it is the free abelian ΠA -algebra functor. From the
adjointness we get a natural abelianization map ρ : Λ→ Ab(Λ) and we define
the ideal W (Λ) ⊆ Λ as Ker (ρ).

Then W (Λ) may be viewed as the ideal of primary operations acting on
elements of Λ, and we have: Λ/W (Λ) ∼= Ab(Λ).

1.13 Modules.

For a fixed ΠA -algebra Λ, a module over Λ is an abelian group object p :
M → Λ in the over-category ΠA-Alg/Λ. This means that it is endowed with
maps

m : M ×Λ M → M and i : M →M

in ΠA-Alg/Λ, as well as a section s : Λ → M for p (which represents the
unit element in the abelian group HomΛ(Λ,M)). The category of modules
over Λ is denoted by Λ-Mod.

Moreover, given a map of ΠA -algebras Λ → Γ, the associated restriction
functor Γ-Mod→ Λ-Mod has a left adjoint, which we denote by (−) ∗Λ Γ.

Note that K := Ker (p) is itself an abelian ΠA -algebra, as we can see by
mapping 0 : X → Λ to p : M → Λ in ΠA-Alg/Λ for any ΠA -algebra X ,
so we have a split exact sequence of ΠA -algebras

0 // K //M // Λ
||

// 0 , (1.14)

and in particular OM = OΛ ⋉OK is a semi-direct product of groups.

However, K is not just an abelian ΠA -algebra; it also has an action of Λ on
it, determined by an action map

φf : Λ(U) ⋉K(U)→ K(V )

for each f : V → U in ΠA , , subject to the requirements that:

(1) The composite K(U)→ Λ(U)×K(U)
φf
−→ K(V ) is equal to K(f);
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(2) For g : W → V in ΠA , the action map φf◦g equals the composite

Λ(U)×K(U)
∆×Id
−→ Λ(U)×(Λ(U)×K(U))

Λ(f)×φf
−→ Λ(V )×K(V )

φg
−→ K(W )

We sometimes say that K itself, endowed with this action of Λ, is a Λ-module
(which corresponds to the traditional description of an R-module, for a ring
R), and write M = Λ ⋉K .

Note that Ab ◦ FΛ
∼= Λ ⋉ (Ab ◦ F ), so Ab ◦ FΛ : grA Set∗ → Λ-Mod can be

viewed as the free Λ-module functor.

1.15 Remark When ΠA-Alg = Π-Alg , a Λ-module K is simply an abelian
Π-algebra, equipped with mappings 〈〈 , 〉〉 : Λp×Kq → Kp+q , commuting with
compositions, such that for each q > 0, α ◦ x := 〈〈α, x〉〉 − x defines an
action of Λ0 on Kq , satisfying 〈b, a〉 ◦ (a ◦ x) = −〈a, b〉 ◦ x− 〈〈a, x〉〉, while
for p > 0, 〈〈 , 〉〉 : Λp ×Kq → Kp+q is bilinear, and satisfies:

〈〈α, 〈〈β, x〉〉〉〉 = 〈〈〈α, β〉, x〉〉+ (−1)pq〈〈β, 〈〈α, x〉〉〉〉 .

1.16 Example For a ΠA -algebra Λ, define the ΠA -algebra Ω+Λ by

Ω+Λ(A) := Λ
(

(ΣCA)
∨

A
)

.

There is then a split exact sequence:

∗ // ΩΛ // Ω+Λ // Λ
xx

// ∗ , (1.17)

which gives Ω+Λ the structure of a module over Λ.

1.18 Example The fold map ∇ : Λ ∐ Λ → Λ possesses two sections. Let
K := Ker (∇). Define the Kähler differentials of Λ by ΩΛ := Ab(K). Then
the split exact sequence:

∗ // ΩΛ
// ΩΛ ∐K (Λ∐ Λ) // Λ

tt
// ∗ (1.19)

gives ΩΛ the structure of a Λ-module.

We will see in §4.6 that the Kähler differentials are closely related to our coho-
mology theories.

Our key examples of modules come in Proposition 2.14, where we will see that
for n > 0, the natural homotopy groups π♮n Y• (see §1.3) and their loop
algebras are modules over π♮0 Y• .
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1.20 Remark We have in view two types of categories for C here: one type
are “algebraic” categories, such as Gp and ΠA-Alg , in which the model
category structures are trivial (in the sense that the only weak equivalences are
isomorphisms), so the associated realization question is also trivial.

The other type is “topological” – for example, G or T∗ . Here the asso-
ciated algebraic invariants, such as homotopy groups, give rise to meaningful
realization questions; and the associated simplicial categories possess nontrivial
resolution model category structures, suited to addressing such questions.

However, as we shall see, in trying to construct a “topological” object realizing
a given “algebraic” invariant, we will need to apply the constructions provided
in this paper to objects in both types of category, which is why we set up our
machinery in a form suitable for both contexts.

1.21 A space and its Π-algebra. We now give an example of a Π-algebra
which will be used later to illustrate the general theory.

For k ≥ n, let Π-Algkn denote the category of k -truncated and (n − 1)-
connected Π-algebras Λ, with Λi = 0 for i < n or i > k . Note that
in the stable range – that is, if k < 2n – this is an abelian category.
By restricting attention to (n − 1)-connected spaces, and truncating higher
homotopy groups, we may (and shall) assume that trk π∗X takes values in
Π-Algkn . More formally, we may work in the context of §2.18(c)-(d) below.

From now on, we take n ≥ 4 with k := n + 2, and let Sr := π∗S
r and

Srx := trn+2 Sr denote the free monogenic algebra (in Π-Alg or Π-Algn+2
n )

on a generator x in degree r .

For n ≥ 4, let X := Sn ∪2 en+1 = Σn−1RP 2 . Then:

πiX ∼=























(Z/2)〈α〉 for i = n

(Z/2)〈α ◦ η〉 for i = n+ 1

(Z/4)〈β〉 for i = n+ 2

(Z/2)〈α ◦ ν〉 ⊕ (Z/2)〈β ◦ η〉 for i = n+ 3

with 2β = α ◦ η2 . Note that the inclusion ϕ : trn+2 π∗X→ Sn−1 , defined by
ϕ(α) = η (and ϕ(β) = 6ν , necessarily), is a morphism of (n+ 2)-truncated
Π-algebras (in fact, even of (n+ 3)-truncated Π-algebras, if n ≥ 5).

1.22 Remark There is one other non-trivial map of (truncated) Π-algebras
ψ : π∗X → Sn−1 , defined by ϕ(α) = 0 and ϕ(β) = η3 = 12ν . This
is induced by a map of spaces – namely, the composite of the pinch map
p : X = Sn ∪2 en+1 → Sn+1 with η2 : Sn+1 → Sn−1 .
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12 D. Blanc, M.W. Johnson, and J.M. Turner

2 Resolution model categories

In order to study the realization questions mentioned in the Introduction, we
need a suitable resolution model category structure on the associated simplicial
model category sC , originally defined by Dwyer, Kan and Stover in [21], and
later extended by Bousfield in [12]. A variant, called a spiral model category,
is defined by Baues in [2, Ch. D, §2]. We begin with some definitions:

2.1 Definition Let (−)⊗ (−) : sC × sSet∗ → sC be the action of simplicial
sets on the simplicial category sC (see 0.7 or [34, II, §1]).

For any finite simplicial set K , the matching functor MK : sC → C is
characterized as a right adjoint by the relation:

HomsC(c(Z)• ⊗K,X•) ∼= HomC(Z,MKX•).

In particular, MnX• := M∂∆[n]X• := lim[n]→[k]Xk . Dually, the latching
functor Ln : sC → C is defined by:

LnX• := colim[k]→[n]Xk.

Similarly, we may characterize CK : sC → C by means of a right adjunction:

HomsC(c(Z)• ∧K,X•) ∼= HomC(Z,CKX•) ,

where Y• ∧K is the pushout in sC :

Y• ⊗ ∗ //

��

∗

��
(Y• ⊗ ∗)⊗K // Y• ∧K .

(2.2)

In particular, CnX• := CMX• for M := ∆[n]/Λ0[n] and ZnX• := CSnX•

(see §0.7).

2.3 Remark There is a natural sequence:

Zn+1X•
in+1
→ Cn+1X•

d0→ ZnX•
in→ CnX• ,

where the composite ind0 is induced by the map δ0 : ∆[n]/Λ0[n] →
∆[n+ 1]/Λ0[n+ 1].

Recall that we assume C to be a right proper cofibrantly generated pointed
model category, and A a set of models (i.e., cofibrant homotopy cogroup ob-
jects) in C .
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2.4 Definition A map p : X → Y in ho C is called A-epic if p∗ :
[A,X]C → [A,Y ]C is surjective for each A ∈ A. An object W ∈ ho C is
called A-projective if p∗ : [W,X]C → [W,Y ]C is surjective for each A-epic
map p : X → Y in ho C . Finally, an object (respectively, map) of C is
called A-projective (resp., A-epic) if it is so in ho C .

2.5 Definition (a) a map f : X• → Y• in sC is a Reedy fibration if the
induced map Xn → Yn ×MnY• MnX• is a fibration in C for all n ≥ 0;

(b) a map g in C is an A-projective cofibration if g is a cofibration in C , and
has the left lifting property with respect to the class of fibrations in C
which are, in addition, A-epic.

2.6 The resolution model category. Given C and A as above, a map
f : X• → Y• in sC is:

(a) an A-weak equivalence if f∗ : [A,X•]C → [A,Y•]C is a weak equivalence
of simplicial groups for all A ∈ A;

(b) an A-fibration if f is a Reedy fibration and f∗ : [A,X•]C → [A,Y•]C is
a fibration of simplicial groups for all A ∈ A;

(c) an A-cofibration if the induced map Xn∐LnX•
LnY• → Yn (§2.1) is an

A-projective cofibration in C for all n ≥ 0.

2.7 Theorem If C is a pointed right proper simplicial model category with a
set of models A, then sC , with the A-weak equivalences, A-fibrations, and
A-cofibrations, and the external simplicial category structure (§0.7 and [34, II,
§1]), is a right proper simplicial model category, called the A-resolution model
category, and denoted by sCA .

Proof See [30, Theorem 2.2].

2.8 Example If C = T∗ and A := {Sn}∞n=1 , (generated by S1 ), the re-
sulting A-resolution model category structure on the category sT∗ of pointed
simplicial spaces is the original “E2 -model category” of [21].

In constructing cofibrant replacements for objects in an A-resolution model
category, we shall have occasion to use the following:

2.9 Definition A CW complex is an object X• ∈ sCA such that

• For each n ≥ 0, Xn
∼= X̄n ∐ LnX• for some X̄n ∈ ObjΠA ;
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• di|X̄n
= ∗ for all i ≥ 1.

The attaching map d0|X̄n
: X̄n → Ln−1X• is denoted by d̄0 . The collection

{X̄n}
∞
n=0 is called a CW basis for X• . It is straightforward to check that a

CW complex in sCA is A-cofibrant.

2.10 Definition The n-th natural homotopy group of X• ∈ sC with coef-
ficients in A ∈ A is defined to be π♮n(X•, A) := π0 mapsC(A⊗̂Sn, Y•) (cf.
§0.7), where X• → Y• is a Reedy fibrant replacement of X• . It can be
equivalently defined by the exact sequence:

[A,Cn+1Y•]C
(d0)∗
→ [A,ZnY•]C → π♮n(X•, A)→ 0.

(see [32, 17.3]). Denote the A-graded group (π♮n(X•, A))A∈A by

π♮n(X•,A) = π♮nX• .

2.11 Remark Since A ∈ C is a homotopy cogroup object, whenever X• ∈ sC
is Reedy fibrant we may identify [A,CnX•]C with Cn[A,X•]C (the n-chains
group (§2.1) for the simplicial group [A,X•]C ).

2.12 Definition By applying the functors [A,−]C for A ∈ A to a simplicial
object X• ∈ sC , we obtain a simplicial group [A,X•]C , since our models
are homotopy cogroup objects by assumption. This leads to another kind of
homotopy group for X• , namely: πn(X•, A) := πn[A,X•]C . Write πnπAX•

for the A-graded group (πn(X•, A))A∈A .

As shown in [22, 8.1], and more generally in [24, 3.4], the two types of A-graded
homotopy groups are related by a spiral exact sequence:

. . . → Ωπ♮n−1(X•, A)
sn−→ π♮n(X•, A)

hn−→ πnπAX•
∂n−→

Ωπ♮n−2(X•, A) → . . . → π♮1(X•, A) → π1πAX•

(2.13)

where Ωπ♮n(X•, A) := π♮n(X•,ΣCA), for ΣCA the suspension of A in C .
In fact:

2.14 Proposition (Cf. [10, Prop. 7.13]) For any simplicial object X• ∈ sCA ,
there are natural actions of π♮0(X•,A) ∼= π0πAX• on π♮n(X•,A) and
Ωπ♮n(X•,A), making the spiral exact sequence (2.13) a long exact sequence
of modules over π♮0(X•,A).
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Proof Because Sn = ∆[n]/∂∆[n] has two non-degenerate simplices, if we

set Â⊗ Sn := (A⊗̂∆[n])/(A⊗̂ ∂∆[n]), the map of simplicial sets Sn → ∆[0]
has a section, which induces:

Â⊗ Sn
i // A⊗̂Sn p

// A⊗̂∆[0] ,

s
uu

and thus a natural splitting:

π♮n(X•, A) p#
// π♮0(X•, A)

s#
tt

for each X• ∈ sC and A ∈ A. Using the usual homotopy cogroup structure
on Sn (over ∆[0]), we see that π♮nX• is actually a group object over
π♮0X• . Furthermore, it is abelian because of the underlying group structure
coming from the fact that each A ∈ A is a homotopy cogroup object itself
(compare [39, III, Thm. (5.21)]).

2.15 Remark Ker (p#) ∼= [Â⊗ Sn,X•] is actually the more traditional n-th
homotopy group of X• (over the base-point component).

2.16 Algebraic categories. It will be helpful to include the following
“algebraic” examples (cf. §1.20) among our candidates for C :

(a) Let C = ΠA-Alg and B = {πA(A)}A∈A . Then C has the trivial model
category structure, where only isomorphisms are weak equivalences and
all maps are both cofibrations and fibrations (notice this implies the sus-
pension functor ΣC is the constant functor on ∗). Recall that the
objects of the form A(A, ?) constitute a strong generating set for
grA Set∗ by the Yoneda lemma, and FA(A, ?) = πA(A) for the free
functor F defined in §1.5. Hence, the resolution model category struc-
ture on sΠA-Alg with this B is identical to the usual model category
structure on sC inherited from the category of simplicial (A-graded)
groups.

(b) More generally, let C = Θ-Alg be any FP-sketchable variety of (graded)
universal algebras, corepresented by an FP-theory Θ (cf. [1, §1] or [11,
§1]): for example, the categories of ΠA -algebras (corepresented by Θ =
Πop

A ), Lie algebras, graded commutative algebras, and so on. We assume
that Θ is a G-theory as in [11, §2], so that each Θ-algebra has an un-
derlying (graded) group structure. In this case we can endow C with the
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trivial model category structure, take A to be the set of all monogenic
free Θ-algebras, and obtain the usual model category structure on sC
(cf. [34, II, §4]).

(c) As an application of example (b) above, if C = Gp and A = {Z},
then sCA (where sC = G ) also provides a resolution model category
for the homotopy theory of pointed connected topological spaces (cf. [34,
II, §3]).

2.17 Remark For many purposes it is more convenient to work with G than
with T∗ . When we do so, we use the simplicial group spheres Sn = FSn−1 ∈ G
for n ≥ 1 (and S0 = GS0 ) as our models A. (For definitions of the various
loop group constructions on simplicial sets, see, e.g., [27, V.6].) Note that D-
diagrams of simplicial spaces are then replaced by D-diagrams of bisimplicial
groups, which are just (more complicated) diagrams of groups, so that many
constructions may be performed entrywise in Gp.

2.18 Topological categories. It is also useful to include a number of
variants of the usual category of pointed topological spaces:

(a) If C = T∗ in the rational model structure and A := {SnQ}
∞
n=2 (gener-

ated by S2
Q ) or C = T∗ in the p-local model structure and {Sn(p)}

∞
n=2 ,

then we have resolution model structures on sT∗ for rational or p-local
simply-connected homotopy theory.

(b) If C = Spec is an appropriate category of spectra (cf. [33]), and A :=
{Sn}∞n=−∞ are all sphere spectra, we have a resolution model category
structure on sSpec for simplicial spectra (see [24, 25, 26] for the details
on this and other categories of structured ring spectra).

(c) Take C to be one of the model categories for n-types, such as the n-cat
groups of [31] or the crossed n-cubes of [23] and A := {Sk}nk=1 , which
gives a resolution model category structure on sC for n-types of spaces.
An alternative is to use the (left) Bousfield localization model category
structure on pointed spaces (see [28, §§2.1,3.3]) for the map ∗ → Sn+1

(see [15, §1.E.1]).

(d) Take C = T∗ and A = {Sn}∞n=k (generated by Sk ); then we have the
resolution model structure on sT∗ for the homotopy theory of “(k−1)-
connected types” for spaces – that is, the right Bousfield localization
model of [28, §3.3] (see [15, §2.D.2.6]).
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2.19 Diagram categories. The motivating type of example for this paper
was the category T D

∗ of D-diagrams of spaces, where D is a small category.

Recall that for any object X ∈ C and d ∈ Obj D, the free D-diagram
F (X, d) is defined by setting the e-entry equal to F (X, d)e :=

∐

HomD(d,e) X ,
with maps induced by the identity on each factor. Then for any collection of
models A for C , the induced collection of models B for CD consists of all
free D-diagrams F (A, d) for d ∈ ObjD and A ∈ A.

Note that the model category structure on sT D
∗ given by Theorem 2.7 using

B is identical to the structure induced from that on sT∗ associated to A
(and Theorem 2.7) as in [28, §11.6]. Furthermore, the category ΠA-Alg is
equivalent to the category of D-diagrams of (ordinary) Π-algebras in these
cases.

2.20 Notation For any n ∈ N, let [n] denote the category with n + 1
objects 0, 1, . . . , n and n composable maps between them. For example,
D = [1] has two objects and a single non-identity morphism 0→ 1.

2.21 Examples (a) If C = T∗ and D = [1], then T D
∗ is the category of

maps of spaces, and for any space X , the free object F (X, 0) = X
Id
→ X ,

while F (X, 1) = ∗ → X . Hence in this case A := {∗ → Sn, Sn
Id
→

Sn}∞n=1 – that is, A is generated by the pair consisting of ∗ → S1

and S1 Id
→ S1 – and ΠA-Alg is the category of morphisms between

Π-algebras.

(b) Suppose C = T∗ and D = [2] (with a single composable pair
of nonidentity maps, denoted 0 → 1 → 2). Then for any space

X , F (X, 0) = X
Id
→ X

Id
→ X , F (X, 1) = ∗ → X

Id
→ X , and

F (X, 2) = ∗ → ∗ → X . Thus A is generated by:

∗ → ∗ → S1, ∗ → S1 Id
→ S1, and S1 Id

→ S1 Id
→ S1.

while ΠA-Alg is the category of composable pairs of maps between
Π-algebras.

3 E
2-model categories

There are a number of familiar constructions for topological spaces which relate
to Postnikov towers and are useful to have in a resolution model category sCA ,
although they need not exist in general. We shall show, however, that these
constructions are available in all of the examples we wish to consider.
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3.1 Definition A Postnikov tower functor applied to an object X• in a
resolution model category sCA is a functorial commuting diagram:

X•

r(n+1)

$$I
I

I

I

I

I

I

I

I

r(n)

%%
r(n−1)

%%
. . . // Pn+1X•

p(n+1)
// PnX•

p(n)
// Pn−1X•

p(n−1)
// . . . P0X•

(3.2)

of A-fibrations p(n) and maps r(n) which induce isomorphisms:

π♮k(PnX•;A) ∼=

{

π♮k(X•;A) 0 ≤ k ≤ n;

0 otherwise.

3.3 Definition If sCA is a resolution model category, a classifying object
BΛ = BsCΛ for a ΠA -algebra Λ is any fibrant B• ∈ sC such that B• ≃ P0B•

and π♮0B•
∼= Λ.

3.4 Definition Given an abelian ΠA -algebra M and an integer n ≥ 1, an
n-dimensional M -Eilenberg-Mac Lane object E(M,n) = EsC(M,n) is any
fibrant E• ∈ sC such that π♮nE•

∼= M and π♮k E• = 0 for k 6= n.

3.5 Definition Given a ΠA -algebra Λ, a module M over Λ, and an integer
n ≥ 1, an n-dimensional extended M -Eilenberg-Mac Lane object EΛ(M,n) =
EΛ
sC(M,n) is any fibrant homotopy abelian group object E• ∈ sC/BΛ sat-

isfying:

π♮k E•
∼=











Λ for k = 0

M (as a module over Λ) for k = n

0 otherwise.

(3.6)

3.7 Remark The fact that E• = EΛ(M,n) is a homotopy abelian group
object in sC/BΛ implies that [BΛ, E•]sC/BΛ has a natural abelian group
structure, so in particular a unit element. Thus E• comes equipped with a
designated homotopy section s for r(0) : E• → P0E• ≃ BΛ.

From the spiral exact sequence (2.13) we readily calculate:

πkπAE
Λ(M,n) ∼=































Λ for k = 0

ΩΛ for k = 2

M for k = n,

ΩM for k = n+ 2,

0 otherwise,

(3.8)
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with the obvious variant when n = 2 (i.e., π2πAE
Λ(M, 2) ∼= ΩΛ×M ).

3.9 Remark Note that if we apply the loop functor in the category sC/BΛ
to EΛ(M,n) – i.e., take the pullback of BΛ← EΛ(M,n)→ BΛ (cf. [34,
I, §2]) – we obtain EΛ(M,n − 1).

3.10 Definition Given a Postnikov tower functor as in §3.1, an n-th k-
invariant square (with respect to A) is a functor that assigns to each X• ∈ sC
a homotopy pull-back square:

Pn+1X•

hPB

p(n+1)
//

��

PnX•

kn

��

BΛ s
// EΛ(M,n + 2)

(3.11)

for Λ := π♮0X• and M := π♮n+1X• . The map kn : PnX• → EΛ(M,n+ 2)
is called the n-th k -invariant for X• .

3.12 Definition A resolution model category sCA as in §2.6 is called an
E2 -model category if:

Ax 1. sC has functorial Postnikov towers.

Ax 2. For every ΠA -algebra Λ and Λ-module M the classifying object BΛ
and the n-dimensional extended Eilenberg-Mac Lane object EΛ(M,n)
exist, for each n ≥ 1. In addition we assume the latter determines a
functor:

EΛ(−, n) : Λ-Mod→ Ab(ho(sC)),

both constructions are functorial in Λ, and are unique up to homotopy.

Ax 3. sC has k -invariant squares (with respect to A) for each n ≥ 0.

Ax 4. There is a functor J : sC → C such that, for Λ ∈ ΠA-Alg and
X• ∈ sC , if πAX•

∼
→ BsΠA-AlgΛ is a weak equivalence in sΠA-Alg ,

then there is an isomorphism:

[A, JX•]C
∼=
→ HomΠA-Alg(πAA,Λ) , (3.13)

natural in Λ and A ∈ A.

3.14 Remarks
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• Ax 1-3 imply that sCA is a spherical model category in the sense of [9,
§2], and so in particular is stratified in the sense of [36]. These axioms
are also satisfied, for example, by the category T∗ , which is not itself a
resolution model category (but see §2.17).

• We may assume that our extended Eilenberg-Mac Lane objects are strict
abelian group objects in sC/BΛ, by functoriality, since the group struc-
ture morphisms for a Λ-module M are maps of modules.

• Not all resolution model categories have the additional structure of a
spherical model category (see §3.21).

• The point of Ax 4 is that any X• ∈ sC/BΛ with πAX• ≃ BsΠA-AlgΛ
in sΠA-Alg yields a realization JX• for Λ (see Theorem 5.6). See
[14] for a way to geometrically handle cases where Ax 4 does not hold.

• The statement of Ax 4 may appear somewhat convoluted, because it is
intended to apply to two rather different contexts: see Theorems 3.15
and 3.19 below. Theorem 3.15 deals with the case of universal algebras
(hence the special case of ΠA -algebras), while Theorem 3.16 treats the
general extension to diagram categories, thereby reducing our motivating
example of diagrams of spaces to a consequence of Theorem 3.19, which
deals with sT∗ with several standard model structures on T∗ .

3.15 Theorem Let C = Θ-Alg be an FP-sketchable variety of (graded)
universal algebras, corepresented by a G-theory Θ, with trivial model category
structure, and let A consist of monogenic free Θ-algebras, as in §2.8(f). Then
sCA is an E2 -model category.

Proof We use the constructions described in [10] for the case C = Π-Alg :

For Ax 1: Follow [17, §1.2]:

Given Y• ∈ sC and n ≥ 0, first define Y
(n)
• ∈ sC by:

Y
(n)
k =

{

Yk 0 ≤ k ≤ n+ 1;

Mk(Y
(n)
• ) n+ 2 ≤ k ,

with simplicial maps determined from trn+1 Y• and δk : Mk(Y
(n)
• ) → Y

(n)
k ,

along with the obvious maps p(n) : Y
(n)
• → Y

(n−1)
• and r(n) : Y• → Y

(n)
• .

The Postnikov tower for X• ∈ sC is then defined by setting PnX• := Y
(n)
• ,

where X• → Y• is a (functorial) A-fibrant replacement in sCA .
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For Ax 2: Follow [10, Prop. 2.2], taking BΛ to be the constant simplicial
object on Λ, E(M,n) to be the iterated Eilenberg-Mac Lane construction
W̄ on BM (cf. [32, §20]), and EΛ(M,n) to be the semi-direct product
BΛ ⋉ E(M,n) (§1.13).

More explicitly, let W be a free Θ-algebra equipped with a surjection φ : W →
M . Define a simplicial Θ-algebra B• by setting skn−1B• := skn−1BΛ
and En ≃ W ∐ BΛn , with W ⊆ ZnB• . A straightforward calculation
shows CnBΛ = Zn−1BΛ = 0, so ZnB• = CnB• is the cokernel BΛn ⋉W
of BΛn → En = W ∐ BΛn . Note that BΛ0 embeds in BΛn as a
free retract by sn−1 · · · s0 , so BΛn ∼= BΛ0 ∐ L

′ for some Θ-algebra L′ ,
where L′ ⋉ W is a Θ-algebra ideal in ZnB• , with quotient Θ-algebra
ZnB•/(L

′ ⋉ W ) ∼= K0 ⋉ W . This is by definition the free BΛ0 -algebra
generated by W , and thus φ : W → M extends to a map of BΛ0 -algebras
φ̂ : BΛ0 ⋉ W → M ; precomposing with the projection ZnB• → BΛ0 ⋉ W
defines φ̃ : ZnB• →M .

Let d̄0 : B̄n+1 → BnB• := Ker φ̃ be any surjection from a free Θ-algebra,
let BΛn+1 := B̄n+1∐Ln+1B• , and let B• := Pn skn+1B• . Then πnB•

∼= M
(as a Λ-module), and πiB• = 0 for i 6= 0, n. The section is induced by the
inclusion skn+1BΛ →֒ skn+1B• .

For Ax 3: Follow [10, §5-6].

Given X• ∈ sC/BΛ and n ≥ 0, take the pushout:

Pn+1X•
p(n+1)

//

�� PO

PnX•

f

��
BΛ g

// Y• ,

and apply the functor Pn+2 to the resulting diagram. The connectivity argu-
ment of [10, Lemma 5.11] applies here, too, so the result is actually a homotopy
pull-back square, Pn+2Y• is an extended Eilenberg-Mac Lane object (with
section Pn+2g), and Pn+2f is the k -invariant. The construction is evidently
natural, since we have natural Postnikov systems.

For Ax 4: Use π0 : sC → C as the functor J . Then the trivial model
category structure on C gives the first identity

[A, JBΛ]C = HomC(A,π0BΛ) ∼= π0BΛ(A)
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and the second isomorphism comes from the fact that A is monogenic free,
while π0BΛ ∼= π♮0(BΛ) ∼= Λ completes the claim.

3.16 Theorem Let sCA be an E2 -model category, D a small category, and
B the induced collection of models in CD (see §2.19); then (sCD)B is an
E2 -model category.

Proof We use the induced collection of models B (§2.19) to extend the E2 -
model structure to sCD . The underlying simplicial model category structure
on CD is that of [28, §11.6], with weak equivalences and fibrations defined
objectwise; thus evaluation at d ∈ Obj D preserves fibrations and weak
equivalences and forms part of a strong Quillen pair, with left adjoint F (−, d)
(the free diagram functor at d). See [28, 11.5.26].

Hence, for A ∈ A, d ∈ D, and X ∈ sCD , we have a natural isomorphism:

[F (A, d),X]sCD
∼= [A,X(d)]sC . (3.17)

In particular, πB(−, F (A, d)) is the same as πA(−, A) after pre-composition
with evaluation at d. By the spiral exact sequence (2.13), the same holds for
π♮∗(−,B).

The axioms of Definition 3.12 can therefore be verified by applying the various
constructions of sC at each d in D, and checking that the requisite properties
are satisfied in sCD , once they hold objectwise:

For Ax 1: Since sC has functorial Postnikov towers, sCD possesses such
towers, with (PnX•)(d) = Pn(X•(d)).

For Ax 2: Given a ΠB -algebra Λ (that is, a functor Λ : D → ΠA-Alg)
and a module M over Λ, for each n ≥ 1 we define the classifying object
BΛ and extended M -Eilenberg-Mac Lane object EΛ(M,n) objectwise, by
applying the appropriate functors in sC to the diagrams Λ and M . This is
evidently functorial, unique up to homotopy, and satisfies (3.6). Note that in
order for EΛ(M,n) to be a homotopy abelian group object in sCD/BΛ, we
must produce structure maps:

µ : EΛ(M,n)×BΛE
Λ(M,n) → EΛ(M,n), ι : EΛ(M,n) → EΛ(M,n) (3.18)

(over BΛ), satisfying the appropriate identities. (The unit element is rep-
resented by the section s : BΛ → EΛ(M,n).) However, since M is itself an
abelian group object in ΠA-Alg/Λ, it is equipped in turn with maps

m : M ×Λ M → M and i : M →M
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in ΠA-Alg/Λ, which are themselves maps of Λ-modules, and these induce
the maps of (3.18) by functoriality. Note that the functors EΛ(−, n) in sC
preserve products of modules (over Λ) because of the homotopy uniqueness and
functoriality.

For Ax 3: Since Postnikov towers and extended Eilenberg-MacLane objects,
as well as fibrations and weak equivalences are defined object-wise for d ∈
ObjD, defining k -invariants in sCD/BΛ objectwise will give homotopy
pullback squares that are k -invariant squares.

For Ax 4: Suppose we are given a functor J : sC → C with the requisite
properties. Define JD : sCD → CD by (JDX•)(d) = J(X•(d)). Let
πAX•

∼
→ Bs(ΠA-Alg)DΛ be a weak equivalence. Now we have two natural

isomorphisms:

[F (A, d), JD(X•)]CD
∼= [A, J(X•(d))]C

and

[πBF (A, d),Λ](ΠA -Alg)D
∼= [πAA,Λ(d)]ΠA-Alg .

From Ax 4, applied to πAX•(d)
∼
→ BsΠA-AlgΛ(d) in sΠA-Alg , we have the

natural isomorphism:

[A, J(X•(d))]C
∼=
→ [πAA,Λ(d)]ΠA-Alg .

Combining all three isomorphisms gives the required natural isomorphism:

[F (A, d), JD(X•)]CD

∼=
→ [πBF (A, d),Λ](ΠA-Alg)D .

3.19 Theorem The category sT∗ of simplicial pointed connected topological
spaces (with the spheres (Sn)∞n=1 as models), and the four examples of §2.18,
are all E2 -model categories.

Proof The case C = T∗ was treated in [10], and all five cases may be treated
similarly:

For Ax 1: As in the proof of Theorem 3.15.

For Ax 2: Follow [10, 7.7].

More explicitly, given A ∈ A, for each n ≥ 1 recall π♮n(X•,A) ∼=
[A⊗̂Sn,X•]sC , where A⊗̂Sn denotes c(A)• ⊗ Sn ∈ sC (see also 0.7).
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For the existence of BΛ, let U, V ∈ ΠA be such that πAU → Λ is a free
cover of Λ, and πAV → πAU covers minimally the corresponding relations.
For each summand A in V , attach a copy of A⊗̂Sn to U . Applying P0 to
the resulting object of sC yields a classifying object BΛ as required.

For the Eilenberg-Mac Lane objects, again we follow [10, 7.7]:

Let W be the model for BΛ constructed as above. Let U, V ∈ ΠA be
such that πAV → πAU → M is a presentation for M . Attach a copy of
A⊗̂Sn for each summand A of U to form an object Z ∈ sC , then attach
a copy of A⊗̂Sn+1 to Z for each A-coproduct summand of V to form Z ′ .
Applying Pn to Z ′ yields the desired EΛ(M,n). The existence of the
section σ : BΛ→ EΛ(M,n) follows from [10, Prop. 4.9].

For Ax 3: Again follow [10, §5-7], with the same construction as in the proof
of Ax 3 for Theorem 3.15.

For Ax 4: For the standard model of C = T∗ , J will be the realization
or diagonal functor ‖ − ‖ : sC → C (left adjoint to the constant functor
c(−)• : C → sC ). This extends entrywise to diagrams of simplicial spaces, as
does the natural spectral sequence of [35] (see also [13, Thm B.5]), yielding an
(N×A)-graded spectral sequence with:

E2
s,A = πs(X•,A)⇒ πA‖X•‖ . (3.20)

Then (3.13) will be the edge homomorphism of this spectral sequence, which
collapses at the E2 -term if πAX• ≃ πABΛ.

We can extend this spectral sequence argument to the other examples of §2.18
as follows:

(i) For §2.18 (a): the exactness of −⊗R for R ⊆ Q allows us to obtain
a localized Quillen spectral sequence to verify Ax 4 for either rational or
p-local spaces.

(ii) For §2.18 (b): the spectral sequence for the realization of a simplicial
spectrum is analyzed in [24, §6], showing that Ax 4 is satisfied for sSpec
(as well as for some structured versions of spectra). For the remaining
axioms see [25, 26].

(iii) For §2.18 (c): to verify Ax 4, apply the Quillen spectral sequence to
PnX• , where X• is the usual resolution in sT∗ . Note that Pn‖X•‖
is n-equivalent to ‖PnX•‖ (as we can see from the differentials in the
spectral sequence itself).
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(iv) For §2.18 (d): if A := {Sn}∞n=k , we can use the usual Eilenberg-
Mac Lane objects (noting that the connectivity assumptions are not in
the simplicial direction), and again apply the Quillen spectral sequence
to resolutions in which all spaces happen to be (k − 1)-connected. �

3.21 Remark Note that not all resolution model categories are E2 -model
categories. In particular, if we replace the spheres by Moore spaces as our
models (in T∗ ), then we have neither Eilenberg-Mac Lane objects nor Postnikov
systems for the mod p homotopy groups (see [9, §3.10]). In addition, the
realization of simplicial spaces does not provide the expected functor J for Ax
4, since the Bousfield-Friedlander spectral sequence for a mod p resolution does
not collapse (see [6, §4.6]).

3.22 Notation In what follows we will often have to deal with parallel con-
structions of the E2 -model category structure in sCA , as well as in the
associated algebraic category sΠA-Alg . In order to distinguish between them,
we shall use boldface – PnX• , BΛ := BsCΛ, E(M,n) := EsC(M,n), and
so on – for the constructions in sC , and tildes – P̃nG• , B̃Λ := BsΠA-AlgΛ,
Ẽ(M,n) := EsΠA-Alg(M,n), etc. – for the analogous constructions in
sΠA-Alg .

We may still use the unadorned symbols PnX• , BΛ, and EΛ(M,n), etc.,
when we do not need to make this distinction.

4 Cohomology theories

As one might expect, the Eilenberg-Mac Lane objects in an E2 -model category
can be used to define suitable cohomology theories:

4.1 Definition Let sCA be any resolution model category. A sequence
of pointed contravariant functors (Dn : ho sCA → Z-Mod)∞n=0 is called
a sequence of cohomology functors if they satisfy the analogues of the usual
Eilenberg-Steenrod axioms:

I. Dn(
∐

α Xα) ∼=
∏

α DnXα for any coproduct of cofibrant objects in
sCA .

II. Di(A⊗̂Sn) = 0 for i 6= n and any A ∈ A;
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III. Given N• ← M•
i
−→ P• in sC , with all objects cofibrant and i a

cofibration, let X• := N• ∐M•
P• be the pushout. Then there is a

natural Mayer-Vietoris long exact sequence:

0 → D0X• → D0N• ⊕D
0P• → D0M• → D1X•

. . . DnX• → DnN• ⊕D
nP• → DnM• → . . .

(4.2)

4.3 Definition Fix a ΠA -algebra Λ and a Λ-module M . For X• ∈ sCA/BΛ
and n ≥ 1, define the n-th (andré-Quillen) cohomology group of X• over
Λ with coefficients in M , denoted by Hn

Λ(X•;M), to be:

Hn
Λ(X•;M) := [X•, EΛ(M,n)]sCA/BΛ.

We would like to know that extending πA : sCA/BΛ→ sΠA-Alg/πABΛ to a
functor sCA/BΛ → sΠA-Alg/B̃Λ (via πABΛ → P̃0πABΛ ≃ B̃Λ) induces
an isomorphism of cohomology theories over Λ. This holds for n ≥ 2 by the
following generalization of [10, Prop. 8.7]:

4.4 Proposition There is a natural map ζ : πAEΛ(M,n)→ ẼΛ(M,n) such
that

φn(X•) : [X•,E
Λ(M,n)]sCA/BΛ → [πAX•, Ẽ

Λ(M,n)]sΠA-Alg/B̃Λ ,

defined as the composite of the maps induced by ζ and πA : sC → sΠA-Alg ,
is an isomorphism for n ≥ 2.

Proof The section σ : BΛ→ EΛ(M,n) (§3.7) induces a section s : πABΛ→
P̃nπAEΛ(M,n) for the map p̃(n) : P̃nπAEΛ(M,n) → P̃n−1πAEΛ(M,n) =
πABΛ (cf. §3.1) over B̃Λ. Moreover, πAEΛ(M,n) is known from (3.8).
Therefore, the (n− 1)-st k -invariant for πAEΛ(M,n) fits into a homotopy-
commutative diagram:

πABΛ

=

%%

s

((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

r

**
P̃nπAEΛ(M,n)

hPB
p̃(n)

��

// B̃Λ

τ

��

πABΛ
k̃n−1

// ẼΛ(M,n+ 1)

where p̃(n) is induced by πA(p(n)) : πAEΛ(M,n) → πABΛ, and r and
the unlabelled arrow is the unique terminal map in sΠA-Alg/B̃Λ. Thus
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k̃n−1 = τ ◦ r , yielding two consecutive homotopy pullback squares:

P̃nπAEΛ(M,n)

hPB
p̃(n)

��

ζ
// ẼΛ(M,n)

hPB

��

// B̃Λ

��

πABΛ
r //

k̃n−1

11B̃Λ
τ // ẼΛ(M,n + 1)

in which the required ζ is a structure map for the left square.

Now let:

Φn(X•) : mapsCA/BΛ(X•,E
Λ(M,n))→ mapsΠA-Alg/B̃Λ(πAX•, Ẽ

Λ(M,n))

be the analogously defined map, with φn(X) = π0Φn(X•).

Because πA takes homotopy pushouts in sCA to homotopy pushouts of
simplicial ΠA -algebras, it follows that the source and target of Φn(−) take
homotopy pushouts to homotopy pullbacks. Now every object of sCA is, up to
homotopy, a filtered colimit of objects constructed from copies of A⊗̂Sm by
finitely many homotopy pushouts. Thus, since source and target of Φn take
filtered colimits to homotopy limits of simplicial sets, it suffices to show that
Φn(A⊗̂Sm) is a π0 -equivalence for all m ≥ 2 and A ∈ A. As A⊗̂Sm

corepresents π♮n ? in ho sCA/BΛ and πA(A⊗̂Sm) corepresents πnπA(?)
in ho sΠA-Alg for n ≥ 2, the Proposition follows from the naturality of ζ
and Definition 3.5.

The restriction n ≥ 2 is needed because π1πA(?) is not known to be
corepresentable (see [22, §7(ii)]).

4.5 Corollary The functors H∗
Λ(−;M) on sCA/BΛ and sΠA-Alg/B̃Λ

are cohomology functors.

Proof This follows from [34, II, §5].

4.6 Remark If C is the category ΠA-Alg , or more generally any category
of Θ-algebras as in Theorem 3.15, we have an equivalence:

Hn
Λ(G•;M) ∼= π0 mapsG•-Mod/BΛ(LΩG•

, EΛ(M,n)).

Here LΩG•
denotes the cotangent complex associated to G• , defined by:

LΩG•
:= ΩG′

•
∗G′

•
G•

where G′
• is a cofibrant replacement of G• in sCA and the group of

Kähler differentials ΩG′
•

is defined in 1.19.
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4.7 Remark In fact, this previous observation can be carried a little further.
Given a (simplicial) ΠA -algebra G• and a G• - module M , define the group
of algebraic extensions exalΛ(G•; M) to be the set of equivalence classes of
the form (1.14) with K = M . This set is a functor in both variables (via
pullbacks and pushouts) and forms an abelian group with unit M ⋉G• and
addition induced by the diagonal G• → G• ×Λ G• and the group addition
M ×Λ M →M .

Assume now that G• is cofibrant. Following [29, III.1.2.3], there is a natural
isomorphism

exalΛ(G•; E
Λ(M,n))

∼=
−→ Hn+1

Λ (G•;M) (4.8)

sending an algebraic extension (EΛ(M,n) → X → G•) of simplicial ΠA -
algebras to the induced homotopy coboundary (G• → EΛ(M,n+ 1)). For
general G• , there is an isomorphism

Hn+1
Λ (G•;M) ∼= colimWk(G•) exalΛ(G′

•; E
Λ(M,n+ 1)) (4.9)

where Wk(G•) is the category of cofibrant replacements G′
• → G• in

simplicial ΠA -algebras

4.10 The cohomology of a diagram.

Let D be a small category. Observe that a map of D-diagrams is just a natural
transformation: a collection of maps on objects which commute with the maps
in each diagram.

4.11 Fact Given two functors X,Y : D → C , the set HomCD(X,Y ) of
diagram maps between them fits into the equalizer diagram

HomCD(X,Y ) →֒
∏

d∈D

HomC(Xd, Yd) −→−→
∏

d,e∈D

∏

η∈HomD(d,e)

HomC(Xd, Ye) ,

(4.12)
where the two parallel arrows map to each factor indexed by η : d → e

in D by the appropriate projection, followed by Y (η)∗ : HomC(Xd, Yd) →
HomC(Xd, Ye), or X(η)∗ : HomC(Xe, Ye)→ HomC(Xd, Ye), respectively.

4.13 Remark If C is a simplicial model category, and Yd is an abelian
group object for each d ∈ ObjD, we can replace the equalizer diagram (4.12)
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by an exact sequence of simplicial abelian mapping spaces (using the mapping
space construction of [34, II, 3.1]):

0→ mapCD(X,Y )→
∏

d∈D

mapC(Xd, Yd)
ξ
−→

∏

d,e∈D

∏

η:d→e

mapC(Xd, Ye), (4.14)

where ξ is the difference of the two parallel arrows of (4.12).

If this were a fibration sequence after the mapping spaces are restricted to
appropriate over-categories, we could apply π0 and compute cohomology in
the diagram category directly from the exact sequence. However, it is not a
fibration sequence in general, so we concentrate for now on the special case of
D = [1]:

4.15 The cohomology of a map.

For the arrow category C(→), the exact sequence of (4.14), suitably modified,
is in fact a fibration sequence. To show this, we need some technical results on
model categories:

4.16 Lemma Suppose

X
g

  B
B

B

B

B

B

B

B

f
//W

ψ
��
Z

(4.17)

is a diagram in a model category C which commutes up to homotopy, with X
cofibrant and ψ a fibration. There there is a homotopic map f ≃ f ′ : X →W
such that ψ ◦ f ′ = g . Dually, if

X

φ
��

f

  @
@

@

@

@

@

@

Y g
// Z

(4.18)

commutes up to homotopy, with Z fibrant and φ a cofibration, then there is a
homotopic map g ≃ g′ : Y → Z such that f = g′ ◦ φ.

Proof Assume ψ is a fibration. Cofibrancy of X implies i0 : X → cyl(X) is
an acyclic cofibration by [28, 7.3.7]. Given a homotopy H : cyl(X)→ Z with
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H ◦ i0 = ψ ◦ f and H ◦ i1 = g , we may use the left lifting property in

X

acyc. cof i0
��

f
//W

fibψ

��
cyl(X)

Ĥ
;;

H // Z

(4.19)

to factor H as ψ ◦ Ĥ , and set f ′ := Ĥ ◦ i1 . If instead φ is a cofibration and
Z is fibrant, use the dual argument.

4.20 Corollary Suppose

X

φ
��

f
//W

ψ
��

Y
g

// Z

(4.21)

is a commutative diagram in a model category C . If ψ is a fibration and X is
cofibrant, then to any homotopic map g′ ≃ g there corresponds a homotopic
map f ′ ≃ f such that ψ ◦ f ′ = g′ ◦ φ. Dually, if φ is a cofibration and Z is
fibrant, then to any homotopic map f ′ ≃ f there corresponds a homotopic
map g′ ≃ g such that ψ ◦ f ′ = g′ ◦ φ.

4.22 Remark Since we assume that fibrations and weak equivalences in our
diagram categories are defined objectwise, then if φ is a cofibrant object in
C(→) it follows that φ is a cofibration in C with cofibrant source. Thus if ψ is
a fibration with fibrant target in C , it makes sense to consider homotopy classes
of maps [φ,ψ] in (4.17) – in fact, the mapping space mapC(→)(φ,ψ) has
homotopical meaning, and [φ,ψ] ∼= π0 mapC(→)(φ,ψ).

4.23 Proposition Let ϑ : U → V be a fixed map in a simplicial model
category C and let φ : X → Y and ψ : W → Z be maps in C(→)/ϑ. If
φ is a cofibration with cofibrant source and Z → V is a fibration in C , with
W and Z abelian group objects, then the restriction of the exact sequence of
simplicial abelian mapping spaces from Remark 4.13

mapC(→)/ϑ(φ,ψ)→ mapC/U (X,W )×mapC/V (Y,Z)
ξ
−→ mapC/V (X,Z) (4.24)

is a fibration sequence (in S ).

Proof First, by [34, II, §3, Prop. 1], we know that ξ of (4.24) is a fibration in
G (and so in S ) if and only if it surjects onto the basepoint component of the
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target space mapC/V (X,Z) ∈ S – or equivalently, onto any component of
mapC/V (X,Z) which it hits.

Now, if k : X ×∆[n]→ Z is any map in the image of ξ , then there are maps
f : X ×∆[n]→W in C/U and g : Y ×∆[n]→ Z in C/V such that in
the (not commutative) diagram

X ⊗∆[n]

φ⊗Id
��

f
//

k

((P

P

P

P

P

P

P

P

P

P

P

P

P

P

W

ψ

��
Y ⊗∆[n] g

// Z

(4.25)

we have ψ ◦ f − g ◦ (φ⊗ Id) = k in C/V .

Finally, if k′ is in the same component as k in mapC/V (X,Z), we can write
ψ ◦ f − g ◦ (φ⊗ Id) ∼V k′ (since X is cofibrant and Z is fibrant in C/V ) or
equivalently, since ± preserves homotopies, ψ ◦ f − k′ ∼V g ◦ (φ⊗ Id), where
∼V indicates homotopy in C/V . By Lemma 4.16 applied to the diagram

X ⊗∆[n]

φ⊗Id
��

ψ◦f−k′

''P

P

P

P

P

P

P

P

P

P

P

P

P

P

Y ⊗∆[n] g
// Z

(4.26)

viewed in C/V , we can replace g by a homotopic map g′ over V such that
ψ ◦ f − k′ = g′ ◦ (φ ⊗ Id). But then ξ(f, g′) = k′ , so ξ indeed surjects onto
the component of k .

4.27 Corollary For φ : X• → Y• , a morphism in sC over a map Bλ :
BΛ0 → BΛ1 , suppose ψ : EΛ0(M0, n) → EΛ1(M1, n) is the morphism of
extended Eilenberg-Mac Lane objects induced by a module τ : M0 →M1 over
λ : Λ0 → Λ1 . Then there is a long exact sequence:

0 → H0
λ(φ, τ) → H0

Λ0
(X•; M0)⊕H

0
Λ1

(Y•; M1)
ψ∗−φ∗
−−−−→

H0
Λ1

(X•; M1) → H1(φ, τ) → . . . → Hn−1
Λ1

(X•; M1) →

Hn
λ (φ; τ)

θ
−→ Hn

Λ0
(X•; M0)⊕H

n
Λ1

(Y•; M1)
ψ∗−φ∗
−−−−→ Hn

Λ1
(X•; M1)

(4.28)

where θ is induced by the obvious forgetful functors.

Proof Recall from Remark 3.14 that we may assume that our extended Eilen-
berg-Mac Lane objects are strict abelian group objects, so that the previous
discussion applies. Note also that Hn−r

Γ (W•,N) ∼= πr mapsC(W•, E
Γ(N,n))
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for W• ∈ sC/BΓ, N a Γ-module, and 0 ≤ r ≤ n. Similarly Hn−r
λ (φ, τ) ∼=

πr mapsC(→)(φ,E
λ(τ, n)). Thus the fibration sequence (4.24) yields the desired

long exact sequence in homotopy (though the last map in π0 need not be
surjective).

We can identify the image of ψ∗ − φ
∗ in cohomological terms as:

Ker (q∗ : Hn(X•;M1)→ Hn(X•;C)) ∩ Im (φ∗ : Hn(Y•;M1)→ Hn(X•;M1)) ,

where q : M1 →→ C := Coker (τ).

4.29 An example of the cohomology of a map.

Note that in the stable range any Λ-module is trivial – that is, 〈〈−,−〉〉 ≡ 0
(in the notation of §1.15) (although of course it need not be trivial as an abelian
Π-algebra – i.e., compositions may be non-zero).

In our example, for Λ := trn+2 π∗X (§1.21), and M := ΩΛ, we have:

Mi =























(Z/2)〈α〉 for i = n− 1

(Z/2)〈α ◦ η〉 for i = n

(Z/4)〈β〉 for i = n+ 1

0 for i = n+ 2 ,

with 2β = α ◦ η2 .

Since Π-Algn+2
n is an abelian category, by the Dold-Kan correspondence we

can use chain-complex notation to describe a free simplicial resolution V• of
Λ as follows:

Sn+2
s

2 // Sn+2
t

η

""E
E

E

E

E

E

E

E

Sn+2
w

2 //

−η2

��3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

Sn+2
y

� // β

Sn+1
v

2 // Sn+1
u

η

""F
F

F

F

F

F

F

F

F

∐ ∐

Snz
2 // Snx

� // α

V5
∂5 // V4

∂4 // V3
∂3 // V2

∂2 // V1
∂1 // V0

∂0 // Λ ,

(4.30)
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(where ∂1(w) = 2y − x ◦ η2 ∈ V0 ) – so we can calculate

C∗ := HomΛ-Mod(V•,ΩΛ)

as follows:

C5 ← C4 ← C3 ← C2 ← C1 ← C0

‖ ‖ ‖ ‖ ‖ ‖

0
0
←− 0

0
←− Z/4

2
←− Z/4

2
←− Z/2

0
←− Z/2

which implies that:

H i(Λ;ΩΛ) =







Z/2 for i = 0, 3

0 otherwise.

Similarly, Hom(V•,ΩSn−1) is 0 ← 0
0
←− Z/24

2
←− Z/24

12
←− Z/2

0
←− Z/2, so

that:

H i(Λ;ΩSn−1) =

{

Z/2 for i = 0, 3

0 otherwise

with ϕ∗ : H0(Λ;ΩSn−1)→ H0(Λ;ΩΛ) the identity, while

ϕ∗ : H3(Λ;ΩSn−1)→ H3(Λ;ΩΛ)

is trivial (and similarly for ψ of §1.22).

On the other hand, since Sn−1 is a free Π-algebra, for any module M we
have:

H i(Sn−1;M) =

{

M for i = 0

0 otherwise .

From the long exact sequence (4.28) we conclude that:

H i
ϕ(ϕ; Ωϕ) = H i

ψ(ψ; Ωψ) =

{

Z/2 for i = 3, 4

0 for 0 < i < 3 or 4 < i.
(4.31)

5 Realizations of a ΠA-algebra

Our aim now is to address the general realization question described in the
introduction – namely, given an E2 -model category sCA and a ΠA -algebra
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Λ, is there a realization of Λ in C - that is, is there a Y ∈ C such that πAY ∼= Λ
as Π-algebras?

Before we state our main result, we need the following variation on the Postnikov
system:

5.1 Definition A quasi-Postnikov tower for an ΠA -algebra Λ is a tower of
fibrations:

· · ·
p(n+1)

−−−−→ X〈n + 1〉•
p(n)

−−→ X〈n〉•
p(n−1)

−−−−→ · · ·
p(0)
−−→ X〈0〉• ≃ BΛ (5.2)

in sC such that πAX〈n〉• ≃ Ẽ
Λ(Ωn+1Λ, n+ 2) for every n > 0, with the

sections s : B̃Λ → πAX〈n〉• (§3.7) induced by the maps p(n) . The object
X〈n〉• ∈ sC will be called an n-th quasi-Postnikov section for Λ.

5.3 Remark Thus a tower (5.2) is a quasi-Postnikov tower for Λ if

πkπAX〈n〉• ∼=











Λ for k = 0,

Ωn+1Λ for k = n+ 2,

0 otherwise ,

(5.4)

and it is equipped with maps ρ(n) : B̃Λ → πAX〈n〉• over B̃Λ, for each

n ≥ 0, commuting with the maps p
(n)
# .

We then deduce from the exact sequence (2.13) that:

π♮kX〈n〉• ∼=

{

ΩkΛ for 0 ≤ k ≤ n,

0 otherwise .
(5.5)

Note that (5.5) implies in turn that the (ordinary) Postnikov sections PkX〈n〉•
of X〈n〉• constitute quasi-Postnikov sections for Λ, for k ≤ n (see also [10,
Prop. 9.11]).

We are now in a position to state the two key results addressing our realization
question (the proofs are defered to §§5.15-5.16):

5.6 Theorem If sCA is an E2 -model category and Λ ∈ ΠA-Alg , the
following are equivalent:

(1) Λ is realizable – that is, there is a Y ∈ C with πAY ∼= Λ;

(2) There is an X• ∈ sC with πAX• ≃ B̃Λ.

(3) There is a quasi-Postnikov tower for Λ.
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5.7 Theorem Let X〈n − 1〉• ∈ sC be an (n− 1)-st quasi-Postnikov section
for a ΠA -algebra Λ. Then:

(a) Up to homotopy, there is a unique X〈n〉• ∈ sC satisfying (5.4) and
(5.5), with Pn−1X〈n〉• = X〈n − 1〉• .

(b) This X〈n〉• is an n-th quasi-Postnikov section for Λ if and only if the
(n + 2)-nd k̃ -invariant for πAX〈n〉• vanishes in Hn+3

Λ (B̃Λ; Ωn+1Λ).

(c) In that case, X〈n + 1〉• exists, by (a); furthermore, the different choices
for the map p(n) : X〈n + 1〉• → X〈n〉• – or equivalently, choices of
the section s̃n : B̃Λ→ ẼΛ(Ωn+1Λ, n+ 2) = πAX〈n〉• of §3.7 – are in
one-to-one correspondence with elements of Hn+2

Λ (B̃Λ; Ωn+1Λ).

Compare [2, Ch. D, (7.9)].

Our approach to constructing an X• in Theorem 5.6 (2) will be inductive,
using its Postnikov system, which serves as a quasi-Postnikov tower for Λ. Thus
at each stage we will have the obstruction of Theorem 5.7 (b) to moving up one
more level. To explain why this works (and prove the two Theorems), we shall
need some facts about:

5.8 Connections between the Postnikov systems.

Given any simplicial object X• ∈ sC , consider its n-th Postnikov section
PnX• , for some n > 0, and let Λ := π♮0X• = π0πAX• . We want to
describe the simplicial ΠA -algebra πAPnX• (up to homotopy) in terms of
πAX• , and whatever other information is necessary.

First, observe that (2.13) also implies:

πkπAPnX•
∼=























πkπAX• for k ≤ n,

Coker (hXn+1 : π♮n+1X• → πn+1πAX•) for k = n+ 1,

Ωπ♮nX• for k = n+ 2.

0 otherwise.

(5.9)

In particular, when πAX• ≃ B̃Λ, (5.9) simplifies to:

πkπAPnX•
∼=











Λ for k = 0,

Ωn+1Λ for k = n+ 2,

0 otherwise,

(5.10)
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5.11 Lemma For any X• ∈ sC , we have a homotopy fibration sequence in
sΠA-Alg/B̃Λ (that is, a homotopy pullback square over B̃Λ):

πAPn+1X•

p
(n)
#
−−→ πAPnX•

(kn)#
−−−−→ πAEΛ(π♮n+1X•, n+ 2).

Proof Definition 2.6(b) implies that

(kn)# : πAPnX• → πAEΛ(π♮n+1X•, n+ 2)

is an A-fibration over πABΛ. Denote its fiber by F• , with a natural map
of simplicial ΠA -algebras ϕ : πAPn+1X• → F• .

Because the functors πkπA : sC → ΠA-Alg are corepresentable for k >
1 (cf. [22, §7.4]), applying πA to the homotopy pull-back (3.11) yields a
“quasi-fibration” of simplicial ΠA -algebras, and so a long exact sequence in
homotopy (in dimensions ≥ 2), which implies that ϕ# is an isomorphism in
dimensions ≥ 2; since this is trivially true in dimensions 0 and 1, ϕ is a weak
equivalence.

5.12 Lemma If we write E• := EΛ(π♮n+1X•, n+ 2), then applying πn+2πA
to the k -invariant kn : PnX• → E• yields the homomorphism sn+1 :
Ωπ♮nX• → π♮n+1X• of (2.13).

Proof First, note that, in the following commutative diagram:

0 //

��

π♮
n+1 ΩE•

∼=

��

∼= // πn+1πAΩE•

��
πn+2πAPn+1X•

��

∂n+2
// Ωπ♮

n Pn+1X•

∼=

��

sn+1
// π♮

n+1 Pn+1X•

��

hn+1
// πn+1πAPn+1X•

πn+2πAPnX•

(kn)#

��

∼= // Ωπ♮
n PnX•

// π♮
n+1 PnX• = 0

πn+2πAE•

the isomorphisms of πn+2πAPnX• with Ωπ♮nPn+1X• , and π♮n+1 Pn+1X•

with πn+1πAΩE• , are natural. Also, the columns here are exact either by the
long exact sequence in π♮∗ for a fibration in sC , or by Lemma 5.11.

The result now follows from the naturality of the exact sequence (2.13), applied
to the fibration sequence:

ΩE• ≃ EΛ(π♮n+1X•, n+ 1) → Pn+1X• → PnX•
kn−→ E•.
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5.13 Lemma If πAX• ≃ B̃Λ, then the spiral exact sequence (2.13) for
X• from πn+3πAX• down is determined by the homomorphism ∂⋆n+3 :
πn+3πAX• → Ωπ♮n+1X• .

Proof First, observe that given PnX• , we know the exact sequence (2.13)

for X• only from Ωπ♮n−1X• down. However, when r
(n)
# : π∗πAX• →

π∗πAPnX• is also known, and πAX• ≃ B̃Λ, then all we need in or-
der to determine (2.13) for X• from πn+3πAX• down is the homo-

morphism (r
(n+1)
# )n+3 : πn+3πAX• → πn+3πAPn+1X• – which is just

∂⋆n+3 : πn+3πAX• → Ωπ♮n+1X• .

5.14 Lemma If k̃n+1(πAX•) : P̃n+1πAX• → ẼΛ(πn+2πAX•, n+ 3) is the
(n+ 1)-st k̃ -invariant for πAX• , then the (n+ 1)-st k̃ -invariant

k̃n+1(πAPnX•) : P̃n+1πAPnX• → ẼΛ(Ωπ♮nX•, n + 3)

satisfies: (∂⋆n+2)∗ ◦ k̃n+1(πAX•) = k̃n+1(πAPnX•) ◦ P̃n+1(r
(n)
# ).

Proof This follows from the naturality of the k̃ -invariants (Ax 3 of §3.12) and
Lemma 5.13.

5.15 Proof of Theorem 5.6.

(1) ⇐⇒ (2): Given Y , let X• := c(Y )• . Conversely, if X• ∈ sC/BΛ
satisfies πAX• ≃ B̃Λ, then by Ax 4 of §3.12, there is a functor J : sCA → C
equipped with an isomorphism:

[A, JX•]C ∼= HomΠA-Alg(πAA,Λ) ,

natural in A ∈ A. Thus πAJX•
∼= Λ as ΠA -algebras, by Yoneda’s Lemma,

so we can take Y := JX• .

(2) ⇐⇒ (3): By [10, Prop. 9.11] we know that πAX• ≃ B̃Λ if and only if
πAPnX• ≃ Ẽ

Λ(Ωn+1Λ, n + 2).

Thus given X• with πAX• ≃ B̃Λ, the ordinary Postnikov tower PkX• of
X〈n〉• constitutes a quasi-Postnikov tower for Λ, by (5.10).

Conversely, given a quasi-Postnikov tower (5.2) for Λ, let X• := holimnX〈n〉• .
Since P̃n+1ρ

(n) : B̃Λ → P̃n+1πAX〈n〉• is a weak equivalence for each n, the

maps ρ(n) induce a weak equivalence r : B̃Λ
≃
−→ πAX• . �
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5.16 Proof of Theorem 5.7.

Let X〈n− 1〉• be an (n−1)-st quasi-Postnikov section for Λ. By assumption
πAX〈n − 1〉• ≃ ẼΛ(ΩnΛ, n+ 1), and the map ρ(n−1) : B̃Λ → πAX〈n − 1〉•
is the required section.

(a) In order to construct X〈n〉• , we must choose a suitable (n − 1)-st
k -invariant kn−1 ∈ [X〈n − 1〉•,E

Λ(ΩnΛ, n+ 1)]BΛ . Note that using
the long exact sequence in π♮ for a fibration over BΛ, combined
with (2.13), automatically ensures that any such choice yields X〈n〉•
satisfying (5.4) and (5.5).
We can use the map ζ : πAEΛ(ΩnΛ, n+ 1) → ẼΛ(ΩnΛ, n+ 1) of
Proposition 4.4 to define kn−1 : X〈n− 1〉• → EΛ(ΩnΛ, n+ 1) (uniquely
up to homotopy) by specifying

ζ ◦ (kn−1)# : πAX〈n − 1〉• → ẼΛ(ΩnΛ, n+ 1).

Since πAX〈n − 1〉• ≃ Ẽ
Λ(ΩnΛ, n + 1), the functoriality of Ax 2 of §3.12

implies that such a map is uniquely determined up to homotopy by a map
of Λ-modules ϕ : ΩnΛ → ΩnΛ, and by Lemma 5.12 this ϕ must be
the given isomorphism (sn+1) : Ωπ♮n−1X〈n− 1〉• → ΩnΛ, if the quasi-
Postnikov tower we are constructing for Λ is to be a Postnikov tower in
sC . (Note that by Lemma 5.13, we already know the long exact sequence
(2.13) for X〈n〉• from sn+1 down.) Thus the candidate for X〈n〉•
over X〈n− 1〉• , satisfying (5.4) and (5.5), is determined uniquely up
to homotopy by X〈n − 1〉• .

(b) There is only one possible obstruction to X〈n〉• (the homotopy fiber
of kn−1 in sC/BΛ) being an n-th quasi-Postnikov section for Λ:
the non-existence of the lift ρ(n) : B̃Λ → πAX〈n〉• . However, since
P̃n+1πAX〈n〉• ≃ B̃Λ, by (5.5), we may use the long exact sequence in
πA for the fibration sequence:

πAX〈n〉• =P̃n+2πAX〈n〉•
p̃(n+2)

−−−−→ P̃n+1πAX〈n〉•

k̃n+1
−−−→ ẼΛ(Ωn+1Λ, n+ 3)

(5.17)

over B̃Λ to deduce that ρ(n−1) lifts to ρ(n) if and only if k̃n+1

is null in sΠA-Alg/B̃Λ.
More precisely, we want ρ(n) to map to the homotopy pullback (Ax 3
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of §3.12) in:

P̃n+1B̃Λ ≃

''

≃

&&

ρ(n)

&&
πAPnX•

//

��

B̃Λ

k̃n+1

��

B̃Λ
s̃ // ẼΛ(Ωn+1Λ, n+ 3),

(5.18)

which is possible if and only if k̃n+1 is homotopic to the given homotopy
section s̃ : B̃Λ→ ẼΛ(Ωn+1Λ, n+ 3).

(c) Since the fiber (over B̃Λ) of p̃(n+2) in (5.17) is ẼΛ(Ωn+1Λ, n+ 2),
the possible choices for such lifts are distinguished by elements of:

[B̃Λ, ẼΛ(Ωn+1Λ, n + 2)]B̃Λ = Hn+2(B̃Λ/Λ,Ωn+1Λ),

which are in fact just choices for ∂⋆n+3 : πn+3B̃Λ → Ωπ♮n+1X〈n + 1〉•
(see 5.13). These determine the identification of πAX〈n〉• with
ẼΛ(Ωn+1Λ, n+ 2), which is the only freedom in the inductive procedure
we have described. �

5.19 Remark To appreciate the explicit inductive construction of these ob-
structions provided in the above proof, let us examine more carefully the first
step in realizing a ΠA -algebra Λ:

Note first that, from the spiral exact sequence and Postnikov sections, the
homotopy groups of BΛ fit into the algebraic extension:

ẼΛ(ΩΛ, 2)→ π∗BΛ→ B̃Λ ,

and so yields an element of exalΛ(B̃Λ; ẼΛ(ΩΛ, 2)) (see Remark 4.7). Using
(4.8), we may view this extension as an element of H3(B̃Λ/Λ,ΩΛ), which is
precisely the first obstruction to realizing Λ. Note that by Ax 4 of 3.12, this
obstruction is natural in Λ. See [3] for a similar perspective on the obstructions
to realizing modules over the Tate cohomology of a group G as the group
cohomology of a G-module.

5.20 Remark The realization problem, as formulated in this section, and its
solution in Theorem 5.6 applies to Π-algebras associated to any of the categories
listed in §2.18 - n-connected spaces, p-local or rational spaces, n-types (and so
on) - as well as any diagrams of such Π-algebras. Note, however, that realization
is a tautology when C itself had a trivial model category structure – e.g., if
C = Θ-Alg is a variety of universal algebras.
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6 Realizing maps of Π-algebras

We now examine the diagram realization question in more detail for the simplest
non-trivial case: a single map of (ordinary) Π-algebras ϕ : Λ→ Γ.

6.1 Maps of realizable Π-algebras.

Assume for simplicity that the Π-algebras Λ and Γ are realizable, and replace
them by cofibrant simplicial models ψ : K• → L• in sΠ-Alg .

Note that if we are given realizations V• , W• for K• and L• , respectively
(equivalently: for Λ and Γ), we have the usual obstruction theory for lifting
f0 := Bφ ◦ p(0) : V• → BΓ = P0W• through the successive Postnikov stages
for W• , with the existence and difference obstructions all lying in the Quillen
cohomology groups H∗(V•/BΓ;ΩnΓ). However, in our approach we want
to choose the realizations for the Π-algebras Λ and Γ, and for the map ϕ,
simultaneously – again by induction on the quasi-Postnikov system.

At the n-th stage, we assume that we have a map of simplicial spaces f〈n〉 :
X〈n〉• → Y 〈n〉• , where:

a) X〈n〉• ≃ PnX〈n〉• and Y 〈n〉• ≃ PnY 〈n〉• ; and

b) P̃n(f〈n〉)# : P̃nπAX〈n〉• → P̃nπAY 〈n〉• is ϕ∗ : B̃Λ→ B̃Γ.

Our goal is to extend f to (n + 1)-stage Postnikov pieces. Because the sec-
tions s̃Λn : B̃Λ → ẼΛ(Ωn+1Λ, n+ 2) and s̃Γn : B̃Γ → ẼΓ(Ωn+1Γ, n+ 2) will
ultimately be induced by the natural Postnikov maps W• → PnW• ≃ X〈n〉•
and V• → PnV• ≃ Y 〈n〉• , say, we know that if f〈n〉 extends we will have
naturality for the sections, so our object is to choose s̃Λn and s̃Γn so that
the diagram

B̃Λ
ϕ#

//

s̃Λn
��

B̃Γ

s̃Γn
��

ẼΛ(Ωn+1Λ, n+ 2) ≃ πAX•

f#
// ẼΓ(Ωn+1Γ, n+ 2)

(6.2)

commutes up to homotopy. This means that (s̃Λn , s̃
Γ
n) is just the obstruction

class in Hn+2
ϕ (ϕ; Ωnϕ) described by Theorem 5.6.

6.3 An example of the obstructions to realizability.

We now apply the above theory to the map of Π-algebras ϕ : Λ → Sn−1

considered in §4.29. By [8, Thm. 3.16], we know that the resolution (4.30), as
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well as the constant free resolution W• → Sn−1 , are realizable by simplicial
spaces.

The relevant part of the realization of (4.30) is described in (6.4), where the
indexing is based on the Stover resolution comonad in the obvious way, with
d0 on Sn+2

〈β,2〉−〈α,η2〉
equal to the difference of the degree 2 map to Sn+2

β

and η2 to Snα , , and all face maps d1 and d2 are inclusions.

Sn+2
〈β,2〉−〈α,η2〉

d0=2

%%L
L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

d1

**U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

Sn+1
〈α,2,η〉

d2 //

d1

&&M
M

M

M

M

M

M

M

M

M

d0=η

��<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

Sn+1
〈α2,η〉 ∪ en+2

G,Cη
d1

**U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

d0=Cη

%%

−η2

��

Sn+2
〈β2〉−〈αη2〉 ∪ en+3

H

ε=H

��

Sn+1
〈α,2η〉 ∪ en+2

α,F d1

//

d0=F

&&

Sn+2
β = Sn+1

α2η ∪ en+2
α◦F ∪ en+2

G◦Cη

ε = β

  B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Sn
〈α,2〉

d1 //

d0=2

++V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

Sn
α2 ∪ en+1

G

ε=G

((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Sn
α

ε=α // X

V2
//
//

// V1
//
// V0

// X ,

(6.4)

A minimal free resolution V• in sT

The inductive approach to realizing ϕ : Λ → Sn−1 described in §6.1 begins
with f〈0〉 : X〈0〉• → Y 〈0〉• , which is just Bϕ : BΛ → BSn−1 . Moreover,
the proof of Theorem 5.6 shows that this always extends uniquely to f〈1〉 :
X〈1〉• → Y 〈1〉• (although the lifting ρ(1) as required in §5.3 need not exist).

The construction of Postnikov systems (Ax 1 of Theorems 3.15, 3.19) shows
that the existence of f〈1〉 is equivalent to having a 2-truncated augmented
simplicial space V′

• → Sn−1 realizing the augmented simplicial Π-algebra
V• → Sn−1 induced by ϕ : Λ→ Sn−1 .

Using Lemma 4.16, we may assume that the composite of the maps

Sn
2
−→ Sn

η
−→ Sn−1
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is actually null, so we can describe V′
• explicitly by (6.5). Moreover, X〈1〉• ,

and thus V′
• , is unique up to homotopy (in sT ).

Sn+2
〈2ν,2〉−〈η,η2〉

d0=2

$$I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

d1=incl .

**T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Sn+1
〈η,2,η〉

d2=0
//

d1=incl .

&&MM

M

M

M

M

M

M

M

M

M

d0=η

��<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

∗

−η2

��

Sn+2
〈4ν〉−〈η3〉

∪ en+3
H

ε=H

��3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

Sn+1
〈η,2η〉 ∪ en+2

η,F
d1=0

//

d0=F

%%

Sn+2
2ν

ε=2ν

��=
=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

Sn〈η,2〉
d1=0

//

d0=2
**U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

∗

Snη
ε=η

// Sn−1

V′
2

//
//

// V
′
1

//
// V′

0
// Sn−1 ,

(6.5)

An augmentation of V′
• to Sn−1

However, in constructing V′
• → Sn−1 we have “distorted” the original aug-

mented simplicial space V• → X in such a way that we no longer have a
strict augmentation V′

• → X.

We can see this geometrically, using the Toda bracket

〈η, 2, α〉 = {β, β + α ◦ η2} ⊆ πn+2X (6.6)

(see, e.g., [4, §6]), which we used in the decomposition:

Sn+2
β = Sn+1

α2η ∪ en+2
α◦F ∪ en+2

G◦Cη

in (6.4). Because we no longer have this in (6.5), we must have 0 ∈ 〈η, 2, α〉
for any augmentation α : Sn → X on Sn ⊆ V′

0

More formally, (6.6) yields a non-vanishing second-order homotopy operation in
[ΣV′

2,X] which is the obstruction to rectifying the homotopy augmentation
V′

• → X realizing V• → Λ, using [5, Theorem 7.13 & Lemma 5.12]. But
then we may use the equivalent obstruction theory of [7, 10] to deduce that
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the k̃ -invariant k̃1 ∈ H
3
Λ(B̃Λ; ΩΛ) ∼= Z/2 does not vanish, for the choice of

X〈0〉• described in (6.5) (with η : Sn → Sn−1 replaced by α : Sn → X
and 2ν replaced by β : Sn+2 → X).

However, since the k̃ -invariants are natural (Definition 3.10), we deduce from
the long exact sequence (4.28) that the corresponding obstruction for the
diagram – that is, k̃1 ∈ H

3(ϕ; Ωϕ) ∼= Z/2 – is also non-zero, which implies
that ϕ cannot be realized by a map of spaces f : X → Sn−1 (or even of
suitable Postnikov sections).

6.7 Remark There is a more elementary way to see that ϕ is not realizable:
if it were, from (0.15) and (6.6) we would have

{6ν, 18ν} = {6ν, 6ν + η3} = ϕ{β, β + α ◦ η2} = f∗(〈η, 2, α〉)

= 〈η, 2, ϕ(α)〉 = 〈η, 2, η〉 = {ν, 12ν} ,
(6.8)

a contradiction. Nevertheless, we hope the cohomological approach helps to
illustrate how the general theory works.
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[29] L Illusie, Complexe cotangent et déformations, I, Springer, Berlin-New York
(1971)

[30] JF Jardine, Bousfield’s E2 Model Theory for Simplicial Objects, from: “Ho-
motopy Theory: Relations with Algebraic Geometry, Group Cohomology, and
Algebraic K -Theory,” AMS, Providence, RI (2004) 305-319

[31] J.-L Loday, Spaces having finitely many non-trivial homotopy groups, J. Pure
Appl. Alg. 24 (1982) 179-202

[32] J.P May, Simplicial Objects in Algebraic Topology, U. Chicago Press (1967)

[33] MA Mandell, J P May, S Schwede, B E Shipley, Model categories of
diagram spectra, Proc. London Math. Soc. 82 (2001) 441-512

[34] DG Quillen, Homotopical Algebra, Springer, Berlin-New York (1967)

[35] DG Quillen, Spectral sequences of a double semi-simplicial group, Topology 5
(1966) 155-156
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